1. In many applications, it is desirable if we can represent a quantized value \(y \) with the property that the least significant bits of the input \(x \) in sign-magnitude representation are simply discarded should we need to reduce the data rate or storage requirements. Consider such a quantizer called a bit-plane or an embedded quantizer as shown in the figure below. Assume that the range of \(x \) is \((-16, 16)\).

(a) Find the decision boundaries, quantization stepsizes, and the quantized levels for the bit-plane quantizer when only the first 3 bits (the sign bit and two most significant bits) are kept. Sketch the quantizer’s input-output relationship.

(b) Find the set of reconstructed values \(\{\hat{x}_i\} \) using the centroid rule and sketch the quantization error signal \(q(x) \) for the case above.

(c) Describe the nature of this type of quantizer. Is it uniform or non-uniform? Midrise or midtread?

(d) If the quantizer keeps one more additional bit: one sign plus three most significant bits, what happens to the quantization stepsize?
2. Consider the 3-level mid-thread quantizer depicted in the figure below.

(a) Find the set of reconstructed values \(\{ \hat{x}_i \} \) using the centroid rule and sketch the quantization error signal \(q(x) \).

(b) What is the quantization noise power \(\sigma_q^2 \) for the 3-level quantizer in Part (a)?

(c) For the 2-level (1-bit) mid-rise quantizer below, find the set of reconstructed values \(\{ \hat{x}_i \} \) using the centroid rule and sketch the quantization error signal \(q(x) \).

(d) What is the quantization noise power \(\sigma_q^2 \) for the 2-level quantizer in Part (c)? Which quantizer is superior?

(e) For the 2-level (1-bit) mid-rise quantizer, suppose that we do not follow the centroid reconstruction rule and choose the following 2 reconstruction levels \(\{-A, A\} \) instead. Sketch the quantization noise \(q(x) \) for this case and recompute \(\sigma_q^2 \). How does the noise power compare to your answer in Part (d)?

Due date: November 16 in class