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Reading Assignment: Lecture Notes

Computer Assignment: Sparse Signal Recovery via `1-minimization.

1. We will mostly repeat what we have done in Assignment I by replacing `0-minimization
with `1-minimization. We will increase the dimension (you will quickly find out that your
existing `0-minimization strategy will not work anymore). We will also investigate a few more
sampling matrices.

Suppose that we have a signal x of 256 samples (N = 256) where only 5 of these samples are
nonzero (S = 5). The location and magnitude of these nonzero samples are unknown. Let’s
investigate the problem of sampling this sparse signal using the various sampling methods.

Generate the signal using the following Matlab commands:

>> x = zeros(N, 1); q = randperm(N);x(q(1 : S)) = randn(S, 1);

Use Matlab’s linear programming function linprog to set up the `1-minimization problem

x̂ = argminx ||x||1 subject to y = Ax.

For each sensing matrix A itemized below, vary the value of M (say M = {10, 20, 30, . . . , 100}),
and perform `1-minimization at 100 different instances of the signal x by varying the location
and magnitude of its nonzero samples. Let’s say if ||x̂ − x||2 ≤ 10−6, then we regard the
signal recovery as perfect. Plot the performance curve in which x-axis represents the number
of measurements M while y-axis denotes the probability of perfect signal recovery. At each of
the 100 instances, the signal should be different and often times, the sensing matrices might be
different as well. The following sampling schemes/sensing matrices are under consideration.

(a) Random sampling in the time domain: Suppose I is the N ×N identity matrix. Create
the sensing matrix A by keeping M rows of I at random locations (and deleting the
remaining M −N rows).

(b) Uniform subsampling in the time domain: The sensing matrix A in this case is con-
structed from by selecting M rows of I whose row indices are in the uniformly-spaced
set

{1, bN/Mc, 2bN/Mc, 3bN/Mc, . . . ,MbN/Mc}.



(c) Random sampling in the frequency domain: Suppose F is the N × N DCT matrix
(>> F = dct(eye(N));). Create the sensing matrix A by keeping M rows of F at
random locations (and deleting the remaining M −N rows).

(d) Low-frequency sampling: Generate the sensing matrix A by keeping the first M rows of
the matrix F.

(e) Equispaced frequency sampling: Generate the sensing matrix A by keeping M rows of
the matrix F at the location

{1, bN/Mc, 2bN/Mc, 3bN/Mc, . . . ,MbN/Mc}.

(f) Sampling in a random domain: The sensing matrix A ∈ RM×N in this case is genearted
from a collection of random Gaussian variables, then the rows are orthonormalized, i.e.,

>> A = randn(M,N);A = orth(A′)′;

Which sensing matrices are best for perfect recovery? In those cases, how many measurements
are sufficient for perfect signal recovery ? Which sampling method seems to be most efficient ?

2. Repeat the experiments for the case where the signal is frequency-sparse, i.e., x only contains
S = 5 significant frequency components. Like the time-sparse case earlier, the location as
well as the magnitude of those S frequencies are unknown. Such a signal can be generated as

>> alpha = zeros(N, 1); q = randperm(N); alpha(q(1 : S)) = randn(S, 1);x = idct(alpha);

How do you modify the `1-minimization problem for this case? What are your observations
this time?

Due date: Thursday, Feb. 16 in lecture


