
1

Discriminative Local Sparse Representations for
Robust Face Recognition

Yi Chen, Umamahesh Srinivas, Thong T. Do, Vishal Monga, and Trac D. Tran

Abstract—A key recent advance in face recognition
models a test face image as a sparse linear combination of
a set of training face images. The resulting sparse repre-
sentations have been shown to possess robustness against
a variety of distortions like random pixel corruption,
occlusion and disguise. This approach however makes the
restrictive (in many scenarios) assumption that test faces
must be perfectly aligned (or registered) to the training
data prior to classification. In this paper, we propose a
simple yet robust local block-based sparsity model, using
adaptively-constructed dictionaries from local features in
the training data, to overcome this misalignment problem.
Our approach is inspired by human perception: we analyze
a series of local discriminative features and combine them
to arrive at the final classification decision. We propose
a probabilistic graphical model framework to explicitly
mine the conditional dependencies between these distinct
sparse local features. In particular, we learn discriminative
graphs on sparse representations obtained from distinct
local slices of a face. Conditional correlations between these
sparse features are first discovered (in the training phase),
and subsequently exploited to bring about significant
improvements in recognition rates. Experimental results
obtained on benchmark face databases demonstrate the
effectiveness of the proposed algorithms in the presence of
multiple registration errors (such as translation, rotation,
and scaling) as well as under variations of pose and
illumination.

Index Terms—Face recognition, sparse representation,
local sparse features, discriminative graphical models,
boosting.

I. INTRODUCTION

The problem of automatically verifying the identity of
a certain person using a live face capture and comparing
against a stored database of human face images has
witnessed considerable research activity over the past
two decades. The rich diversity of facial image captures,
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due to varying illumination conditions, spatial resolution,
pose, facial expressions, occlusion and disguise, offers a
major challenge to the success of any automatic human
face recognition system. A comprehensive survey of face
recognition methods in literature is provided in [1].

In face recognition, indeed any image-based classi-
fication problem in general, representative features are
first extracted from images typically via projection to
a feature space. A classifier is then trained to make
class assignment decisions using features obtained from
a set of training images. One of the most popular
dimensionality-reduction techniques used in computer
vision is principal component analysis (PCA). In face
recognition, PCA-based approaches have led to the use
of eigenpictures [2] and eigenfaces [3] as features.
Other approaches have used local facial features [4] like
the eyes, nose and mouth, or incorporated geometrical
constraints on features through structural matching. An
important observation is that different (photographic)
versions of the same face approximately lie in a linear
subspace of the original image space [5]–[8]. A variety
of classifiers have been proposed for face recognition,
ranging from template correlation to nearest neighbor
and nearest subspace classifiers, neural networks and
support vector machines (SVM) [1].

Recently, the merits of exploiting parsimony in signal
representation and classification have been demonstrated
in [9]–[11]. In their seminal work, Wright et al. [9]
argue that a test face image approximately lies in a
low-dimensional subspace spanned by (lexicographically
ordered) training images themselves. If sufficient training
is available, a new test face image has a naturally sparse
representation in this overcomplete basis. The sparse
vector can be obtained via many norm minimization
techniques and is then employed directly for recogni-
tion by computing a class (face) specific reconstruction
error. Note that there is no offline training stage in
sparsity based face recognition [9], instead the training
samples in the dictionary are used directly at the time
of testing/recognizing a test face image. The dictionary
may be expanded hence as more training (variants of
a face image) becomes available. This sparsity-based
face recognition algorithm has been shown [9] to yield
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markedly improved recognition performance over tra-
ditional efforts in face recognition under various con-
ditions, including illumination, disguise, occlusion, and
random pixel corruption.

In many real world scenarios, test images for identi-
fication obtained by face detection algorithms are not
perfectly registered with the training samples in the
databases. The sparse subspace assumption in [9], how-
ever, requires the test face image to be well aligned to the
training data prior to classification. Recent approaches
have attempted to address this misalignment issue in
sparsity-based face recognition [12]–[14], usually by
jointly optimizing the registration parameters and sparse
coefficients and thus leading to more complex systems.

It is well known that, compared to global features,
local features may contain more crucial information for
representation in many signal and image processing ap-
plications. One such example is the block-based motion
estimation technique which has been successfully em-
ployed in multiple popular video compression standards.

Inspired by the success of locality in recognition, our
proposal is the development and use of sparse local
features for face recognition1. As our first contribution,
we propose a robust yet simpler approach to handle the
misalignment problem via a local block-based sparsity
model. We are motivated by the observation that a
block in the test image can be sparsely represented by
a linear combination of blocks in the training images
within a spatially-neighboring region, and the sparse
representation contains the identity information for the
block. The final class decision relies on a combination of
decisions from multiple local sparse representations (as
observed earlier, the more discriminative facial features
such as eyes, nose and mouth constitute a good set of
local features). This approach exploits the capability of
the local sparsity model to capture relatively stationary
features under different types of variations and registra-
tion errors.

The presence of multiple feature representations (i.e.,
the distinct local features) naturally leads to the question:
how can we combine the decisions based on multiple
local features into a global class decision in the best way
possible? A variety of heuristic classifier fusion schemes
have been proposed in literature (see [16] for example).
The outputs of individual classifiers constitute high-level
features. It is reasonable to expect better classification
performance by directly exploring the correlation be-
tween low-level features. In order to explicitly mine
such conditional dependencies between these distinct
sparse local features, we propose a probabilistic graphi-

1Part of this material has been presented in IEEE ICIP 2010 [15].

cal model framework as the second main contribution
of this paper2. In particular, we learn discriminative
graphs on sparse representations obtained from distinct
local slices of a face. Conditional correlations between
these sparse features are first discovered by learning
discriminative tree graphs [18] on each distinct feature
set. The initial disjoint trees are then thickened, i.e.,
augmented with more edges to capture newly learnt
feature correlations, via boosting [19] on disjoint graphs.
Probabilistic graphical models offer additional benefits
in terms of robustness to limited training, and reduced
computational complexity of inference.

It is informative to contrast our contribution with
recent work in robust face recognition that consid-
ers registration errors. Huang et al. [12] consider the
scenario where the test images can be represented in
terms of all training images and (linearized versions of)
their image plane transformations. The computational
cost scales with the complexity of the plane transfor-
mation. In [14], the difficult nonconvex problem of
simultaneous optimization over sparse coefficients and
registration parameters is relaxed via sequential iterative
minimization. In addition, a novel projector-based illu-
mination system has been proposed to capture variations
in scene lighting. In our proposed approach however,
the registration parameters are not explicitly determined.
Instead, robustness to misalignment is introduced by
augmenting the training with spatially local blocks from
each training image. Another significant departure from
existing sparse representation-based approaches is our
use of a principled strategy via graphical models to ex-
plicitly mine feature dependencies, instead of performing
classification using only reconstruction residuals.

The rest of this paper is organized as follows. Section
II provides a review of sparsity based face recognition,
as well as an overview of probabilistic graphical models.
The two main contributions of this paper are presented in
Section III. An extensive set of experiments is performed
on popular face recognition databases to validate the ef-
fectiveness of our proposed framework, and results under
varying practical settings are provided in Section IV.
Section V summarizes the contributions and concludes
the paper.

II. BACKGROUND

A. Sparse Representation-based Classification

As mentioned earlier, algorithmic advances in face
recognition have been comprehensively surveyed in the

2Part of this material has been accepted to IEEE Asilomar Conf.
2011 [17].
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literature [1]. Here, we primarily review recent pioneer-
ing work in sparse representation-based face recogni-
tion [9], which forms the foundation for our proposed
contribution. This method advocates the use of sparse
representation in a discriminative setting, a novel ad-
vance over previous work which exploited sparsity from
a signal recovery standpoint.

First, let us introduce the standard notation that will
be used throughout this paper. Suppose there are K
different classes (corresponding to unique faces), labeled
C1, . . . ,CK , and there are Ni training samples (each in
Rn) corresponding to class Ci, i = 1, . . . ,K. The training
samples corresponding to class Ci can be collected in
a matrix DDDi ∈ Rn×Ni , and the collection of all training
samples is expressed using the matrix:

DDD = [DDD1 DDD2 . . . DDDK ], (1)

where DDD ∈ Rn×T , with T = ∑
K
k=1 Nk. A new test sample

y ∈ Rn can be expressed as a sparse linear combination
of the training samples:

yyy =DDDααα, (2)

where ααα is expected to be a sparse vector (i.e., only a few
entries in ααα are nonzero). This is an underdetermined
system of linear equations. The classifier seeks the
sparsest representation by solving:

α̂αα = argmin‖ααα‖0 subject to ‖DDDααα−y‖2 ≤ ε, (3)

where ‖·‖0 denotes the number of nonzero entries in the
vector. Under a set of sufficient conditions (that hold in
general for the above problem set-up), it has been shown
theoretically [20] that the non-convex optimization prob-
lem represented by (3) can be relaxed to the following
convex optimization problem:

α̂αα = argmin‖ααα‖1 subject to ‖DDDααα−y‖2 ≤ ε. (4)

Alternatively, the problem in (3) can be solved by greedy
pursuit algorithms [21]–[23].

Once the sparse vector is recovered, the identity of y
is given by the minimal residual

identity(y) = argmin
i
‖y−DDDδi(α̂αα)‖ , (5)

where δi(ααα) is a vector whose only nonzero entries are
the same as those in ααα but only associated with class Ci.
The particular choice of class-specific residuals makes
the task of decision assignment computationally trivial.

Often, it is necessary to check if a particular test image
belongs to any of the available classes. The authors
develop a sparsity concentration index (SCI) to decide

if a test image is valid or not. Given a sparse coefficient
vector ααα ∈ RT , the SCI is defined as follows:

SCI(ααα) =
K ·maxi ‖δi(ααα)‖1/‖ααα‖1−1

K−1
∈ [0,1]. (6)

A high value of SCI indicates a sparse representation
corresponding to a valid test image, while a value close
to 0 indicates that the feature coefficients are distributed
across all classes.

B. Probabilistic Graphical Models

We provide a brief overview of probabilistic graphical
models from an inference (hypothesis testing) viewpoint.
Discriminative graphs will be used to model the class
conditional densities f (ααα|Ci), i.e., a set of p.d.fs defined
on the (sparse) coefficient vector which are employed to
make class assignments (each class Ci corresponds to the
i-th person in the database).

A graph G = (V ,E) is defined by a collection of
nodes V = {v1, . . . ,vr} and a set of (undirected) edges
E ⊂

(V
2

)
, i.e., the set of unordered pairs of nodes. A

probabilistic graphical model is obtained by defining a
random vector on G such that each node represents one
(or more) random variables and the presence of edges
indicates conditional dependencies. The graph structure
thus enforces a particular factorization of the joint prob-
ability distribution in terms of pairwise marginals.

The use of graphical models in applications has been
motivated by practical concerns like insufficient training
to learn models for high-dimensional data and the need
for reduced computational complexity in realtime tasks
[24], [25]. Graphical models offer an alternate visualiza-
tion of a probability distribution from which conditional
dependence relations can be easily identified. Graphical
models also enable us to draw upon the rich resource
of efficient graph-theoretic algorithms to learn complex
models and perform inference.

Graphical models can be learnt from data in two differ-
ent settings: generative and discriminative. In generative
learning, a single graph is learnt to approximate a given
distribution by minimizing a measure of approximation
error. Generative learning approaches trace their origin
to Chow and Liu’s [26] idea of learning the optimal tree
approximation p̂ of a multivariate distribution p using
first- and second-order statistics:

p̂ = arg min
p̂ is a tree

D(p||p̂), (7)

where D(p||p̂) = Ep[log(p/p̂)] denotes the Kullback-
Leibler (KL) divergence. This optimization problem is
shown to be equivalent to a maximum-weight spanning
tree (MWST) problem. In discriminative learning, on
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the other hand, a pair of graphs is jointly learnt from
a pair of empirical estimates by minimizing the classifi-
cation error. (Note that we consider binary classification
problems here to reduce notational clutter. The approach
naturally extends to multi-class problems by learning
graphs in a one-versus-all manner.)

Recently, Tan et al. [18] proposed a graph-based dis-
criminative learning framework, based on maximizing an
approximation to the J-divergence, which is a symmetric
extension of the KL-divergence. Given two probability
distributions p and q, their J-divergence is defined as:
J(p,q) = D(p||q) + D(q||p). The tree-approximate J-
divergence is then defined as:

Ĵ(p̂, q̂; p,q) =
∫
(p(x)−q(x)) log

[
p̂(x)
q̂(x)

]
dx, (8)

which measures the “separation” between tree-structured
approximations p̂ and q̂. Using the key observation that
maximizing the J-divergence minimizes the upper bound
on probability of classification error, the discriminative
tree learning problem is then stated (in terms of empirical
estimates p̃ and q̃) as follows:

(p̂, q̂) = arg max
p̂,q̂ trees

Ĵ(p̂, q̂; p̃, q̃). (9)

It is shown in [18] that this optimization further decou-
ples into two MWST problems:

p̂ = arg min
p̂ tree

D(p̃||p̂)−D(q̃||p̂) (10)

q̂ = arg min
q̂ tree

D(q̃||q̂)−D(p̃||q̂). (11)

Here, (10) and (11) bring out the distinction (from
a classification viewpoint) between: (i) using generative
learning techniques to separately learn p̂ and q̂ and then
performing inference, and (ii) simultaneously learning a
pair of graphs discriminatively. In (10), the optimal p̂ is
chosen to minimize its (KL-divergence) distance from p̃
and simultaneously maximize its distance from q̃.

The discussion so far mainly considers tree graphs,
which are fully connected acyclic graphical structures.
The computational burden of learning tree graphs is sig-
nificantly reduced owing to the sparse connectivity. This
feature however imposes a limitation on the complexity
of the model so learnt. This inherent trade-off between
generalization and performance poses a serious challenge
to the application of graphical models in various tasks.

Our contribution as described in the remainder of
this paper proposes an extension of discriminative graph
learning for the purpose of face recognition, utilizing dis-
tinct local features from a block-based sparsity model.

III. FACE RECOGNITION VIA LOCAL DECISIONS

FROM LOCALLY ADAPTIVE SPARSE FEATURES

The two main contributions of this paper are presented
in Sections III-A and III-B respectively. Section III-A
explains the process of obtaining local sparse features.
In Section III-B, two different methods of combining
class decisions are proposed: (i) based on reconstruction
error, and (ii) using graphical models.

can be sparsely represented by few neighboring blocks in refer-
ence frames. Fig. 1(a) illustrates the proposed method of repre-
senting a block in the test face imageYYY from a locally adaptive
dictionary consisting of neighboring blocks in the training images
{XXX t}t=1,...,T in the same physical area, whereT = ∑K

k=1Nk is the
total number of training samples (only one training image isshown
in Fig. 1). To be more specific, letyyyi j be anMN-dimensional vec-
tor representing the vectorizedM×N block in the test image with
the upper left pixel located at(i, j). Define the search regionSSSt

i j to
be the(M+2△ M)× (N +2△ N) block in thetth training image
XXX t as:

SSSt
i j =




xt
i−△M, j−△N · · · xt

i−△M, j+N−1+△N
...

. ..
...

xt
i+M−1+△M, j−△N · · · xt

i+M−1+△M, j+N−1+△N


 .

From the search regions of allT training images, we can construct
the dictionaryDDDi j for the blockyyyi j as

DDDi j =
[
DDD1

i j DDD2
i j · · · DDDT

i j

]
,

where each

DDDt
i j =

[
dddt

i−△M, j−△N dddt
i−△M, j−△N+1 · · · dddt

i+△M, j+△N
]

is an(MN)×
(
(2△ M+1)(2△ N+1)

)
matrix whose columns are

the vectorized blocks in thetth training image defined in the same
way asyyyi j. The dictionaryDDDi j is locally adaptive and changes
from block to block. The size of the dictionary depends on thenon-
stationary behavior of the data as well as the level of computational
complexity we can afford. In the presence of registration error,
the test imageYYY may no longer lie in the subspace spanned by the
training samples{XXX t}t . At the block level, however,yyyi j can still be

approximate by the blocks in the training samples
{

dddt
i j

}
t,i, j

. Com-

pared to the original approach, the dictionaryDDDi j better captures
the local characteristics. Note that our approach is quite differ-
ent from patch-based dictionary learning [10] from severalangles:
(i) we emphasize the local adaptivity of the dictionaries; and(ii)
dictionaries in our approach are directly obtained from thedata
without any complicated learning process.

We propose that the blockyyyi j in the misaligned imageYYY can
be sparsely approximated by a linear combination of a few atoms
in the dictionaryDDDi j: yyyi j =DDDi jαααi j, (3)
whereαααi j is sparse vector, as illustrated in Fig. 1(b). The sparse
vector can be recovered by solving the minimalℓ0-norm problem

α̂ααi j = argmin
∥∥αααi j

∥∥
0 subject to DDDi jαααi j = yyyi j. (4)

Since our sparse recovery is performed on a small block of data
with a modest size dictionary, the resulting complexity of the over-
all algorithm is manageable. After the sparse vectorα̂ααi j is ob-
tained, the identity of the test block can be determined by the error
residuals by

identity(yyyi j) = arg min
k=1,...,K

∥∥yyyi j −DDDi jδδδk
(
α̂ααi j
)∥∥

2 , (5)

whereδδδk
(
α̂ααi j
)

is as defined in (2).
To improve the robustness, we propose to employ multiple

blocks, classify each block individually, and then combinethe
classification results. The blocks may be chosen completelyat
random, or manually in the more representative areas (such as the
region around eyes) or areas with high SNR, or exhaustively in
the entire test image (non-overlapped or overlapped). Notethat
since each block is handled independently, they can be processed
in parallel. Also, since blocks can be overlapped, our proposed
algorithm is computationally scalable - more computation delivers
better recognition result.

(i, j)

N

M

test image YYY

block yyyij

training image XXXt

△ N

△ M

· · ·

...

search range

candidate block dddtij

(a)

yyyij

= · · ·

dddtij

· · ·

DDDij

...

αααij

zero
nonzero

(b)

Fig. 1. Representation of a block in the test image from a locally
adaptive dictionary. (a) The blocks in the test and trainingimages
(only one training sample is displayed). (b) Sparse representation
yyyi j =DDDi jαααi j.

Once the recognition results are obtained for all blocks, they
can be combined by majority voting. LetL be the number of blocks
in the test imageYYY , and{yyyl}l=1,...,L be theL blocks. Then, by
majority voting

identity(YYY ) = max
k=1,...,K

|{l = 1, . . . ,L : identity(yyyl) = k}| ,

where|S| denotes the cardinality of a setS and identity(yyyl) is de-
termined by (5).

Maximum likelihood is an alternative way to fuse the classifi-
cation results from multiple blocks. For a blockyyyl , its sparse rep-
resentation̂αααl obtained by solving (4), and the local dictionaryDDDl ,
we define the probability ofyyyl belonging to thekth class to be in-
versely proportional to the residual associated with the dictionary
atoms in thekth class:

pk
l = P(identity(yyyl) = k) =

1/rk
l

∑K
k=1

(
1/rk

l

) , (6)

whererk
l = ‖yyyl −DDDlδδδk (α̂ααl)‖2 is the residual associated with thekth

class and the vectorδδδk (α̂ααl) is as defined in (5). Then, the identity
of the test imageYYY is given by

identity(YYY ) = arg max
k=1,...,K

log

(
L

∏
l=1

pk
l

)
. (7)

The maximum likelihood approach can also be used as a measure
to reject outliers, as for an outlier the probability of it belonging to
some class tends to be uniformly distributed among all classes in
the training data.

Fig. 2 illustrates an example of the proposed approach with
multiple blocks. The test and training images are taken fromthe
Extended Yale B Database [11] which consists of face images of
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Fig. 1. Representation of a block in the test image from a locally
adaptive dictionary. (a) The blocks in the test and training images
(only one training sample is displayed). (b) Sparse representation
yyyi j =DDDi jαααi j.

A. Locally Adaptive Sparse Representations

The method in [9] advances practical face recogni-
tion by enabling significantly enhanced robustness to
distortions like occlusion, pixel corruption and disguise.
However, as discussed in Section I, the subspace model
requires precise registration making their approach vul-
nerable to alignment errors of rotation, translation and
scaling that are natural to face capture processes. To deal
specifically with disguise, Wright et al. [9] do suggest a
block-partitioning scheme which to a first order captures
local face image characteristics while still suffering
from misalignment. The superior compression ability of
local features compared to global representations is also
well-known from applications like block-based motion
estimation in video coding. In other words, local sparsity
is beneficial from the recovery standpoint. In this work,
we consummate this intuition by designing adaptive
dictionaries for each “local block” such that the resulting
(local) sparse representations naturally exhibit robustness
to alignment errors.
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To achieve this, in the proposed local sparse repre-
sentation model for face recognition, we adopt the inter-
frame sparsity model in [27], where a block in a video
frame is expressed as a sparse linear combination of a
few spatially-adjacent blocks from the reference frames.
An illustration of the proposed model in shown in Fig. 1,
where a block in the (possibly misaligned) test image YYY
is sparsely represented by a locally adaptive dictionary
consisting of blocks in the training images {XXX t}t=1,...,T
within the same spatial neighborhood. Note that for
illustration, only one training image is shown in Fig. 1(a).
Specifically, let yyyi j ∈RMN be the vectorized M×N block
in the test image YYY with the upper left pixel located at
(i, j). The search region SSSt

i j in the t-th training image XXX t

is an (M+2 M M)× (N +2 M N) image region:

SSSt
i j =




xt
i−MM, j−MN · · · xt

i−MM, j+N−1+MN
...

. . .
...

xt
i+M−1+MM, j−MN · · · xt

i+M−1+MM, j+N−1+MN


 .

The local dictionary DDDi j for the block yyyi j is then con-
structed by all M×N blocks within the search regions{

SSSt
i j

}
t=1,2,...,T

in the T training images:

DDDi j =
[
DDD1

i j DDD2
i j · · · DDDT

i j
]
,

where each

DDDt
i j =

[
dddt

i−MM, j−MN dddt
i−MM, j−MN+1 · · · dddt

i+MM, j+MN
]

is an (MN)×
(
(2 M M + 1)(2 M N + 1)

)
sub-dictionary

whose columns are the vectorized blocks in the t-th
training image defined in the same way as yyyi j.

In this way, a locally-adaptive dictionary DDDi j is con-
structed for every block of interest in the test image.
The size of the dictionary depends on the non-stationary
behavior of the data as well as the level of computational
complexity we can afford. For significant registration
errors, the local dictionaries can be augmented by dis-
torted versions of the local blocks in the training data for
better performance at the cost of higher computational
intensity. Compared to the original global approach, the
dictionary DDDi j captures local characteristics better and
yields a reasonable approximation of the training image
at the block level. Our approach is different from patch-
based dictionary learning [28] in multiple aspects: (i) we
emphasize the local adaptivity of the dictionaries, and (ii)
our dictionaries are constructed by simply taking blocks
from training data without any sophisticated learning
process.

We propose that the block yyyi j in the misaligned image
YYY can be approximated by a linear combination of only
a few atoms in the dictionary DDDi j:

yyyi j =DDDi jαααi j, (12)

(a) (b)

(c)
33 8 13 31 23 23 7 13 27 11 27 33 3635

37 34 17 13 27 34 33 20 16 36 36 27 162

20 27 36 36 27 27 27 17 27 4 29 15 2827

(d)

(e)

(f)

Fig. 2. Example of the proposed sparsity-based approach using
multiple test blocks. (a) Original image (Class 27). (b) Distorted
test image YYY . (c) Residuals using the original global approach:
identity(YYY ) = 29. (d) Classification results for each of the 42 blocks
{yyyl}l=1,...,42. (e) Number of votes for the kth class, k = 1, . . . ,38.
Identity(YYY ) = 27. (f) Probability of (identity(YYY ) = k), k = 1, . . . ,38.
Identity(YYY ) = 27.

where αααi j is a sparse vector, as illustrated in Fig. 1(b).
Similar to the global case, the sparse vector is recovered
by solving the following optimization problem:

α̂ααi j = argmin‖αααi j‖0 subject to ‖DDDi jαααi j−yyyi j‖2≤ ε. (13)

Note that the resulting complexity of the overall algo-
rithm is still manageable since the above sparse recovery
is performed on a small block with a dictionary of
modest size. After the sparse vector α̂ααi j is obtained, the
error residual with respect to the k-th class sub-dictionary
is calculated by

rk(yyyi j) = ‖yyyi j−DDDi jδδδk (α̂ααi j)‖2 , (14)

where δδδk (α̂ααi j) is as defined in (5). Then, the identity of
the test block can be determined by the minimal residual
as follows:

identity(yyyi j) = arg min
k=1,...,K

rk(yyyi j). (15)

The usage of a single block certainly cannot pro-
duce outstanding classification performance. To improve
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the algorithm’s robustness, we employ multiple blocks:
solving the sparse recovery problem for each block
individually, and then combining the results for all of
the blocks. Blocks may be chosen manually in the areas
with discriminative features (such as eyes, nose, and
mouth), or areas with high SNR/more variations, or
uniformly in the entire test image in non-overlapped or
overlapped fashion. It should be noted that the blocks
can be processed independently in parallel. Moreover,
since blocks can be overlapped, our approach is compu-
tationally scalable - more computation simply delivers
better recognition performance - a feature that will be
illustrated by experimental results in Section IV.

Finally, we would like to remark that our locally
adaptive sparse representation is a more general and
more powerful framework comparing to the global sparse
representation proposed in [9]. In other words, if we
set the parameters M M and M N to zero, and further
force the local sparse vectors αααi j to be the same for all
non-overlapped test block yyyi j, then what we get back is
essentially the global sparse representation.

B. Recognition Decisions from Local Sparse Features

1) Classifiers based on reconstruction error: We first
present two simple schemes that combine the individual
recognition results from the blocks. Let {yyyl}l=1,...,L be
the L blocks in the test image YYY . (Note that in Section
III-A, we have identified each block with the location
(i, j) of its upper left pixel. Here, each block identifier
l is implied to have unique correspondence with one
such pixel location, and we will use yyyl instead of yyyi j

henceforth.)
a) Majority voting:

identity(YYY ) = max
k=1,...,K

|{l = 1, . . . ,L : identity(yyyl) = k}| ,
(16)

where |S| denotes the cardinality of a set S and
identity(yyyl) is determined by (15).

b) Maximum likelihood: This is another intuitive
approach of fusing classification results from multiple
blocks. Let α̂ααl be the recovered sparse representation
vector of the block yyyl and the local dictionary DDDl . We
define the probability of yyyl belonging to the k-th class to
be inversely proportional to the residual associated with
the dictionary atoms in the k-th class:

pk
l = P(identity(yyyl) = k) =

1/rk
l

∑
K
k=1

(
1/rk

l

) , (17)

where rk
l = ‖yyyl−DDDlδδδk (α̂ααl)‖2 is the residual associated

with the k-th class as in (14). The identity of the test

image YYY is then given by

identity(YYY ) = arg max
k=1,...,K

log

(
L

∏
l=1

pk
l

)
. (18)

The likelihood measure can also be used as a criterion
for outlier rejection, since the probability of an outlier
belonging to a particular class tends to be uniformly
distributed among all training classes.

An example of the proposed approach fusing results
of multiple local blocks is illustrated in Fig. 2 using
the Extended Yale B Database [29], which consists
of facial images of 38 individuals. More details about
experiments will be discussed in Section IV. Fig. 2(a)
shows an image belonging to the 27th class, and Fig. 2(b)
shows the test image to be classified, which is the
image in (a) distorted by rotation, scaling, and random
pixel corruption. The distortion causes the failure of the
original global approach in [9] in this case, as seen by
the error residuals in Fig. 2(c) where the 29th class
turns out to yield the minimal residual. For the proposed
local approach, we use 42 blocks of size 8× 8 chosen
uniformly from the distorted test image. The blocks and
class labels for each individual block are displayed in
Fig. 2(d). Figs. 2(e) and (f) show the number of votes and
the probability defined in (17), respectively. It is obvious
that in both cases, the local approach yields the correct
class label (i.e., the 27th class has the highest number of
votes and the maximal probability). This example also
highlights the robustness of local sparse representations
under reduced feature dimensions, although the individ-
ual blocks are chosen uniformly instead of selectively
corresponding to representative facial features.

2) Graphical models to mine feature correlations:
The two schemes discussed above, albeit intuitively
motivated, are essentially heuristic ways of fusing clas-
sifier outputs. We now present a two-stage probabilistic
graphical model framework to directly exploit condi-
tional correlations between features from local regions
themselves. The overall framework is shown in Fig. 3.

We introduce some additional notation. Let Ci, i =
1,2, . . . ,K denote the i-th class of face images (as defined
earlier), and let C̃i denote the class of face images
complementary to class Ci, i.e., C̃i =

⋃
k=1,...,K,k 6=i Ck.

Let Bi denote the i-th binary classification problem
of classifying a query face image (or corresponding
feature) into Ci or C̃i (i = 1, . . . ,K). As will be clear
shortly, defining K such binary problems is necessary for
application of the discriminative graphical framework.
The graphical model-based algorithm is summarized in
Algorithm 1, and it consists of an offline stage to learn
the discriminative graphs (Steps 1-4) followed by an
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Fig. 3. Proposed framework for face recognition: (a) Target face
image, (b) Local regions for extracting sparse features, (c) Initial pairs
of tree graphs for each feature set, (d) Initial sparse graph formed by
tree concatenation, (e) Final pair of thickened graphs; newly learned
edges represented by dashed lines, (f) Graph-based inference. In (c)-
(e), the graphs on the left and right correspond to distributions p
(class Ci) and q (class C̃i) respectively.

online stage (Steps 5-6) where a new test image is
classified.

The offline stage involves extraction of features from
training images, which comprise the empirical estimates
from which approximate p.d.fs for each class are learnt
after the graph thickening procedure. The individual
steps in this stage are explained next.

a) Feature extraction: Let us first consider one of
the local spatial regions in the face, say corresponding
to the eyes. For the binary classification problem Bi,
dictionaries DDDi and D̃DDi are constructed according to the
procedure in Section III-A, using samples from Ci and C̃i

respectively. (Subscripts are dropped while denoting the
dictionaries to avoid confusion, and they can be inferred
from context.) Features in Rm are now extracted for any
block zzz (spatially corresponding to eyes) by solving the
sparse recovery problem:

β̂ββ = argmin‖βββ‖0 subject to ‖DDDβββ−zzz‖2 ≤ ε, (19)

where DDD := [DDDi, D̃DDi]. Features corresponding to other
local regions are generated analogously. Training fea-
tures (that form the overcomplete dictionary) for Ci are
obtained by using training faces that are known to belong
to class Ci, while features for C̃i are obtained by choosing
representative training from C̃i as input to the feature
extraction process.

b) Initial disjoint pairs of trees: The extraction
of different sets of features from input face images

Algorithm 1 Discriminative graphical models for face
recognition (Steps 1-4 offline)

1: Feature extraction (training): Obtain sparse repre-
sentations αααl, l = 1, . . . ,P in Rm from facial features,
using adaptive locally block-sparsity model (19)

2: Initial disjoint graphs:
For l = 1, . . . ,P
Discriminatively learn pairs of m-node tree graphs
G p

l and Gq
l on {αααl} obtained from training data

3: Separately concatenate nodes corresponding to p and
q respectively, to generate initial graphs

4: Boosting on disjoint graphs: Iteratively thicken
initial disjoint graphs via boosting to obtain final
graphs G p and Gq

{Online process}
5: Feature extraction (test): Obtain sparse represen-

tations αααl, l = 1, . . . ,P in Rm from test image
6: Inference: Classify based on output of the resulting

classifier using (20).

is performed offline. Each such representation may be
viewed as a projection Pl : Rn 7→ Rm. In our framework
we consider, in all generality, P distinct projections
Pl, l = 1,2, . . . ,P. For every input image yyy ∈ Rn, P
different features αααl ∈ Rm, l = 1,2, . . . ,P are obtained.
Fig. 3(b) depicts this process for the particular case
P = 3, i.e., using eyes, nose and mouth as features.
The different projections lead to local features that have
complementary yet correlated information, since they
arise from the same original face image.

Figs. 3(c)-(f) represent the graph learning process.
We denote the class distributions corresponding to Ci

and C̃i by p and q respectively, i.e., f i
p(αααl) = f (αααl|Ci)

and f i
q(αααl) = f (αααl|C̃i). A pair of m-node discriminative

tree graphs G p
l and Gq

l is learnt for each projection
Pl, l = 1,2, . . . ,P, by solving (10) and (11). The local
sparse features αααl obtained from the P local blocks are
used as empirical estimates to train the tree graphs3. By
concatenating the nodes of the graphs G p

l , l = 1, . . . ,P,
we have one initial sparse graph structure with Pm nodes
(Fig. 3(d)). Similarly, we obtain another initial graph by
concatenating the nodes of the graphs Gq

l , l = 1, . . . ,P.
We have now learnt (graphical) p.d.fs f̂ i

p(αααl) and f̂ i
q(αααl),

where αααl is the sparse feature vector obtained from the
l-th local block (l = 1, . . . ,P), and i refers to the i-
th binary classification problem Bi. Inference based on
these disjoint graphs can be interpreted as feature fusion
assuming statistical independence of the individual target

3The same training faces present in the overcomplete dictionary
are used to generate the sparse features to train the graphs.
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image representations.
c) Discriminative graphs for classification: Al-

though simple tree graphs can be learnt efficiently, their
ability to model general distributions is limited. How-
ever, learning graphs with arbitrarily complex structure
is known to be an NP-hard problem [30]. To overcome
this trade-off, we learn different pairs of discriminative
graphs over the same sets of nodes (but weighted dif-
ferently) in different iterations via boosting and obtain
a “thicker” graph by augmenting the original trees with
the newly-learned edges [31]. Boosting [19] iteratively
improves the performance of weak learners into a classi-
fication algorithm with arbitrarily accurate performance.

For each binary classification problem, the P pairs
of tree graphs in Fig. 3(c) are discriminatively learnt
[18] from distinct local regions of the face image using
empirical estimates of distributions available from corre-
sponding training samples of locally sparse features. In
Fig. 3(c), an example instantiation is shown for P = 3
where the local regions correspond to eyes, nose and
mouth respectively. They are subsequently thickened
by the process of boosting [19], [31]. This process of
learning new edges is tantamount to discovering new
conditional correlations between distinct sets of local
features, as illustrated by the dashed edges in Fig. 3(e).
The thickened graphs f̂ i

p(ααα) and f̂ i
q(ααα) are therefore

estimates of the true (but unknown) class conditional
p.d.fs f i

p(ααα) = f (ααα|Ci) and f i
q(ααα) = f (ααα|C̃i), where ααα

is the concatenated feature vector from all P blocks.
The graph learning procedure described so far is

performed offline. The actual classification of a new test
image is performed in an online process, explained next.

d) Feature extraction: The feature extraction is
identical to the process described in the offline stage.
Corresponding to each test image, local features αααl, l =
1, . . . ,P are obtained by solving the individual sparse
recovery problems.

e) Inference: Classification is performed in a one-
versus-all manner by solving K separate binary clas-
sification problems Bi. If f̂ i

p and f̂ i
q denote the fi-

nal probabilistic graphical models learnt for Ci and C̃i

(i = 1,2, ...K) respectively, then the face image feature
vector comprising of sparse coefficients from all the local
blocks, i.e., ααα is assigned to a class i∗ according to the
following decision rule:

i∗ = arg max
i∈{1,...,K}

log

(
f̂ i

p(ααα)

f̂ i
q(ααα)

)
. (20)

IV. EXPERIMENTS AND RESULTS

We test the proposed algorithm(s) on popular face
databases. Experiments performed in [9] reveal the ro-

TABLE I
OVERALL RECOGNITION RATES USING CALIBRATED TEST IMAGES

FROM THE EXTENDED YALE B DATABASE (SECTION IV-A).

Method Recognition rate (%)
LSGM 97.3
SRC 97.1

Eigen-NS 89.5
Eigen-SVM 91.9
Fisher-NS 84.7

Fisher-SVM 92.6

(a) (b)

Fig. 4. An example of rotated test images. (a) Original image and
(b) the image rotated by 20 degrees clockwise.

bustness of the approach to distortions, under the as-
sumption that the test images are well-calibrated. As
a first result, we show in Section IV-A that our pro-
posed approach produces equally competitive results
on calibrated test images (with no registration errors)
from the Extended Yale B database [29]. Subsequently,
via experiments in Section IV-B, we establish the ro-
bustness of our approach to registration errors and a
variety of other distortions. The ability to reject in-
valid images is tested in Section IV-C. Finally, we
discuss different flavors of classifier fusion (to com-
bine the local recognition decisions) in Section IV-D.
MATLAB code corresponding to all the experiments
and algorithms reported in this paper is available at:
http://signal.ee.psu.edu/FaceRec-LSGM.htm.

A. Calibrated Test Images: No Alignment Errors

For this experiment we use the Extended Yale
B database, which consists of 2414 perfectly-aligned
frontal face images of size 192×168 of 38 individuals,
64 images per individual, under various conditions of
illumination. In our experiments, for each subject we
randomly choose 32 images in Subsets 1 and 2, which
were taken under less extreme lighting conditions, as the
training data. The remaining images are used as test data.
All training and test samples are downsampled to size
32×28.

In the following experiments, our face recognition
algorithm comprises the extraction of local sparse fea-
tures along with graphical model decisions (as described
in Section III-B, part 2) which we term as Local-
Sparse-GM abbreviated to LSGM. We compare our
LSGM technique against five popular face recognition



9

Fig. 5. Recognition rate for rotated test images (Section IV-B).

(a) (b)

Fig. 6. An example of scaled test images. (a) Original image and
(b) the image scaled by 1.313 vertically and 1.357 horizontally.

algorithms: (i) sparse representation-based classification
(SRC) [9], (ii) Eigenfaces [3] as features with nearest
subspace [32] classifier (Eigen-NS), (iii) Eigenfaces with
support vector machine [33] classifier (Eigen-SVM),
(iv) Fisherfaces [6] as features with nearest subspace
classifier (Fisher-NS), and (v) Fisherfaces with SVM
classifier (Fisher-SVM). Overall recognition rates - ratio
of the total number of correctly classified images to the
total number of test images, expressed as a percentage -
are reported in Table I. The results reveal that the choice
of local sparse features over global features does not
significantly affect the overall recognition performance
in the scenario of no registration errors.

B. Recognition Under Distortions and Misalignment

1) Presence of registration errors: The primary mo-
tivation for our contribution in this paper is to achieve
robust recognition under misalignment of test images.
We create distorted test images in several ways and
keep the training images unchanged, again using images
from the Extended Yale B database. Robustness to image
translation is ensured by simply choosing an appropriate
search region for each block such that the corresponding
blocks in the training images are included in the dictio-
nary.

Next, we show experimental results for test images
under rotation and scaling operations. In the first set
of experiments, the test images are randomly rotated by
an angle between -20 and 20 degrees, as illustrated by

TABLE II
RECOGNITION RATE (IN PERCENTAGE) FOR SCALED TEST IMAGES

USING SRC [9] UNDER VARIOUS SCALING FACTORS (SF).

SF 1 1.071 1.143 1.214 1.286 1.357
1 100 100 98.0 88.2 76.5 58.8
1.063 99.7 96.5 86.1 68.5 50.3 37.6
1.125 83.8 70.2 49.8 33.6 26.2 17.9
1.188 54.5 43.7 26.8 20.0 18.0 12.6
1.25 36.1 27.2 20.9 16.6 12.3 11.3
1.313 31.5 24.3 16.7 13.9 10.6 9.8

TABLE III
RECOGNITION RATE (IN PERCENTAGE) FOR SCALED TEST IMAGES
USING PROPOSED BLOCK-BASED APPROACH UNDER VARIOUS SF.

SF 1 1.071 1.143 1.214 1.286 1.357
1 98.8 98.2 98.5 97.5 97.5 97.2
1.063 97.5 96.7 96.0 96.0 93.5 93.4
1.125 97.4 96.5 96.2 95.2 93.2 91.1
1.188 94.9 92.9 91.6 89.4 87.1 83.3
1.25 94.9 93.0 92.2 87.9 82.0 77.8
1.313 90.7 90.4 84.1 81.0 75.5 64.2

the example in Fig. 4. We compare the SRC approach
with the proposed LSGM framework. Fig. 5 shows
the recognition rate (y-axis) for each rotation degree
(x-axis). We see that when the misalignment becomes
more severe, the LSGM algorithm outperforms the SRC
approach by a significant margin.

For the second set of experiments, the test images
are stretched in both directions by scaling factors up
to 1.313 vertically and 1.357 horizontally. An example
of an aligned image in the database and its distorted
version to be tested are shown in Fig. 6. Tables II and III
show the percentage of correct identification with various
scaling factors. The first row and the first column in
the tables indicate the scaling factors in the horizontal
and vertical directions respectively. We again see that
when there are large registration errors, the block-based
algorithm leads to a better identification performance
than the original algorithm. We observe similar behaviors
when the scaling factors are in the range of 0.8 to 1 (that
is, the test image is shrunk comparing to the training
images in the dictionary).

We now compare the performance of our LSGM
approach with five other algorithms: SRC, Eigen-NS,
Eigen-SVM, Fisher-NS and Fisher-SVM, for the partic-
ular scenario where the test images have been scaled
by a horizontal factor of 1.214 and a vertical factor of
1.063. The per-face recognition rates are displayed for
each approach in Fig. 7, and the overall recognition rates
are shown in Table IV.

Next, we repeat the experiment on the Georgia Tech
face database [34], wherein the test face captures are
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(a)

(b)

Fig. 7. Face-specific recognition rates using the Extended Yale B database, with registration errors introduced in test images. (a) Results
shown for faces numbered 1 through 19. (b) Results shown for faces numbered 20 through 38.

TABLE IV
OVERALL RECOGNITION RATE (AS A PERCENTAGE) FOR THE

SCENARIO OF SCALING BY HORIZONTAL AND VERTICAL FACTORS
OF 1.214 AND 1.063 RESPECTIVELY.

Method Recognition rate (%)
LSGM 89.4
SRC 60.8

Eigen-NS 55.5
Eigen-SVM 56.7
Fisher-NS 54.1

Fisher-SVM 57.1

TABLE V
OVERALL RECOGNITION RATE (AS A PERCENTAGE) UNDER

REGISTRATION ERRORS, FOR IMAGES OBTAINED FROM [34].

Method Recognition rate (%)
LSGM 87.6
SRC 61.3

Eigen-NS 47.4
Eigen-SVM 50.5
Fisher-NS 45.3

Fisher-SVM 51.8

naturally frontal and/or tilted with different facial ex-
pressions, lighting conditions and scale. This database
contains 15 faces each of 50 different individuals. For
convenience, we restrict the data set to 38 classes of
faces (chosen with no particular preference). We use
five images from each class for training and the rest
for testing. Here too, we provide a comparison of the
per-face recognition rates for the LSGM method, and
compare it with the five other approaches. The overall
rates in Table V confirm once again the robustness of
the LSGM to misalignments in test images.

TABLE VI
OVERALL RECOGNITION RATE (AS A PERCENTAGE) FOR THE

SCENARIO WHERE TEST IMAGES ARE SCALED AND SUBJECTED TO
RANDOM PIXEL CORRUPTION (SECTION IV-B2).

Method Recognition rate (%)
LSGM 96.3
SRC 93.2

Eigen-NS 54.3
Eigen-SVM 58.5
Fisher-NS 56.2

Fisher-SVM 59.9

2) Recognition despite random pixel corruption: We
return to the Extended Yale database for this experiment,
where we randomly corrupt 50% of the image pixels in
each test image. In addition, each test image is scaled by
a horizontal factor of 1.071 and a vertical factor of 1.063.
Local sparse features are extracted using the robust form
of the `1-minimization similar to the approach in [9].
The overall recognition rates are shown in Table VI.
These results reveal that under the mild scaling distortion
scenario, our LSGM approach retains the robustness
characteristic of the global sparsity approach (SRC),
while the other competitive algorithms suffer drastic
degradation in performance.

3) Recognition despite disguise: We test the robust-
ness of our proposed LSGM approach to disguise (rep-
resentative of real-life scenarios) using the AR Face
Database [35]. We choose a subset of the database con-
taining 50 male and 50 female subjects chosen randomly.
For training, we consider 8 clean (with no occlusions)
images each per subject. These images may however cap-
ture different facial expressions. Faces with two different
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TABLE VII
OVERALL RECOGNITION RATE (AS A PERCENTAGE) FOR THE
SCENARIO WHERE TEST IMAGES ARE SCALED AND SUBJECTS

WEAR DISGUISE (SECTION IV-B3).

Method Recognition rate (%) Recognition rate (%)
Sunglasses Scarves

LSGM 96.0 92.9
SRC 93.5 90.1

Eigen-NS 47.2 29.6
Eigen-SVM 53.5 34.5
Fisher-NS 57.9 41.7

Fisher-SVM 61.7 43.6

types of disguise are used for testing purposes: subjects
wearing sunglasses and subjects partially covering their
face with a scarf. Accordingly, we present two sets of
results. In each scenario, we use 6 images per subject
for testing, leading to a total of 600 test images each
for sunglasses and scarves. Consistent with our other
experiments, we also introduce mild misalignment in the
test images, in the form of scaling by horizontal and
vertical factors of 1.071 and 1.063 respectively.

To enable robustness against disguise, in [9] the
authors also suggest block partitioning to improve the
results, by aggregating results from individual blocks
using voting. It is useful to point out two key differences
between this strategy and our proposed approach: (i)
we use an adaptive local block-based model to build
the training dictionary to incorporate robustness to mis-
alignment, and (ii) we use a principled classification
framework using graphical models to combine results
from the individual blocks rather than simple voting.

The results of our proposed approach (using three
representative local regions) are compared with five
other competitive approaches in Table VII. The LSGM
and SRC approaches significantly outperform the other
methods. Further, the improvements of LSGM over SRC
reveal the benefits of the graphical model framework
for classification over the voting scheme. For additional
improvements in recognition rate, we can use a larger
number of local spatial blocks.

C. Outlier Rejection

In this experiment, samples from 19 of the 38 classes
in the Yale database are included in the training set, and
faces from the other 19 classes are considered outliers.
For training, 15 samples per class from Subsets 1 and
2 are used (19× 15 = 285 samples in total), while 500
samples are randomly chosen for testing, among which
250 are inliers and the other 250 are outliers. All test
samples are rotated by five degrees.

The five different competing approaches are compared
with our proposed LSGM method. For the LSGM ap-

Fig. 8. ROC curves for outlier rejection (Section IV-C).

proach, we use a minimum threshold δ on the quantity
described in (20). If the maximum value of the log-
likelihood ratio does not exceed δ, the corresponding test
sample is labeled an outlier. In the SRC approach, the
Sparsity Concentration Index (6) is used as the criterion
for outlier rejection. For the other approaches under
comparison which use the nearest subspace and SVM
classifiers, reconstruction residuals are compared to a
threshold to decide outlier rejection. The receiver oper-
ating characteristic (ROC) curves for all the approaches
are shown in Fig. 8, where the probability of detection
is the ratio between the number of detected inliers and
the total number of inliers, and the false alarm rate is
computed by the number of outliers which are detected
as inliers divided by the total number of outliers. Under
scaling distortion, we see that LSGM offers the best
performance, while some of the approaches are actually
worse than random guessing.

D. Classifier Fusion: Variants of Proposed Method

We now compare the performance of the different
proposed ways of combining the local classifier decisions
from Section III-B: (i) majority voting (Voting), (ii)
heuristic maximum likelihood (ML)-type fusion using
reconstruction residuals (LHML), and (iii) the discrimi-
native graphical model framework (LSGM). The images
are taken from the Extended Yale B Database. We
introduce mild misalignment in the test images in the
form of scaling by a horizontal factor of 1.214 and a
vertical factor of 1.063. We use 15 training samples per
class, and a total of 1844 samples for testing.

Although the LSGM approach has superior overall
recognition performance in comparison to the Voting
and LHML techniques, we see from Fig. 10 that for
some of the classes, the LHML approach in fact offers
slightly better recognition rates. So, we propose a prin-
cipled meta-classification framework to further exploit
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(a)

(b)

Fig. 9. Face-specific recognition rates using the Georgia Tech face database, with registration errors introduced in test images. (a) Results
shown for faces numbered 1 through 19. (b) Results shown for faces numbered 20 through 38.

these complementary benefits offered by the individual
classifiers. From each type of classifier, we obtain “soft”
outputs, that estimate the posterior probability of a face
belonging to a particular class. These soft outputs may
also be interpreted as indicating the degree of confidence
in the decision. These outputs may then be treated as
meta-feature vectors to be fed into a support vector
machine for meta-classification. We train the SVM using
the soft outputs obtained from the training samples. A
radial basis function (RBF) kernel is used in the SVM.

For perfectly calibrated test images, voting presents a
computationally simple way of benefitting from the clas-
sification results from individual local blocks. However,
in the presence of registration errors, voting performs
poorly, leading to reduced overall performance of the
meta-classifier. So, we present results using only two
classifiers: LHML and LSGM. The per-class rates for
the individual schemes as well as the meta-classifier are
presented in Fig. 10. Meta-classification shows that the
complementary benefits of different classifiers can be
mined to improve recognition performance.

E. Influence of number of local blocks on recognition
performance

So far, we have used three preceptively meaningful
local blocks for the LSGM approach, while proposing
the use of 42 uniformly sampled blocks of size 8× 8
for the LHML method. Unsurprisingly, the presence of
more local blocks can improve recognition by offering
more robustness to distortions. So, in this section, we
evaluate the performance of our proposed algorithms as
a function of number of blocks. Specifically, we use 3, 5,

Fig. 11. Recognition performance of LSGM as a function of number
of local blocks. Experiments are performed on the Georgia Tech
database.

8, 12, 20, 30 or 42 blocks in different experiments. For
the case of 5 blocks, we pick the five (perceptually most
meaningful) regions to be the block of two eyes, nose,
mouth, and the two eyes taken individually. For larger
number of blocks, the blocks are chosen uniformly from
the entire image and the size of the blocks is either 8×12
or 8×8.

We choose two specific experiments to illustrate the
dependence on number of blocks. First, we consider
images from the Georgia Tech database, where the test
images are naturally misaligned (Section IV-B1). The
performance of the LSGM approach is shown in Fig. 11.
There is a dip in recognition performance for the case of
8 blocks compared to the case of 5 blocks, since the 8
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(a)

(b)

Fig. 10. Meta-classification: Face-specific recognition rates using the Extended Yale B face database, with scaling registration errors
introduced in test images. (a) Results shown for faces numbered 1 through 19. (b) Results shown for faces numbered 20 through 38.

Fig. 12. Recognition performance of proposed classifiers and meta-
classifier, as a function of number of local blocks.

blocks are chosen uniformly from the image and need not
necessarily carry perceptual meaning, while the 5 blocks
are chosen in a particular meaningful manner. However,
with the increase in the number of blocks, the particular
choice of blocks seemingly becomes less relevant.

For the second experiment, we consider the meta-
classification scenario described earlier in this section.
The resulting plot is showed in Fig. 12. The voting
approach performs very poorly in comparison with the
LHML and LSGM approaches. As expected, the meta-
classifier improves upon the performance of all the
methods. More significantly, Fig. 12 reveals that the
LSGM approach is less sensitive to variations in the
number of blocks and particular choice of blocks, while
the performance of other proposed local approaches is

contingent on the availability of sufficient number of
local blocks.

V. CONCLUSION

We developed a local block-based sparsity model
to realize a practical face recognition algorithm which
exhibits robustness to alignment errors and a host of
distortions such as noise, occlusion, disguise and illumi-
nation changes. Unlike other competing techniques, no
explicit registration step is required - which makes our
approach computationally simpler. Inspired by human
perception, our sparse local features are extracted via
projections onto adaptive dictionaries built from infor-
mative regions of the face image such as eyes, nose
and mouth. Instead of using class specific reconstruction
error (which does not capture inter-class variation), we
present a probabilistic graphical model framework to
explicitly capture the conditional correlations between
these sets of local features. Experiments on benchmark
face databases and comparisons against state-of-the-art
face recognition techniques under numerous practical
testing environments reveal the merits of our proposal.
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