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Exact recoverability from dense corrupted
observations via L1 minimization
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Abstract— This paper confirms a surprising phenomenon first
observed by Wright et al. [1] [2] under different setting: given
m highly corrupted measurements y = AΩ•x

? + e?, where AΩ•
is a submatrix whose rows are selected uniformly at random
from rows of an orthogonal matrix A and e? is an unknown
sparse error vector whose nonzero entries may be unbounded, we
show that with high probability `1-minimization can recover the
sparse signal of interest x? exactly from only m = Cµ2k(logn)2

where k is the number of nonzero components of x? and
µ = nmaxij A

2
ij , even if nearly 100% of the measurements are

corrupted. We further guarantee that stable recovery is possible
when measurements are polluted by both gross sparse and small
dense errors: y = AΩ•x

? + e? + ν where ν is the small dense
noise with bounded energy. Numerous simulation results under
various settings are also presented to verify the validity of the
theory as well as to illustrate the promising potential of the
proposed framework.

Index Terms— Compressed sensing, `1-minimization, sparse
signal recovery, discrete Fourier transform, (weak) restricted
isometry, random matrix, dense error correction.

I. INTRODUCTION

Compressed sensing (CS) has been rigorously studied over
a past few years as a revolutionary signal sampling paradigm
[3], [4], [5]. According to CS, a k-sparse signal x? ∈ Rn is
measured through a set of linear projections yi = 〈ai, x?〉,
i = 1, ...,m, in which vectors ai ∈ Rn form a matrix
A of size m × n. The intriguing CS framework advocates
the collection of significantly fewer measurements than the
ambient dimension of the signal (m < n). To reconstruct x?,
a standard `1-minimization is proposed to solve the inverse
problem

min
x
‖x‖1 subject to y = Ax. (1)

It has been well known in the literature that if A obeys
Restricted Isometry Property (RIP) [6], [7] - a property essen-
tially implies that every subset of k or fewer columns of A is
approximately an orthogonal system, then the linear program
in (1) is able to faithfully recover x?. This RIP condition has
been proven to hold for many types of random measurement
matrices [8], [9]. For example, random Gaussian or Bernoulli
matrices satisfy RIP with high probability as long as the
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number of measurements m is on the order of k log n [8],
whereas the sub-orthogonal matrix AΩ• sampled uniformly
from an orthogonal matrix A obeys RIP with high probability
when m is on the order of k log4 n [9].

In many practical applications, we are often interested in
situations in which measurements are contaminated by noise.
Mathematically, we often observe

y = Ax? + e?,

where e? ∈ Rm is the vector noise. To reconstruct x? from
the observation vector y, we minimize the following convex
program

min
x
‖x‖1 subject to ‖y −Ax‖2 ≤ σ, (2)

where σ is upper bound of the noise level ‖e?‖2, which
assumes to be known. It has been shown in [6], [10], [11],
[12] that if A satisfies RIP and σ is not too large, then by
the same amount of measurements as above, solution x̂ of
(2) does not depart too far from the optimal solution x?. In
particular, the authors of [6] proved that the reconstruction
error proportionally grows with σ as ‖x̂− x?‖2 ≤ Cσ, where
C is a small numerical constant.

This result is elegant when the noise level is low. However,
as the noise energy gets larger, x̂ might be unexpectedly very
different from x?. This implies that even a single grossly
corrupted measurement may produce x̂ arbitrarily far from
the true solution. Unfortunately, gross errors and irrelevant
measurements are now ubiquitous in modern applications such
as image processing, sensor network, where certain number of
measurements may be severely corrupted due to occlusions,
sensor failures, transmission error, etc [13], [1], [2]. These
examples motivate us to consider a new problem in which
we aim to recover a sparse vector x? from highly corrupted
measurements, y = Ax? + e?. In contrast to previous ap-
proaches [6], [10], [11], [12] where only small dense noise
term e? is considered, in this paper, entries of e? can have
arbitrarily large magnitude, and their support is assumed to
be sparse but unknown. The underlying model has been
previously developed by Wright et al. [1]. Motivated from the
face recognition problem, in which sparse error appears due
to a fraction of the query image y being occluded by glasses,
hats, etc, the authors proposed to simultaneously minimize the
`1-norm of both x and e,

min
x,e
‖x‖1 + ‖e‖1 subject to y = Ax+ e. (3)

where columns of matrix A are associated with training im-
ages. To analyze the model, they assume A obeys the Gaussian
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distribution [2]. That is, entries of A are i.i.d N (0, 1/m)
Gaussian random variables.

As pointed out by Candès and Romberg [14] and Do et al.
[15], in compressed sensing, completely random measurement
matrices might not be relevant in many practical applications.
First, we may not be allowed to control measurement matrices.
For instance, in MRI or tomography, due to the acquisition
system, measurements are inherently frequency based. The
second drawback is computationally expensive and memory
buffering due to their completely unstructured nature. These
weaknesses prevent these fully random sensing matrices from
being applied to applications in which both acquisition sys-
tem (or encoder) and reconstruction system (or decoder) are
required to have low complexity and fast implementation.

In this paper, we extend the analysis to a special class of
measurement matrices which are constructed from an orthog-
onal matrix A. Let Ω be a subset of indices of {1, ..., n};
and measurement matrix AΩ• is constructed from rows of A
associated with indices in Ω. The observation vector y is now
obtained by

y = AΩ•x
? + e?, (4)

where we assume that signal x? and error e? are sparse vectors
whose supports are T and S, respectively. These suborthogonal
measurement matrices have been carefully studied in the litera-
ture such as the partial Fourier ensemble [14] and structurally
random matrix (SRM) [15] as a promising replacement for
fully random Gaussian/Bernulli sensing matrices. However, so
far, none of the previous work guarantees stable reconstruction
under highly corrupted sparse error or a combination of both
large sparse error and small dense noise. This is our most
significant technical contribution.

To recover x? and e?, we propose to solve the following
extended `1-minimization

min
x,e
‖x‖1 + λ ‖e‖1 subject to y = AΩ•x+ e, (5)

where λ > 0 is a controlled parameter that balance the two
`1-norm terms.

Surprisingly, with an appropriate choice of λ, this simple
linear program (5) can assure the exact recovery both x? and
e? exactly, even when the sparsity of x? grows almost linearly
in the dimension of signal and the errors in e? are up to a
constant fraction of all the entries. This observation will be
confirmed via rigorously mathematical justifications as well
as extensive simulations in the next few sections.

A. Motivational applications

There are many important applications in which the ob-
servations of interest can be modeled as a linear projection
of a sparse signal plus sparse error. Before shifting to the
presentation of our main results, we briefly introduce several
applications and show how well they fit into our underlying
model of interest
• Image inpainting. Given an image Y with miss-

ing/corrupted pixels, we would like to reconstruct the
original image by filling in lost information [16]. If
we assume that errors are indicated by a matrix E

whose nonzero-value entries are associated with the miss-
ing/corrupted pixels, then Y can be decomposed into two
components: the original image B and sparse noise E.
In image inpainting, the key hypothesis frequently made
to guarantee satisfactory performance is that Y has to
be sparsely represented by a few coefficients over an
overcomplete dictionary D [17], [16]. This dictionary is
typically a concatenation of orthogonal transformations,
e.g. wavelet, Fourier, DCT or is learned from a set of
training images. By denoting y, b and e as vectorized
versions of matrices Y , B and E, we have a mathematical
representation, y = Dx + e, where x is the sparse
coefficient vector. As opposed to previous works in which
locations of missing entries are often required to be
known in advance, here we do not need to make any
of such assumptions in our model. Rather, utilizing the
optimization in (5), we let the algorithm guess both the
noisy locations and their magnitudes.

• Compressed sensing for networked data. In sensor net-
works, the goal is to design a low-power system but still
guarantee reliability in transmission. In this setting [18],
each sensor collects information of a signal or object
x? by simply projecting x? onto row vectors ai of a
sensing matrix A ∈ Rm×n, bi = 〈ai, x?〉. As suggested
in [18], rather than realizing A in a completely random
manner, it is simpler and less computational complex to
utilize a matrix A that we can exploit fast implementation
and avoid expensive memory buffering such as DCT,
Hadarmard or the Fourier transform.
After having gathered all the data, these sensors send
measured information yi to their neighbors or a central
hub for analysis and processing. However, due to the fact
that sensors are low cost, it is highly likely that some
sensors might fail in collecting data or producing mea-
surements that are not well protected before transmission.
This implies that some measurements may be severely
corrupted by two types of errors:

y = Ax? + e? + ν,

where e? is the sparse error, whose entry magnitudes in
the support can be arbitrarily large and ν is dense noise
with bounded energy σ. To recover both x? and e?, we
propose to solve

min
x,e
‖x‖1 + λ ‖e‖1 s.t. ‖y −Ax− e‖2 ≤ σ.

• Joint source-channel coding. One potential application
of CS is simultaneous joint source channel coding [19],
[20]. In contrast to conventional approach where source
data x? ∈ Rn is initially encoded to remove redundancy,
then channel-coded for error protection. In CS, x? is
encoded by a simple linear projection y = Ax. In [19],
to protect the channel, the authors proposed to use more
measurements than the optimal value that CS can recover
accurately. In order to retrieve x? under channel error, we
need to know the probabilistic model of corrupted entries,
which is usually unavailable in practice. We believe that
ours is a more accessible and more robust approach in
recovering such signal.
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B. Notations and organization of the paper

We briefly introduce some notations that will be used
throughout the paper. We denote xT as a vector whose entries
are selected from the index set T ∈ {1, ..., n} of x ∈ Rn. Let
Ω be a subset of {1, ..., n}, we denote AΩ• as a submatrix of
A, whose rows are taken from Ω. Similarly, AΩT denotes a
submatrix of A, containing rows indexed by Ω and columns
indexed by T . Further, we reserve the two index sets T and S
for signal (x?) and error (e?) supports. The sparsity level of
x? and e? are k = |T | and s = |S|, respectively. For a vector
x, sgn(x) represents the sign of x componentwise.

We will use several standard vector and matrix norms, which
we simply present here for completeness. For x ∈ Rn, ‖x‖1 =∑n
i=1 |xi| is the `1-norm, ‖x‖2 is the `2-norm and ‖x‖∞ =

maxi |xi| is the l∞-norm. For matrices B, we only use the
spectral norm, denoted by ‖B‖.

We denote by C,C1, c, c1, ... positive absolute constants.
Finally, when we say that an event occurs with high probabil-
ity, we mean the occurring probability of the event is at least
1− cn−1.

The remainder of this paper is structured as follows. The
main results are introduced in Section II. Our proof structure
is described Section III. Supporting results are subsequently
presented in Sections IV and V. Section VI compares our
results with the oracle in which we know in advance the
locations of signal and error support. We demonstrate the
consistency of our results via extensive simulation in Section
VII. Finally, Section VIII summarizes this paper and makes
some closing remarks.

II. MAIN RESULTS

A. Sparse model

We begin by studying the easier problem where signal x? is
perfectly k-sparse and observation vector y is also corrupted by
sparse error. A more difficult problem with non-sparse signal
x? and y being corrupted by both sparse and dense noise will
be subsequently investigated in this section. Toward the end,
we denote the sparsity indices of x? and e? as k and s and
introduce the (k, s)-sparse model defined as follows:
• Signs of x? at the support T is independently and equally

likely to be 1 or −1.
• Support S of e? is uniformly distributed among all sets

of cardinality s in Ω.
The random assumption on the sign of x? at support T

is typical in compressed sensing [14]. This assumption is a
sufficient rather than necessary condition and is employed
for the convenience of our proof only. Indeed, by sacrificing
a factor of log n to the number of measurements, we can
establish similar results when the signs of x? arbitrary. We
refer the interested readers to a recent paper [21] for more
details.

B. Exact recovery as measurements are corrupted by sparse
noise

Theorem 1. Let x? be a fixed vector in Rn and A be an
n × n orthonormal matrix (A∗A = I) with |Aij |2 ≤ µ

n ,

where 1 ≤ µ ≤ n, and assume that (x?, e?) is taken from
the (k, s)-sparse model. Suppose we observe m entries from
the projection Ax? with locations in Ω sampled uniformly
at random and these entries are then corrupted by noise e?.
Then there exist numerical constants c and C such that with
probability at least 1 − cn−1, the convex program (5) with
λ ∼

√
n

µm logn correctly recovers both the signal and the
error (i. e. x̂ = x? and ê = e?), provided that

m ≥ Cµ2k(log n)2 and s ≤ γm, (6)

for any γ close to 0.9.

In other words, Theorem 1 asserts a surprising message: a
sparse signal x? can be faithfully recovered with probability
converging to one from arbitrary and completely unknown
corrupted patterns (as long as they are randomly distributed).
We do not place any assumption on the magnitudes or signs
of the nonzero entries of e?. In fact, its magnitude can be
arbitrarily large. Theorem 1 is generic in the sense that it
only requires signs of nonzero entries of x? to be uniformly
distributed; everything else is deterministic. We believe that
the random assumption on the sign pattern is artificial and
can be removed. Indeed, when A is a Fourier matrix, applying
advanced techniques in [4], we are able to obtain Theorem 1
for all x? supported on T . An interesting open problem is
whether this result also holds for other orthogonal sensing
matrices.

It is necessary to further clarify Theorem 1. First, higher
probabilities of success (i.e. in the form 1−cn−β with β ≥ 1)
can be obtained at the expense of increasing the number of
observations by a factor of β. Next, the theorem addresses that
for a particular selection of Ω, exact recovery only holds for an
arbitrary fixed sparse signal with high probability (as long as
signs of such signal at its support are uniformly distributed).
In other words, there is no uniform sparse signal recovery
guaranteed here. In fact, in order to establish perfect recovery
for all sparse signal, we might have to require certain stronger
properties for matrix AΩ• such as RIP [6] or similar to RIP.
As shown in [8], [9], AΩ• obeys RIP with high probability
only if the number of measurements exceeds Ck log4 n, which
is a far inferior requirement than our optimal value. By
relaxing RIP, we are able to significantly reduce the amount
of measurements needed and are still able to guarantee perfect
recovery even when the data is highly corrupted.

Theorem 1 also implies that up to a log n factor from the
optimal number of observations as in compressed sensing, we
are able to precisely recover the signal in the presence of
gross error. In the following theorem, we establish that by the
same order of k log n measurements as in compressed sensing,
`1-minimization is still able to recover precisely both spare
signal and high-energy sparse noise. In particular, we draw an
interesting relationship between signal sparsity, error sparsity
and the parameter λ.

Theorem 2. Let x? be a fixed vector in Rn and A be an n×n
orthonormal matrix (A∗A = I) with |Aij |2 ≤ µ

n , where 1 ≤
µ ≤ n and assume that (x?, e?) is taken from the (k, s)-sparse
model. Suppose that we observe m entries from the projection
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Ax? with locations in Ω sampled uniformly at random and
these entries are then further corrupted by noise e?. Then
there exist numerical constants c, C1 and C2 such that with
probability at least 1− cn−1, the convex program in (5) with
λ =

√
1

γ logn
n
µm , γ ∈ (0, 1) correctly recovers both the signal

and the error (i. e. x̂ = x? and ê = e?), provided that

m ≥ C1µ
2 max{ γ

(1− γ)2
k(log n)2, k log n, (log n)2} (7)

and s ≤ C2γm. (8)

It is easy to check that Theorem 2 implies Theorem 1
by setting γ = 0.9, or equivalently λ =

√
n/0.9µm log n.

Later in the paper, we focus on establishing this theorem, then
Theorem 1 will automatically follow.

We would like to note the significance of the parameter µ
here: µ can be seen as the incoherence of the matrix A, which
measure how concentrated or expanded rows of measurement
matrix AΩ• are. Since A is orthonormal, the value of µ ranges
between 1 and n. In the worse case scenario when rows of A
are maximally concentrated, then µ = n and A is the identity
matrix. It is clear in this case that we cannot retrieve x? under
a single gross error even if all n measurements (which is now
the signal x? itself) are observed. On the other hand when
µ = 1, entries of A are perfectly spread out and the number
of measurements attains its optimally minimum value.

It can be seen that λ in (5) controls the balance between
two terms: ‖x‖1 and ‖e‖1. Specifically, if a large value of λ
is selected, we expect to recover the denser-support signal but
under sparser error. On the other hand, a smaller choice of λ is
better when the error is denser while the signal is sufficiently
sparse. Theorem 2 mathematically indicates that it is actually
the case. In particular, if γ is chosen to be 1/ log n, then
relying on only m = Ck log n measurements, linear (convex)
programming (5) not only recovers the k-sparse x? faithfully,
it is also able to correctly identify the noise with arbitrary
large magnitude as long as the noise sparsity is proportional to
m/ log n. On the contrary, if we set γ close to one, then (5) can
retrieve x? whose support is m/Ck(log n)2 under error whose
support is up to a constant fraction of all the measurements.
In fact, the theorem gives a whole range of λ values, whose
selection might rely on the prior information we can collect
about the sparsity level of the signal as well as of the noise.

C. Stable recovery as measurements are corrupted by both
dense and sparse errors

Our result in Theorem 2, although interesting, is limited
to the case of noise being exactly sparse only. In practical
applications, observations y are also often contaminated by
dense noise, which can be either deterministic or stochastic.
In this section, we investigate the model where observations
are corrupted by both the unknown dense noise ν with small
energy bound ‖ν‖2 ≤ σ and the sparse noise e?, whose
magnitudes of nonzero entries are arbitrarily large

y = AΩ•x
? + e? + ν.

At first, for the ease of demonstrating our results as well as
proving technique, we consider a particular situation where the

observation y is only corrupted by dense error whose energy
is bounded by σ. The problem is now to recovery x? from
noisy observation y, where

y = AΩ•x
? + ν.

To recover x?, it has been well established that we need to
minimize the following convex program

min
x
‖x‖1 subject to ‖b−AΩ•x‖2 ≤ σ. (9)

When the observation vector y is clean, Candès and
Romberg [14] showed that the `1-minimization is able to
recover x? precisely. In this section, we extend their result
and prove that even with imperfect observations y, the convex
program is stable vis a vis perturbations. Particularly, the
recovery error is bounded away by a factor of σ. To the
best of our knowledge, this is the first robust recovery bound
when measurements taken from suborthogonal matrices are
corrupted by deterministic noise.

Theorem 3. Under the same assumptions defined in Theorem
2 and provided that there exists a numerical constant C such
that m ≥ Cµk log n, for any perturbation ν with ‖ν‖2 ≤ σ,
the solution x̂ to the convex program in (9) yields

‖x̂− x?‖2 ≤ 8σ
√
n(1 + 2n/m) + 2σ. (10)

Roughly speaking, Theorem 3 states that for a family of
matrices AΩ constructed from any unitary matrix A, mini-
mizing the `1-norm stably recovers x̂ from just O(µk log n)
measurements. A direct consequence of this theorem says that
as σ comes closer to zero, the solution of (9) is exact, which
coincides with Candès and Romberg’s result [14]. Moreover,
our result is established for any deterministic noise ν. While
preparing this manuscript, we learned of an independent
investigation of Candès and Plan [21] into this problem. They
place stochastic assumptions on ν, e.g. ν obeys the Gaussian
distribution, and thus the resulting error bound is improved.

A more challenging situation occurs when observations are
not only contaminated by dense noise with small energy,
but they are also corrupted by sparse noise with arbitrarily
large magnitude. This model includes the previous settings in
Theorems 2 and 3 as the particular cases:

y = AΩ•x
? + e? + ν. (11)

To successfully recover x? (as well as e?), we propose to
minimize the following convex program

min
x,e
‖x‖1 +λ ‖e‖1 s. t. ‖b−AΩ•x− e‖2 ≤ σ (12)

where σ is the bound of energy noise ν, assumed to be known.

Theorem 4. Under the same assumptions defined in Theorem
2 and provided that there exist numerical constants C1 and
C2 such that

m ≥ C1µ
2 max{ γ

(1− γ)2
k(log n)2, k log n, (log n)2} (13)

and s ≤ C2γm, (14)
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then the pair of solution (x̂, ê) to the convex program (12)
obeys

‖x̂− x?‖2 +‖ê− e?‖2 ≤
8(λ+ 1)σ

min{1, λ}

√
n

(
1 +

4n

m− s

)
+2σ.

(15)

Theorem 4 is significant because it addresses that the convex
program in (12) can reliably reconstruct the sparse signal even
when the measurements are severely corrupted by both gross
sparse and small dense errors. This is the situation that we
most likely will encounter in practical applications. When
the measurement y is not corrupted by the dense noise ν,
the signal can be reconstructed perfectly, regardless of how
large the sparse noise is, as previously mentioned in Theorem
2. In addition, we will demonstrate in Section 5 that this
reconstruction error is optimal up to a

√
n factor as compared

to the oracle situation in which locations of T nonzero entries
of signal x? as well as S nonzero entries of the sparse error
e? are known in prior. In particular, if ignoring this

√
n factor,

(15) is unimprovable.
The preceding results have focused on scenarios where the

signal is perfectly sparse. We now consider probably the most
general setting, in which x? is not exactly sparse, but rather can
be approximated well by a sparse vector and the observation
vector y is corrupted by both sparse error and dense noise
with noise level σ. Denote x?T ∈ Rn as a vector containing
the k largest magnitude entries of x? and zeros elsewhere and
assume an uniform distribution on the sign of x?T at the support
T , we can now establish the following corollary

Corollary 1. Under the same assumptions defined in Theorem
2, the pair of solution (x̂, ê) to the convex program (12) obeys

‖x̂− x?‖2 + ‖ê− e?‖2 ≤
8(λ+ 1)

min{1, λ}

×

[
σ

√
n

(
4n

m− s
+ 1

)
+ 2 ‖x? − x?T ‖1

]
+ 2σ.

(16)

Ignoring the σ
√

8 term, one can see how the bound in
Corollary 1 shows a natural splitting into two terms. The first
can be interpreted as data error associated with the noise ν,
whereas the second term relates to the approximation error,
measuring how far the signal x? is from the best k-sparse
approximation x?T .

D. When error is sparsified under an arbitrary basis

Thus far, we have only investigated truly sparse error
e?. That is, e? is sparse under the identity transformation.
A natural generation is to consider e? being sparse under
any orthogonal transformation D, including the former as a
particular case. Mathematically, we consider the observation
model

y = AΩ•x
? +Dg? + ν, (17)

where e? = Dg? and g? is a s-sparse vector. It is clear that
via simple algebra, this setting boils down to (11) as

D∗y = D∗AΩ•x
? + g? +D∗ν.

Notice that due to the orthogonality of D, D∗AΩ• is also an
orthogonal matrix. Therefore, all preceding theorems are still
relevant in this setting. The parameter µ is now interpreted as
the mutual incoherence between the sensing matrix AΩ and
the sparsifying transform D. In particular,

µ = nmax
i,j
| 〈ai, dj〉 |, (18)

where ai and dj are columns of matrices AΩ• and D. As
the incoherence of these two matrices is small, fewer mea-
surements are required to still guarantee stable recovery. This
results from an intuitive fact that it is easier to decompose
y into x? and g? if two column spaces of AΩ• and D are
sufficiently separated.

E. Contribution and connections to previous works

The problem of recovering the signal from grossly corrupted
measurements has initially been formulated by Wright et al.
in an appealing practical paper [22] and further analyzed in
[2]. Taking the sparsity information of e? into account, the
authors proposed to solve

min
x,e
‖x‖1 + ‖e‖1 subject to y = Ax+ e. (19)

The result of [2] is asymptotic in nature. The authors showed
that as n is extremely large and provided x is extremely sparse,
then (19) can precisely recover both x? and e? from almost any
error with support fraction bounded away from 100%. Their
analysis is based on the Gaussian assumption of the matrix A.
Particularly, A is a matrix whose columns ai’s are assumed
to be N (µ, ν

2

m Im), where ‖µ‖2 = 1 and ‖µ‖∞ ≤ Cm−1/2.
Furthermore, for sufficiently large m, they require the sparsity
of x to grow sublinearly with m. This is of course far from
the optimal bound, in which k is almost linear with m (i.e.
only in the order of m/ log n).

One of the appealing consequence of their analysis is
an explicit expression between three important terms: the
dimension ratio δ = n

m of the matrix A ∈ Rm×n, the fraction
error ρ = s

m and the signal support density α = k
m . However,

this relationship is difficult to interpret due to the complicated
coupling of these terms.

Employing the idea from [2], Li et al. [20] and Laska et al.
[23] proposed different applications under the same frame-
work. The former considered the problem of joint source-
channel coding, and the later proposed a so-called pursuit
of justice model to deal with sparse unbounded noise. When
the measurement matrix A obeys restricted isometry property
(RIP), both of them showed that the combination matrix [A, I]
also satisfies the RIP with high probability, where I is the
identity matrix. A consequent conclusion is that the signal is
perfectly recovered as long as signal and error sparsity levels
are in the order of m/ log n. The main drawback of these
papers is that they are not able to show that perfect recovery
is guaranteed when the number of corrupted entries is linearly
proportional to the total number of observations.

After the initial submission of our paper to Arxiv, we no-
ticed another two independent investigations into this problem:
Studer et al. [24] and Li [25]. The former studies the more
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general observation model, y = Ax + De, where A and D
are general matrices. The authors established deterministic
guarantee, which is weaker than our results in Theorem 1.
Using different proof techniques, the latter paper delivered
similar results as in Theorem 1 with more general model of the
sensing matrix AΩ•. In particular, rows of AΩ• are sampled
independently from a population F obeying Eaia∗i = I .
However, both papers do not investigate the more realistic
model in which both sparse and dense noise present in the
observations.

In another direction and much earlier, Candès and Tao
investigated the error correction problem [7]. In this problem,
the question is how to reconstruct the input vector x? from
corrupted measurements y = Bx? + e?, where the coding
matrix B ∈ Rm×n is required to be overcomplete (m > n) and
e? is the channel corruption vector, which is usually assumed
to be sparse. They proposed to retrieve x? by solving the
following `1-minimization problem

min
x
‖b−Bx‖1 . (20)

Though sharing the same general `1 model, our approach
departs from all previous work in compressed sensing in many
aspects:

1) Unlike Wright and Ma’s model [2] where Gaussian
measurement matrices are analyzed, we study the problem
with suborthogonal matrices. These matrices often possess
many desirable properties over Gaussian matrices in term of
fast and efficient computation [14], [15]. Furthermore, we
investigate the more difficult problem in which both sparse
and dense error appear in the observations. This model is not
studied in [2]. We show a surprising message that the extended
`1 minimization is stable under both perturbations, even if the
sparse error is arbitrarily large and its support size is arbitrarily
close to the total number of observations. A straight forward
consequence of this result is that accurate recovery is achieved
when measurements are not perturbed by dense noise.

2) Our model is different from Candès and Tao [7] in
two aspects. First, we allow the coding matrix to be under-
determined, that is m ≤ n. Second, the input vector is assumed
to be sparse. If we recast the extended `1-minimization in (5)
as

min
x
‖x‖1 + λ ‖b−AΩ•x‖1 , (21)

then one can clearly see the integration of the two `1-norms
in a unified optimization: one is used to impose sparsity of
the input vector whereas the other exploits error sparsity as in
(20).

3) We propose a minor but subtle modification in the
extended `1 minimization of [2]. By adding a regularization
parameter λ into (5), we can balance the `1-norm of both x
and e. Specifically, we can establish an explicit expression
for the regularization parameter λ as well as the sparsity
levels of both signal and error. This mathematical expression is
intuitively interpretable: signal and error sparsity levels should
be inversely proportional. If more measurements are corrupted
− equivalently, the error is denser − we expect to recover
the signal with smaller support size. In contrast, we are able
to recover the signal with larger support size when fewer

errors appear in the measurement vector. In practice, when
the fraction of error is unknown, we can set a good-for-all
parameter λ =

√
n

m log1/2 n
.

III. STRUCTURE OF OUR PROOF

A. Bernoulli model and derandomization technique

The Bernoulli model. Instead of showing that Theorem
2 holds as Ω and S are sets of size m and s sampled
uniformly at random, we find that it is more convenient to
prove the theorem for subsets Ω and S sampled according
to the Bernoulli model. This way, we can take advantage
of the statistical independence of measurements. The same
argument as presented in [4], [13] shows that the probability
of ”failure” under the uniform model is less than two times
the probability of failure under the Bernoulli model. Here,
”failure” implies the optimization in (5) does not recover
exactly the signal. Thus, from now on, we instead consider
Ω = {i ∈ [1, n] : δi = 1} where {δi}1≤i≤n is a sequence of
independent identically distributed Bernoulli random variables
taking value one with probability η and zero with probability
1 − η, where η is chosen such that the expected cardinality
of Ω is ηn = m. Similarly, let S = {i ∈ Ω : δ′i = 1},
1 ≤ i ≤ m where {δ′i}i∈Ω are i.i.d Bernoulli random variables
with P(δ′i = 1) = ρ so that the expected cardinality of S
is ρm = s. Toward this end, we will write Λ ∼ Ber(η) as
a shorthand for Λ sampled from the Bernoulli model with
parameter η.

The following are five important index sets that is frequently
used in the sequel.
• Ω are those locations corresponding to observations: Ω ∼

Ber(η) with η = m
n .

• S ⊂ Ω are locations where the measurements are
available but absolutely unreliable. It is clear that the
distribution of S relies on that of Ω. Conditioning on Ω,
we have S ∼ Ber(ρ) with ρ = s

m . We can also think S as
a subset selected from the set {1, ..., n} with parameter
ηρ. That is, S ∼ Ber(ηρ).

• J ⊂ Ω are locations where the measurements are
available and truthworthy. It is clear that J = Ω/S.
Conditioned on Ω, we have J ∼ Ber(1 − ρ). In other
words, J ∼ Ber(ρ0) with ρ0 := η(1− ρ).

• We also consider the index sets Sc = {1, ..., n}/S and
Jc = {1, ..., n}/J

Derandomization. In Theorem 2, the sign of e? is fixed.
During the proof, we need to place an additional assumption
on e?. That is, the sign of e?S is uniformly distributed, receiving
value 1 or −1 with probability 1/2. However, by the same
appealing derandomization technique presented in [13], the
probability of recovering e? whose signs on the support S are
arbitrary is at least equal to that of recovering e? whose signs
are equally likely to be 1 or −1. This is formally stated in the
lemma below

Lemma 1 (Theorem 2.3 of [13]). Suppose x? obeys conditions
of Theorem 2 and the locations of nonzero entries of e? follows
the Bernoulli model with parameter 2ρ, and signs of e? are
i.i.d ±1 with probability 1/2. Then, if the solution of extended
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`1-minimization (5) is exact with high probability, it is also
exact with at least the same probability with the model in
which the signs of e? are fixed and its nonzero entries are
selected from the Bernoulli model with parameter ρ.

B. Dual certificate

The following lemma shows that if there exists a dual
pair (z(x), z(e)) satisfying certain conditions, then for any pair
(x, e), its `1-norm sum is no smaller than that of (x?, e?) .

Lemma 2. Suppose that ‖AJcT ‖ < 1. If there exists a pair
of dual vectors (z(x), z(e)) with the following properties,

1) z(x) = λA∗Ω•z
(e),

2) z
(x)
T = sgn(x?T ) and

∥∥∥z(x)
T c

∥∥∥
∞
≤ 3/4,

3) z
(e)
S = sgn(e?S) and

∥∥∥z(e)
Sc

∥∥∥
∞
≤ 3/4,

then for any perturbation pair (h, f ) satisfying f = −AΩ•h,
we have

‖x? + h‖1 + λ ‖e? + f‖1
≥ ‖x?‖1 + λ ‖e?‖1 +

1

4
(‖hT c‖1 + λ ‖AJ•h‖1).

(22)

Before proving this lemma, it is necessary to notice how
the Lemma implies the perfect recovery of the linear program
in (5). Indeed, denote by (x̂, ê) the optimal solution of (5)
and let x̂ := x? + h and ê := e? + f , then it is obvious that
f = −AΩ•h. By the convexity of the objective function, we
have ‖x? + h‖1 + λ ‖e? + f‖1 ≤ ‖x?‖1 + λ ‖e?‖1.

Furthermore, from Lemma 2, assuming the existence of a
dual pair (z(x), z(e)) and ‖AJcT ‖ < 1, the inequality (22)
obeys. Combining both arguments, we have

1

4
(‖hT c‖1 + λ ‖AJ•h‖1) ≤ 0.

It is clear that the left-hand side of the above equation is
strictly greater than 0 for every h 6= 0. Thus, in order for
the equality to occur, it is necessary that hT c = 0 and
AJThT = 0. We can establish that, due to the orthogonality
of matrix A, the condition ‖AJcT ‖ < 1 is equivalent to
‖I −A∗JTAJT ‖ < 1. This suggests that A∗JTAJT is invertible,
and thus, AJThT = 0 only if hT = 0. We therefore conclude
that h = 0 and f = −AΩ•h = 0 or in other words, (x̂, ê) is
the exact solution.

Proof of Lemma 2. Denote as v0 and w0 the subgradients of
‖x‖1 and ‖e‖1 at x? and e?, respectively. It is well-known that
v0T

= sgn(x?T ) and ‖v0Tc‖∞ ≤ 1. Similarly, we have w0S
=

sgn(e?S) and ‖w0Sc‖∞ ≤ 1. By the definition of subgradients,
we derive

‖x? + h‖1 + λ ‖e? + f‖1
≥ ‖x?‖1 + λ ‖e?‖1 + 〈v0, h〉+ λ 〈w0, f〉
= ‖x?‖1 + λ ‖e?‖1 + 〈v0, h〉 − λ 〈w0, AΩ•h〉 .

(23)

Let us now consider 〈v0, h〉 − λ 〈w0, AΩ•h〉. By decom-
posing v0 and w0 into vectors of index sets {S, T} and their
complements {Sc, T c}, we have

〈v0, h〉 − λ 〈w0, AΩ•h〉 = 〈sgn(x?T ), hT 〉 − λ 〈sgn(e?S), AS•h〉
+ 〈v0Tc , hT c〉 − λ 〈w0J

, AJ•h〉 .

Now choosing v0Tc such that 〈v0Tc , hT c〉 = ‖hT c‖1 and w0J

such that 〈w0J
, AJ•h〉 = −‖AJ•h‖1, we can rewrite

〈v0, h〉 − λ 〈w0, AΩ•h〉 = 〈sgn(x?T ), hT 〉
− λ 〈sgn(e?S), AS•h〉+ ‖hT c‖1 + λ ‖AJ•h‖1 .

(24)

In addition, the identity relation z(x) = λA∗Ω•z
(e) can be

reformulated as(
sgn(x?T )

0T c

)
− λA∗Ω•

(
sgn(e?S)

0J

)
= −

(
0T

z
(x)
T c

)
+ λA∗Ω•

(
0S

z
(e)
J

)
.

Taking the inner product with h on both sides yields

〈sgn(x?T ), hT 〉 − λ 〈A∗S• sgn(e?S), h〉

= −
〈
z

(x)
T c , hT c

〉
+ λ

〈
A∗J•z

(e)
J , h

〉
= −

〈
z

(x)
T c , hT c

〉
+ λ

〈
z

(e)
J , AJ•h

〉
.

Notice also that 〈A∗S• sgn(e?S), h〉 = 〈sgn(e?S), AS•h〉. Hence,
(24) is equivalent to

〈v0, h〉 − λ 〈w0, AΩ•h〉

= ‖hT c‖1 + λ ‖AJ•h‖1 −
〈
z

(x)
T c , hT c

〉
+ λ

〈
z

(e)
J , AJ•h

〉
≥ 1

4
(‖hT c‖1 + λ ‖AJ•h‖1),

where the last inequality is due to
〈
z

(x)
T c , hT c

〉
≤∥∥∥z(x)

T c

∥∥∥
∞
‖hT c‖1 ≤ 3

4 ‖hT c‖1 and
〈
z

(e)
J , AJ•h

〉
≤∥∥∥z(e)

J

∥∥∥
∞
‖AJ•h‖1 ≤

3
4 ‖AJ•h‖1. Substituting this inequality

into (23), we complete the proof.

From the result of Lemma 2, in order to prove exact
recovery of the convex program, it suffices to construct a
dual certificate (z(x), z(e)) obeying the conditions of Lemma
2. Partitioning z(x), z(e) into two subsets belonging to T and
T c, S and Sc, the identity relation between z(x) and z(e) can
be reformulated as follows(

sgn(x?T )
0T c

)
+

(
0T

z
(x)
T c

)

= λA∗

 sgn(e?S)
0J
0Ωc

+ λA∗

 0S

z
(e)
J

0Ωc

 .

(25)

If we can construct a pair of vectors (v(x), w(e)) such that
v(x) + w(e) is equal to both sides of (25), that is

v
(x)
T + w

(e)
T = sgn(x?T )

v
(x)
T c + w

(e)
T c = z

(x)
T c

AS•(v
(x) + w(e)) = λ sgn(e?S)

AJ•(v
(x) + w(e)) = λz

(e)
J

AΩc•(v
(x) + w(e)) = 0,

then the existence of the dual certificate (z(x), z(e)) in Lemma
2 is guaranteed. As a consequence, it now suffices to produce
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a dual pair (v(x), w(e)) obeying

v
(x)
T = sgn(x?T )∥∥∥v(x)
T c

∥∥∥
∞
< 3/8

AS•v
(x) = 0∥∥AJ•v(x)

∥∥
∞ < 3λ/8

AΩc•v
(x) = 0

and



w
(e)
T = 0∥∥∥w(e)
T c

∥∥∥
∞
< 3/8

AS•w
(e) = λ sgn(e?S)∥∥AJ•w(e)

∥∥
∞ < 3λ/8

AΩc•w
(e) = 0.

(26)
In the next section, we will establish that the valid dual pair

(v(x), w(e)) exists with probability converging to unity.

C. Dual certification constructions

We now propose to construct a dual certificate pair
(v(x), w(e)) whose components are described as follows

1) Construction of w(e) via least-square. Since w
(e)
T =

0, the identity conditions AS•w
(e) = λ sgn(e?S) and

AΩc•w
(e) = 0 can now be represented by a single

equation

AJcT cw
(e)
T c = λ

(
sgn(e?S)

0Ωc

)
, (27)

where we recall that Jc = S ∪ Ωc. Next, assuming
that ‖AJcT ‖ < 1, then we have ‖I −AJcT cA∗JcT c‖ =
‖AJcTA

∗
JcT ‖ < 1. Consequently, matrix AJcT cA∗JcT c

is invertible. We then set

w
(e)
T c = λA∗JcT c(AJcT cA∗JcT c)−1

(
sgn(e?S)

0Ωc

)
. (28)

Clearly, w(e)
T c is the least-square solution of the linear

system in (27). This construction has a natural interpre-
tation: among all solutions of the linear system, w(e)

T c has
the minimum `2-norm. We expect that its `∞-norm is
also sufficiently small to obey the condition in (26).

2) Construction of v(x). A simple way to produce v(x) is
as follows

v(x) = A∗J•AJT (A∗JTAJT )−1 sgn(x?T ). (29)

It is obvious from this construction that v(x)
T = sgn(x?T ).

Furthermore, AS•v(x) = 0 and AΩc•v
(x) = 0 due to

the orthogonality property of the matrix A. Thus, all
three identity relations with respect to v(x) in (26) are
guaranteed.

We now state two key lemmas that establish the `∞-norm
bounds for v(x) and w(e).

Lemma 3. Assume that Ω ∼ Ber(η) and S ∼ Ber(ηρ)
where parameters η = m/n and ρ = s/m. Under the same
assumptions as in Theorem 2, with high probability, the dual
vector v(x) constructed in (29) obeys

1)
∥∥AJ•v(x)

∥∥
∞ < 3λ/8,

2)
∥∥∥v(x)
T c

∥∥∥
∞
< 3/8.

Lemma 4. Assume that Ω and S are sampled as in Lemma
3. Under the same assumptions as in Theorem 2, with high
probability, the dual vector w(e) constructed in (28) obeys

1)
∥∥∥w(e)

T c

∥∥∥
∞
< 3/8,

2)
∥∥AJ•w(e)

∥∥
∞ < 3λ/8.

Lemmas 3 and 4 suggest the existence of (z(x), z(e)). In
other words, the solution of the convex program in (5) is exact
and unique.

IV. PROOFS OF DUAL CERTIFICATES

A. Important auxiliary lemmas

In this section, we first develop several auxiliary results
concerning the main proof.

Lemma 5. Let S0 be locations sampled randomly from the
set {1, ..., n}, S0 ∼ Ber(ρ0). With probability of success at
least 1− n−1, we have∥∥Ik×k − ρ−1

0 A∗S0TAS0T

∥∥ ≤ ε,
provided that ρ0 ≥ C0

ε−2µk logn
n for C0 = 23/4e2

√
πe.

This result has been known in the literature [26], [27], [28].
However, for completeness, we provide a brief proof which
relies on high order moment bound of the spectral norm. We
emphasize that the lemma is important since it provides us
the bound of ‖AJcT ‖. In fact, recall that J ∼ Ber(ρ0) with
ρ0 = η(1− ρ), Lemma 5 suggests that∥∥I − ρ−1

0 A∗JTAJT
∥∥ ≤ ε, (30)

provided that ρ0 ≥ Cε−2 µk logn
n . Furthermore, from the fact

that A∗JTAJT = I −A∗JcTAJcT , we obtain

ε ≥
∥∥I − ρ−1

0 (I −A∗JcTAJcT )
∥∥

≥ ρ−1
0 ‖A∗JcTAJcT ‖ − (ρ−1

0 − 1).

This inequality leads to ‖A∗JcTAJcT ‖ ≤ ρ0ε + (1 − ρ0). We
conclude the argument by the following proposition.

Proposition 1. Provided that m − s ≥ 4C0µk log n. With
probability at least 1− n−1, we have

‖AJcT ‖ ≤
√

1− ρ0/2.

Proof of Lemma 5. Define S0 = {i : δi = 1} where δi is an
independent sequence of Bernoulli variables with parameter
ρ0 and denote ui (i ∈ S0) to be row vectors of AS0T . With
these notation, we have

A∗S0TAS0T =
∑
i∈S0

ui ⊗ ui =

n∑
i=1

δiui ⊗ ui.

Applying Theorem 5 of [28] with q = log n, we obtainE

∥∥∥∥∥I − ρ−1
0

n∑
i=1

δiui ⊗ ui

∥∥∥∥∥
logn

1/ logn

≤ C
√
ρ−1

0 log nmax
i
‖ui‖2

≤ C
√
ρ−1

0 (µk log n)/n := E,

where the constant C = 23/4
√
πe, and the last inequality holds

from ‖ui‖2 ≤
√
µk/n.
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From Markov’s inequality, we can establish

P

(∥∥∥∥∥I − ρ−1
0

n∑
i=1

δiui ⊗ ui

∥∥∥∥∥ ≥ ε
)
≤ Elogn

(ε)logn
.

By the assumption of the Lemma that C
√
ρ−1
0 µk logn

ε ≤ 1
e , we

have with probability of success at least 1− n−1,∥∥∥∥∥I − ρ−1
0

n∑
i=1

δiui ⊗ ui

∥∥∥∥∥ ≤ ε,
as claimed.

The next lemma shows the matrix AS0T is almost orthogo-
nal to the matrix AS0T c where S0 is a random subset selected
from columns of the matrix A. This property is important
in distinguishing the set T from the set T c and helping the
algorithm identify the true support of x?. We defer the proof
to the Appendix.

Lemma 6. Let S0 be locations sampled randomly from the set
{1, ..., n}, S0 ∼ Ber(ρ0). With probability at least 1− 3n−1,
the following inequality obeys∥∥A∗S0Tu

∥∥
2
≤
√
C ′ρ0

µmax{k, log n}
n

for any column vector u of the matrix AS0T c , provided
that ρ0 ≥ C µmax{k,logn}

n where C and C ′ are numerical
constants.

We are now ready to prove Lemmas 3 and 4 regarding the
dual certificates.

B. Proof of Lemma 3

Part 1. By the construction of v(x) in (29),

AJ•v
(x) = AJT (A∗JTAJT )−1 sgn(x?T ).

Denote ui as a row of the matrix AJT , we have∥∥∥AJ•v(x)
∥∥∥
∞

= max
i
|ui(A∗JTAJT )−1 sgn(x?T )|

:= max
i
| 〈Wu∗i , sgn(x?T )〉 |,

where we denote W := (A∗JTAJT )−1. The right-hand side is
a sum of zero mean random variables, which can be bounded
by Hoeffding’s inequality. Hence,

P (| 〈Wu∗i , sgn(x?T )〉 | ≥ τ) ≤ 2 exp

(
− τ2

2 ‖Wu∗i ‖
2
2

)
.

Notice from (30) that with probability converging to one,
‖I − ρ0A

∗
JTAJT ‖ ≤ ε. Thus, (1− ε)ρ0 ≤ σmin(A∗JTAJT ) ≤

σmax(A∗JTAJT ) ≤ (1 + ε)ρ0 where σmin and σmax are
minimum and maximum singular values of the matrix. In
addition, we have exploited the fact that spectral norm for
any matrix H obeys

∥∥H−1
∥∥ ≤ 1

σmin(H) . Thus, conditioning
on the event E = {‖I − ρ0A

∗
JTAJT ‖ ≤ ε}, we have

‖W‖ ≤ 1

(1− ε)ρ0
≤ 2

ρ0
,

with the choice of ε ≤ 1/2. Consequently, combining with
‖ui‖22 ≤ µ

k
n , we conclude that ‖Wu∗i ‖

2
2 ≤

4µk
ρ20n

.

Now setting τ :=
√

16µk logn
ρ20n

and taking the union bound
over all row vectors of matrix AJT , we obtain

P

(∥∥∥AJ•v(x)
∥∥∥
∞
≥

√
16µk log n

ρ2
0n

)
≤ 2|J |e−2 logn + P(Ec)

≤ 3n−1,

where the inequality follows from the total probability rule:
P(F ≥ τ) ≤ P(F ≥ τ |E) + P(Ec) with F :=

∥∥AJ•v(x)
∥∥
∞.

We conclude that
∥∥AJ•v(x)

∥∥
∞ ≤

λ
4 as long as k ≤ C λ2ρ20n

µ logn .

Replace λ =
√

1
γ logn

n
m , ρ0 = m−s

n and s = γm, one can
see that the upper bound of k automatically follows from the
assumption that k ≤ C (1−γ)2

γ
m

µ2(logn)2 .

Part 2. In this part, we need to show that with high probabil-
ity, ∥∥A∗JT cAJT (A∗JTAJT )−1 sgn(x?T )

∥∥
∞ ≤ 3/8.

Denote ui as a column vector of the matrix
AJT c and consider u∗iAJT (A∗JTAJT )−1 sgn(x?T ) =〈
(A∗JTAJT )−1A∗JTui, sgn(x?T )

〉
, which is a sum of random

variables. Its absolute value can be estimated via Hoeffding’s
inequality,

P(|u∗iAJT (A∗JTAJT )−1 sgn(x?T )| ≥ τ) ≤ 2 exp

(
− τ2

2 ‖z‖22

)
,

where z := (A∗JTAJT )−1A∗JTui. As previously showed,
conditioning on the event E1 = {‖I − ρ0A

∗
JTAJT ‖ ≤ ε ≤

1/2}, we have
∥∥(A∗JTAJT )−1

∥∥ ≤ 2/ρ0. In addition, we define

the event E2 := {‖A∗JTui‖2 ≤
√
C ′ρ0

µmax{k,logn}
n }, which

bounds the `2 norm of A∗JTu with J ∼ Ber(ρ0). We showed
from Lemma 6 that P(E2) ≤ 1−3n−1. Therefore, conditioning
on both E1 and E2, we get

‖z‖2 ≤
∥∥(A∗JTAJT )−1

∥∥ ‖A∗JTui‖ ≤
√
C ′
µmax{k, log n}

ρ0n
.

Setting τ2 := 4C ′ µmax{k,logn}
ρ0n

and taking the union bound,
we conclude that

P
(∥∥∥v(x)

T c

∥∥∥
∞
≥ τ

)
≤ 2(n− k)e−2 logn + P(Ec1) + P(Ec2),

which is less than 6n−1. Now replace ρ0 = m−s
n and assume

that m− s ≥ Cµmax{k, log n} log n where C = 4(8/3)2C ′,
we achieve

∥∥∥v(x)
T c

∥∥∥
∞
≤ 3/8 as claimed.

C. Proof of Lemma 4

1) Preliminary results: In order to set up the bounds of
Lemma 4, it is necessary to estimate the spectral norm bound
of ‖AST ‖. The following proposition establishes such a bound.

Proposition 2. With probability at least 1− n−1,

‖A∗STAST ‖ ≤

(
1 +

√
µk log n

s

)
ηρ.
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Proof. Recall that S ∼ Ber(ηρ). By Lemma 5, with high
probability, we have∥∥I − (ηρ)−1A∗STAST

∥∥ ≤ ε1, (31)

provided ηρ ≥ C0
ε−2
1 µk logn

n . Note that ηρ = s
n , thus the

condition is equivalent to s ≥ ε−2
1 µk log n. This inequality is

automatically satisfied by setting ε1 =
√

µk logn
s . Therefore,

(31) gives us

‖A∗STAST ‖ ≤

(
1 +

√
µk log n

s

)
ηρ

as claimed.

2) Main proofs:

Part 1. We will start with the construction of w(e)
T c in (28).

Our goal is to show that with high probability,

V := λ

∥∥∥∥A∗JcT c(AJcT cA∗JcT c)−1

(
sgn(e?S)

0Ωc

)∥∥∥∥
∞
< 1/4.

By series expansion, (I −H)−1 = I +
∑∞
j=1H

j . We have

A∗JcT c(AJcT cA∗JcT c)−1 = A∗JcT c(I −AJcTA
∗
JcT )−1

= A∗JcT c +
∑
j≥1

A∗JcT c(AJcTA
∗
JcT )j .

Toward that end, denote r :=

(
sgn(e?S)

0Ωc

)
. To establish the

upper bound of V , we elaborate on the `∞-norms of two
quantities relating to summands of the series expansion. The
bound of V is then followed from the triangular inequality.
For the first term V1 := λ ‖A∗JcT cr‖∞, we have

V1 = λ ‖A∗ST c sgn(e?S)‖∞ = λmax
i
| 〈ui, sgn(eS)〉 |,

where ui is denoted as a column vector of AST c . We notice
that 〈ui, sgn(e?S)〉 is a sum of zero mean random variables
(by the random assumption on the sign of eS). Applying
Hoeffding’s inequality yields

P (| 〈ui, sgn(e?S)〉 | ≥ τ) ≤ 2 exp

(
− 2τ2

4 ‖ui‖22

)

≤ 2 exp

(
−τ

2

2

n

µs

)
,

where the last inequality is due to ‖ui‖22 ≤
µs
n . Next, choosing

τ = 1
8λ and taking the union bound over all i ∈ T c yield

P
(
λ ‖A∗JcT cr‖∞ ≥

1

8

)
≤ exp

(
− n

128µλ2s
+ log(2n)

)
,

which is bounded away by e− logn = n−1 as long as s ≤
C n
µλ2 logn = Cγm.

For the remainder term, denote the quantity Vr :=

λ
∥∥∥∑j≥1A

∗
JcT c(AJcTA

∗
JcT )jr

∥∥∥
∞

, we have

Vr = λ

∥∥∥∥∥∥
∑
j≥1

(A∗JcT cAJcT )(A∗JcTAJcT )j−1A∗JcT r

∥∥∥∥∥∥
∞

= λ

∥∥∥∥∥∥
∑
j≥1

(A∗JT cAJT )(A∗JcTAJcT )j−1A∗ST sgn(e?S)

∥∥∥∥∥∥
∞

= λmax
i∈T c

∣∣∣∣∣∣
∑
j≥0

u∗iAJT (A∗JcTAJcT )jA∗ST sgn(e?S)

∣∣∣∣∣∣ ,
where ui is denoted as the ith column vector of AJT c . Notice
that vector ui has length (m− s).

Let W :=
∑
j≥0AJT (A∗JcTAJcT )jA∗ST . We consider the

term inside the max function Vi = | 〈W ∗ui, sgn(e?S)〉 |. Again,
this quantity’s bound is an application of Hoeffding’s inequal-
ity,

P (| 〈W ∗ui, sgn(e?S)〉 | ≥ τ) ≤ 2 exp

(
− 2τ2

4 ‖W ∗ui‖22

)
Next, we have

‖W ∗ui‖ ≤ ‖AST ‖

∑
j≥0

‖A∗TJcAJcT ‖j
 ‖A∗TJ‖ ‖ui‖2

=
‖AST ‖ ‖A∗JT ‖

1− ‖A∗JcTAJcT ‖
‖ui‖2 .

We now provide the spectral and `2 norms of these terms.
Define the following three events

E1 := {‖A∗JcTAJcT ‖ ≤ 1− ρ0/2},

E2 := {‖A∗JT ‖ ≤
√

3ρ0/2}, and

E3 := {‖AST ‖ ≤ (1 +

√
µk log n

s
)1/2√ηρ}.

Recall by Proposition 1 that the event E1 occurs with high
probability. Moreover, from Lemma 5, with high probability∥∥Ik×k − ρ−1

0 A∗JTAJT
∥∥ ≤ ε provided ρ0 ≥ Cε−2 µk logn

n .
Thus, ‖A∗JT ‖ ≤

√
ρ0(1 + ε) ≤

√
3ρ0/2, assuming that

ε ≤ 1/2. Finally, E3 occurs by Proposition 2 and the fact
that ‖ui‖22 ≤

µ(m−s)
n = µρ0. Conditioning on these events,

we conclude that

‖W ∗ui‖22 ≤
(3ρ0/2)(µρ0)(ηρ)

(ρ0/2)2

(
1 +

√
µk log n

s

)

≤ 6µ
s

n

(
1 +

√
µk log n

s

)
.

We consider two following cases regarding the size of the
set S:

Case 1: if s ≥ µk log n, then ‖W ∗ui‖22 ≤ 12µ sn . Set τ =
1

8λ and take the union bound over all i ∈ T c, we attain

P
(
Vr ≥

1

8λ

)
≤ 2 exp

(
− 1

256λ2µ sn
+ log n

)
+ P(Ec1) + P(Ec2) + P(Ec3).
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By assuming s ≤ Cγm with a sufficiently small constant C,
µλ2 s

n ≤ C
1

logn . Hence, Vr ≤ 1
8λ with probability 1− 5n−1.

Case 2: if s ≤ µk log n, then ‖W ∗ui‖22 ≤ 12µ sn

√
µk logn

s .
Again, setting τ = 1

8λ and taking the union bound, we have

P
(
Vr ≥

1

8λ

)
≤ 2 exp

− 1

256λ2µ sn

√
µk logn

s

+ log n


≤ 2e− logn = 2n−1,

provided that s ≤ Cγm and k ≤ C ′ γm
µ logn .

We complete the proof by employing the triangular inequal-
ity: V ≤ V1 + Vr ≤ 1

4λ .

Part 2. In this part, we need to show that with high proba-
bility

V := λ

∥∥∥∥AJT cA∗JcT c(AJcT cA∗JcT c)−1

(
sgn(e?S)

0Ωc

)∥∥∥∥
∞
<
λ

4
.

Again by series expansion, we first have
(AJcT cA∗JcT c)−1 =

∑
j≥0(AJcTA

∗
JcT )j . Moreover, since

AJT cA∗JcT c = −AJTA∗JcT , we arrive at

AJT cA∗JcT c(AJcT cA∗JcT c)−1

(
sgn(e?S)

0Ωc

)
=
∑
j≥0

AJTA
∗
JcT (AJcTA

∗
JcT )j

(
sgn(e?S)

0Ωc

)
=
∑
j≥0

AJT (A∗JcTAJcT )jA∗ST sgn(e?S).

Let W :=
∑
j≥0(A∗JcTAJcT )jA∗ST and let ui ∈ Rk be

a row vector of AJT . We consider the following bound
Vi := |〈W ∗u∗i , sgn(e?S)〉|. Analogous to the preceding proofs,
Hoeffding’s inequality is used to estimate Vi,

P (Vi ≥ τ) ≤ 2 exp

(
− 2τ2

4 ‖W ∗u∗i ‖
2
2

)
.

The spectral norm of W can now be estimated as follows

‖W‖ ≤ ‖A∗ST ‖ (
∑
j≥0

‖A∗JcTAJcT ‖j) =
‖A∗ST ‖

1− ‖A∗JcTAJcT ‖
.

Conditioning on events E1 and E3 in Part 1, together with
‖ui‖2 ≤

√
µ kn , we get

‖W ∗u∗i ‖2 ≤ ‖W‖ ‖ui‖2 ≤

√
4

2ηρ

ρ2
0

µk

n
.

Set τ = 1/4 and take the union bound over all i ∈ J ,

P(V ≥ 1/4 | E1, E3) ≤ 2 exp

(
− ρ2

0n

256µηρk
+ log n

)
.

The right-hand side is less than 2e− logn = 2n−1 as long
as ρ20n

256µηρk = (m−s)2
256µsk ≥ 6 log n. This is automatic from the

assumptions that k ≤ C (1−γ)2

γ
m

µ logn and s ≤ γm.

V. PROOF OF THEOREMS 3 AND 4: DEALING WITH BOTH
SPARSE AND DENSE ERRORS

A. Proof of Theorem 3

Our proof technique is adapted from [29] (see also [30])
but in a different context. In [29], the authors studied the
matrix completion problem under noisy observations, while
we consider the conventional compressed sensing case. Let
x̂ be the optimal solution of (9). Since x? is also a feasible
solution of (9), ‖AΩ•x

? − b‖2 ≤ σ. We have an important
observation

‖AΩ•(x̂− x?)‖2 ≤ ‖AΩ•x̂− b‖2 + ‖AΩ•x
? − b‖2 ≤ 2σ.

(32)
Denote g = x̂−x?, our goal is to establish a bound for ‖g‖2.
At first, note that ‖g‖22 = ‖Ag‖22, the triangular inequality
gives us

‖g‖22 = ‖AΩ•g‖22 + ‖AΩc•g‖22 = 4σ2 + ‖AΩc•g‖22 . (33)

It now remains to bound the second term. Our strategy
is to bound ‖A∗ΩcTAΩc•g‖2 and ‖A∗ΩcT cAΩc•g‖2 separately,
then the bound of ‖AΩc•g‖22 is obtained via the following
expression

‖AΩc•g‖22 = ‖A∗Ωc•AΩc•g‖22
= ‖A∗ΩcTAΩc•g‖22 + ‖A∗ΩcT cAΩc•g‖22 ,

(34)

where the first expression follows from ‖A∗Ωc•AΩc•g‖22 =

〈AΩc•g,AΩc•A
∗
Ωc•AΩc•g〉 = 〈AΩc•g,AΩc•g〉 = ‖AΩc•g‖22.

To bound ‖A∗ΩcT cAΩc•g‖2, we bring Lemma 2 into action:
for any perturbation pair (h, 0) satisfying AΩ•h = 0, we have

‖x? + h‖1 ≥ ‖x
?‖1 +

1

4
‖hT c‖1 . (35)

By setting h = A∗Ωc•AΩc•g, we see that AΩ•h = 0. Hence,
applying Lemma 2 yields

‖x? +A∗Ωc•AΩc•g‖1 ≥ ‖x
?‖1 +

1

4
‖A∗ΩcT cAΩc•g‖1 . (36)

Furthermore, noting that x? + g is the optimal solution of the
convex program (9). This yields

‖x?‖1 ≥ ‖x
? + g‖1 ≥ ‖x

? +A∗Ωc•AΩc•g‖1 − ‖A
∗
Ω•AΩ•g‖1 .

In combination with (36), we have an important inequality:
‖A∗ΩcT cAΩc•g‖1 ≤ 4 ‖A∗Ω•AΩ•g‖1. Since the `1-norm dom-
inates the `2-norm, ‖A∗ΩcT cAΩc•g‖2 ≤ ‖A

∗
ΩcT cAΩc•g‖1 and

we have

‖A∗ΩcT cAΩc•g‖2 ≤ 4 ‖A∗Ω•AΩ•g‖1
≤ 4
√
n ‖A∗Ω•AΩ•g‖2

= 4
√
n ‖AΩ•g‖2 .

(37)

It is left to develop a bound for ‖A∗ΩcTAΩc•g‖2. We observe
that AΩTA

∗
ΩcT = −AΩT cA∗ΩcT c due to the orthogonality

property of A. Thus, for any vector u,

‖AΩTA
∗
ΩcTu‖2 = ‖AΩT cA∗ΩcT cu‖2

≤ ‖A•T cA∗ΩcT cu‖2 = ‖A∗ΩcT cu‖ .
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In addition, applying Lemma 5 with Ω ∼ Ber(η) we have∥∥I − η−1A∗ΩTAΩT

∥∥ ≤ ε ≤ 1/2 with high probability. Hence,

η−1 ‖AΩTA
∗
ΩcTu‖

2
2

= η−1 〈AΩTA
∗
ΩcTu,AΩTA

∗
ΩcTu〉

= η−1 〈A∗ΩcTu,A
∗
ΩTAΩTA

∗
ΩcTu〉

= 〈A∗ΩcTu,A
∗
ΩcTu〉 −

〈
A∗ΩcTu, (I − η−1A∗ΩTAΩT )A∗ΩcTu

〉
≥ ‖A∗ΩcTu‖

2
2 −

∥∥I − η−1A∗ΩTAΩT

∥∥ ‖A∗ΩcTu‖
2
2

≥ 1

2
‖A∗ΩcTu‖

2
2 .

In other words,
√
η/2 ‖A∗ΩcTu‖2 ≤ ‖AΩTA

∗
ΩcTu‖2. Combin-

ing these pieces together while setting u = AΩc•g yields

‖A∗ΩcTAΩc•g‖2 ≤
1√
η/2
‖A∗ΩcT cAΩc•g‖2 .

The right-hand side is in turn bounded by 4
√
n√
η/2
‖A∗ΩcT c‖2

due to (37). Inserting this bound with the bound in (37) into
(34), we obtain

‖AΩc•g‖22 ≤
(

2

η
+ 1

)
16n ‖AΩ•g‖22 ≤

(
2

η
+ 1

)
64σ2n,

where the last inequality follows from the known bound in
(32). Combining this result with (33) we can conclude that

‖g‖2 ≤ 2σ + 8σ

√
n

(
2

η
+ 1

)
,

as claimed.

B. Proof of Theorem 4

Proof. The proof of this theorem is considerably more in-
volved since we have to control two residual components
x̂ − x? and ê − e?, where (x̂, ê) is the optimal solution pair
of (12). Set g(x) = x̂ − x? and g(e) = ê − e?, our goal is to
bound

∥∥g(x)
∥∥

2
+
∥∥g(e)

∥∥
2
.

At first, notice that (x?, e?) and (x̂, ê) are pairs of feasible
solution, we establish an important bound∥∥∥AΩ•g

(x) + g(e)
∥∥∥

2
≤ ‖AΩ•x̂+ ê− b‖2
+ ‖AΩ•x

? + e? − b‖2 ≤ 2σ.
(38)

To bound
∥∥g(x)

∥∥
2

+
∥∥g(e)

∥∥
2
, we first express

∥∥g(x)
∥∥

2

as
∥∥g(x)

∥∥2

2
=
∥∥Ag(x)

∥∥2

2
=
∥∥AΩc•g

(x)
∥∥2

2
+
∥∥AΩ•g

(x)
∥∥2

2
.

Furthermore, from the fact that 1
2 ‖a+ b‖22 + 1

2 ‖a− b‖
2
2 =

‖a‖22 + ‖b‖22 for any vectors a and b, we get∥∥∥g(x)
∥∥∥2

2
+
∥∥∥g(e)

∥∥∥2

2

=
∥∥∥AΩc•g

(x)
∥∥∥2

2
+
∥∥∥AΩ•g

(x)
∥∥∥2

2
+
∥∥∥g(e)

∥∥∥2

2

≤
∥∥∥AΩc•g

(x)
∥∥∥2

2
+

1

2

∥∥∥AΩ•g
(x) + g(e)

∥∥∥2

2
+

1

2

∥∥∥AΩ•g
(x) − g(e)

∥∥∥2

2

≤ 2σ2 +
∥∥∥AΩc•g

(x)
∥∥∥2

2
+

1

2

∥∥∥AΩ•g
(x) − g(e)

∥∥∥2

2
.

(39)

It is left to bound the sum of the second and third term on
the right-hand side of the equation. We express this sum as∥∥∥AΩc•g

(x)
∥∥∥2

2
+

1

2

∥∥∥AΩ•g
(x) − g(e)

∥∥∥2

2

=
∥∥∥AΩc•g

(x)
∥∥∥2

2
+

1

2

∥∥∥AS•g(x) − g(e)
S

∥∥∥2

2
+

1

2

∥∥∥AJ•g(x) − g(e)
J

∥∥∥2

2
,

where we recall that indices in S are locations where mea-
surements are available but unreliable and indices in J are lo-
cations where measurements are available and trustworthy and
Ω = S∪J . To upper bound this sum, we consider the establish-
ment of the upper bounds for each term M1 :=

∥∥AΩc•g
(x)
∥∥2

2
+∥∥∥AS•g(x) − g(e)

S

∥∥∥2

2
and M2 :=

∥∥∥AJ•g(x) − g(e)
J

∥∥∥2

2
separately.

One of the crucial steps in bounding M1 and M2 is the use
of Lemma 2, which states that for any perturbation pair (h, f )
satisfying f = −AΩ•h,

‖x? + h‖1 + λ ‖e? + f‖1 ≥ ‖x
?‖1 + λ ‖e?‖1

+
λ

4
‖fJ‖1 +

1

4
‖hT c‖1 .

Now let us denote

f+ := −1

2
(AΩ•g

(x)+g(e)) and f− := −1

2
(AΩ•g

(x)−g(e)),

as well as

h+ := −A∗Ω•f+ and h− := −A∗Ω•f− +A∗Ωc•AΩc•g
(x).

It is easy to establish the following properties from this
construction

g(x) = −h+ + h−

g(e) = −f+ + f−

‖h+‖2 = ‖f+‖2 ≤ σ
M1 =

∥∥AΩc•g
(x)
∥∥2

2
+ 2

∥∥f−S ∥∥2

2

M2 = 2
∥∥f−J ∥∥2

2
.

(40)

1) Bound M2: At first, since (x? + g(x), e? + g(e)) is the
pair of optimal solution of the convex program, we have
‖x?‖1 + ‖e?‖1 ≥

∥∥x? + g(x)
∥∥

1
+
∥∥e? + g(e)

∥∥
1
. Furthermore,

decomposing g(x) and g(e) and using the triangular inequality,
we can derive∥∥∥x? + g(x)

∥∥∥
1

+ λ
∥∥∥e? + g(e)

∥∥∥
1

=
∥∥x? − h+ + h−

∥∥
1

+ λ
∥∥e? − f+ + f−

∥∥
1

≥
∥∥x? + h−

∥∥
1

+ λ
∥∥e? + f−

∥∥
1
− (
∥∥h+

∥∥
1

+ λ
∥∥f+

∥∥
1
).
(41)

Applying Lemma 2 together with the observation that f− =
−AΩ•h

− yields∥∥x? + h−
∥∥

1
+ λ

∥∥e? + f−
∥∥

1

≥ ‖x?‖1 + λ ‖e?‖1 +
λ

4

∥∥f−J ∥∥1
+

1

4

∥∥h−T c

∥∥ .
Combining these arguments, we get

λ

4

∥∥f−J ∥∥1
+

1

4

∥∥h−T c

∥∥
1
≤
∥∥h+

∥∥
1

+ λ
∥∥f+

∥∥
1
.
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Converting both sides to the `2-norm using the crude inequal-
ity ‖a‖2 ≤ ‖a‖1 ≤

√
n ‖a‖2 for all a ∈ Rn, then applying

‖f+‖2 = ‖h+‖2 ≤ σ, we obtain the bound

min{λ, 1}
4

(
∥∥f−J ∥∥2

+
∥∥h−T c

∥∥
2
) ≤
√
n(1 + λ)

∥∥f+
∥∥

2

≤
√
n(1 + λ)σ.

(42)

A specific consequence of this analysis is a bound of M2

M2 = 2
∥∥f−J ∥∥2

2
≤ 2(

∥∥f−J ∥∥2
+
∥∥h−T c

∥∥
2
)2

≤ 2

(
4(1 + λ)

min{λ, 1}

)2

σ2n.
(43)

2) Bound M1: In this section we would like to bound∥∥AΩc•g
(x)
∥∥2

2
+ 2

∥∥f−S ∥∥2

2
. Denoting z :=

(
f−S

−AΩc•g
(x)

)
,

then to bound the quantity of interest, it is equivalent to
bounding ‖z‖2. By the construction of h− and f−, we have
A∗Ω•f

− + h− −A∗Ωc•AΩc•g
(x) = 0 leading to

−A∗J•f−J −
(

0T
h−T c

)
= A∗S•f

−
S −A

∗
Ωc•AΩc•g

(x) +

(
h−T
0T c

)
= A∗Jc•

(
f−S

−AΩc•g
(x)

)
+

(
h−T
0T c

)
= A∗Jc•z +

(
h−T
0T c

)
,

(44)

where the second identity follows from Jc = S ∪ Ωc.
First we control the upper bound of the `2-norm of the

left-hand side of (44), which can be attained easily from the
triangular inequality∥∥∥∥A∗J•f−J +

(
0T
h−T c

)∥∥∥∥
2

≤
∥∥A∗J•f−J ∥∥2

+
∥∥h−T c

∥∥
2

=
∥∥f−J ∥∥2

+
∥∥h−T c

∥∥
2
.

Next, the `2-norm of the right-hand side of (44) is now
lower bounded by∥∥∥∥A∗Jc•z +

(
h−T
0T c

)∥∥∥∥2

2

= ‖A∗Jc•z‖
2
2 +

∥∥h−T ∥∥2

2
+ 2

〈
A∗JcT z, h

−
T

〉
≥ ‖z‖22 +

∥∥h−T ∥∥2

2
− 2 ‖A∗JcT ‖ ‖z‖2

∥∥h−T ∥∥2

≥ ‖z‖22 +
∥∥h−T ∥∥2

2
− 2 ‖A∗JcT ‖ ‖z‖2

∥∥h−T ∥∥2

≥ ‖z‖22 +
∥∥h−T ∥∥2

2
− 2
√

1− ρ0/2 ‖z‖2
∥∥h−T ∥∥2

≥ (1−
√

1− ρ0/2)(‖z‖22 +
∥∥h−T ∥∥2

2
),

where the third inequality follows from Proposition 1:
‖A∗JcTAJcT ‖ ≤ 1−ρ0/2 and the last inequality follows from
the standard argument a2 + b2 − 2αab ≥ (1− α)(a2 + b2).

Combine these pieces together with the fact that 1 −√
1− ρ0/2 ≥ ρ0

4 , we attain

‖z‖22 +
∥∥h−T ∥∥2

2
≤ 4

ρ0
(
∥∥f−J ∥∥2

+
∥∥h−T c

∥∥
2
)2. (45)

Next, notice that ‖z‖22 =
∥∥f−S ∥∥2

2
+
∥∥AΩc•g

(x)
∥∥2

2
and together

with (43), we get the following bound of M1

M1 ≤ 2(‖z‖22 +
∥∥h−T ∥∥2

2
) ≤ 8

ρ0
(
∥∥f−J ∥∥2

+
∥∥h−T c

∥∥
2
)2

≤ 8

ρ0

(
4(1 + λ)

min{1, λ}

)2

σ2n.

(46)

Obviously, from combining these two previous inequalities
on M1 and M2, we can establish the bound of the sum M1 +
M2. However, we can tighten this bound by a constant factor
from the following simple steps:

M1 +M2 ≤ 2(
∥∥∥AΩc•g

(x)
∥∥∥2

2
+
∥∥f−S ∥∥2

2
+
∥∥f−J ∥∥2

2
)

≤ 2

[
4

ρ0
(
∥∥f−J ∥∥2

+
∥∥h−T c

∥∥
2
)2 +

∥∥f−J ∥∥2

2

]
≤ 2

(
4

ρ0
+ 1

)
(
∥∥f−J ∥∥2

+
∥∥h−T c

∥∥
2
)2

≤ 2

(
4

ρ0
+ 1

)(
4(1 + λ)

min{λ, 1}

)2

σ2n,

where the second inequality follows from (45) and the last
inequality follows from (42).

Inserting the above bound into (39) leads to∥∥∥g(x)
∥∥∥2

2
+
∥∥∥g(e)

∥∥∥2

2
≤ 2σ2 + 2

(
4

ρ0
+ 1

)(
4(λ+ 1)

min{1, λ}

)2

σ2n.

Finally, applying (
∥∥g(x)

∥∥
2
+
∥∥g(e)

∥∥
2
)2 ≤ 2(

∥∥g(x)
∥∥2

2
+
∥∥g(e)

∥∥2

2
)

will complete our proof.

VI. ORACLE INEQUALITIES

In this section we would like to discuss the optimality of
the reconstruction error bound in Theorem 4. In particular, we
compare this result with the best possible accuracy one can
achieve. Suppose we had available an oracle informing us in
advance the locations of T nonzero coefficients of the signal
as well as S nonzero coefficients of the sparse noise. Then
one can use this valuable information to construct the ideal
estimator pair (xOracle, eOracle) by least-square projection. To
see this, we decompose y into two components: yS and yJ ,
where yJ is not affected by sparse error. Thus,

yJ = AJTx
?
T + νJ .

Recall from (30), A∗JTAJT is invertible. In particular, ρ0/2 ≤
σmin(A∗JTAJT ) ≤ σmax(A∗JTAJT ) ≤ 3ρ0/2 where σmin and
σmax are the minimum and the maximum singular value of
the matrix, respectively. Therefore, the least-square solution
of this linear system is

xOracle
T = (A∗JTAJT )−1A∗JT yJ .

The oracle error bound on the signal is now estimated by∥∥xOracle
T − x?T

∥∥
2

=
∥∥(A∗JTAJT )−1A∗JT νJ

∥∥
2
.

It is obvious that
∥∥H−1

∥∥ ≤ 1
σmin(H) for any matrix H .

Therefore,∥∥xOracle
T − x?T

∥∥
2
≤
∥∥(A∗JTAJT )−1

∥∥ ‖AJT ‖ ‖νJ‖2 ≤ σ√6/ρ0.
(47)
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Now the oracle solution of the error can be found from the
identity equation on the set S: yS = ASTx

Oracle
T +eOracle

S +νS .
This leads to

eOracle
S = e?S +AST (x?T − xOracle

T ).

Recall in Proposition 2 that

‖AST ‖ ≤ (ηρ)1/2

(
1 +

√
µk log n

s

)1/2

= η1/2

(
s

m
+

√
s

m

√
µk log n

m

)1/2

≤
√

2,

provided that m ≥ µk log n. We conclude that the oracle error
bound on e? has to satisfy∥∥eOracle

S − e?S
∥∥

2
≤
√

2
∥∥xOracle

T − x?T
∥∥

2
≤
√

12/ρ0.

In conclusion, with the help of the oracle, we have∥∥xOracle − x?
∥∥

2
+
∥∥eOracle − e?

∥∥
2
≤ 3σ

√
6/ρ0. (48)

with adversarial noise. Consequently, our error bound in
Theorem 4 loses a

√
n vis-a-vis over the ideal bound achieved

via the oracle help.

VII. NUMERICAL EXPERIMENTS

In this section, we provide extensive simulations to confirm
the validity of our theoretical results. Since the observation
model in (4) can be expressed as y = [AΩ•

1
λI]z? = Bz?

where z? = [x?
T

, λe?
T

]T and I is the m×m identity matrix,
the extended `1-minimization in (5) and the noisy version in
(12) can be recast as conventional `1 programs

min
z
‖z‖1 s.t. y = Bz,

and
min
z
‖z‖1 s.t. ‖b−Bz‖ ≤ σ.

In this section, we use the Homotopy solver introduced in [31]
for our experiments. Another important implementation detail
is the choice of the parameter λ. For moderate signal dimen-
sions (e.g n ≤ 108), we suggest to set λ =

√
n

m(logn)1/2
. With

this choice, measurements are allowed to be corrupted up to
25% as presented in our theorems. Of course, if we know in
prior that the signal is very sparse, reducing the value of λ will
help retrieve the signal under more corrupted measurements.
In practical applications, we recommend λ =

√
n

m(logn)1/2
as

a ”good-for-all” parameter.

A. Exact recovery from grossly corrupted measurements

We first illustrate the correct recoverability of the signal un-
der gross error as provided in Theorem 2. We consider random
signals x? of varying lengths n = {1024, 2048, 4096, 8192}.
For each n, we generate signals of sparsity k where k varies
from 1 to 60 with step size 2. Here, magnitudes of nonzero
entries are Gaussian distributed and their locations are chosen
uniformly at random. For each sparsity level, the measurement
matrix AΩ• is produced by uniformly selecting m = 500
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Fig. 1. The probability of success as a function of signal sparsity for various
signal dimensions. Here, a total of m = 500 measurements are observed and
1/4 of them are grossly corrupted.
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Fig. 2. The probability of success as a function of fraction error s/m. Here,
we fix signal dimension to n = 1024, a total of m = 500 measurements are
used and the signal sparsity is k = [25, 30, 35].

rows at random from the Fourier matrix A. Error vector
e? is generated to have uniformly distributed support with
cardinality s = m/4 and the polarity of nonzero entries being
equally likely positive or negative. We set magnitudes of e?

such that ‖e?‖2 ≥ 100 ‖x?‖2. The reader should note that this
setting yields an observed signal that is significantly dominated
by the noise.

For each value of the signal sparsity k, we repeat the
experiment 100 times and keep track of the probability of
exact recovery. In all experiments, we set λ =

√
n

m(logn)1/2
.

The algorithm is declared to be successful if the relative error
with respect to x? satisfies ‖x̂− x?‖2 / ‖x?‖2 ≤ 10−3. The
performance curve is plotted in Fig. 1. Numerical values on
the x-axis denote signal sparsity whereas those on the y-
axis denote the probability of exact recovery. Interestingly,
this experiment demonstrates that the theory provides an
accurate prediction of the simulation results even for relatively
small problem sizes. In particular, perfect recovery is still
attained with signals of moderate sparsity level even if 25%
measurements are grossly perturbed. Furthermore, the sparsity
level is proportional with m

(logn)3/2
as expected.

Next, we fix the signal dimension to n = 1024 and
performs the same experiments with varying signal sparsity
k = [20, 25, 30]. Fig 2 demonstrates the probability of success
with varying fraction error s/m. Note that as the signal’s
sparsity level increases, we expect to recover the signal under
fewer corrupted measurements.
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Fig. 3. RMS error as a function of σ with n = 1024, m = 500, k = 20
and s = m/4.
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Fig. 4. RMS error as a function of s with n = 1024, m = 500, k = 20
and σ = 1.

B. Stable recovery from both dense and sparse corrupted
measurements

We now demonstrate stable recoverability when measure-
ments are both contaminated by gross sparse and small dense
error. We generate small noise ν from i.i.d. N (0, δ2). The
signal x?, the sparse error e? and the measurement matrix
AΩ• are constructed similarly as in previous experiments. For
each setting, we perform the simulations 100 times and report
the average error.

We first evaluate the performance of (12) with the signal x?

whose dimension and sparsity level are fixed to be n = 1024
and k = 20. We also set the number of measurements and
the error sparsity to be m = 500 and s = m/4. Non-zero
entries of the signal and the sparse errors are i.i.d. N (0, 10).
Estimation errors are quantified by the root-mean square
(RMS), which is defined as ‖x̂− x?‖2 /n and ‖ê− e?‖2 /n,
respectively. Fig. 3 shows the RMS error with varying noise
level. We also demonstrate in this figure the RMS errors of
an oracle obtained from Section VI. Fig. 3 clearly illustrates
that the RMS errors grow almost linearly with the noise level.
Furthermore, RMS errors attained by solving (12) is just twice
the RMS error achieved by the oracle.

Now we fix σ = 1 and run the optimization in (12) for
varying values of error sparsity. Fig. 4 establishes fact that as
s decreases, we expect to achieve more accurate recovery.

C. Experiments with images

In our last experiment, we consider the problem of recov-
ering an image from highly corrupted undersampled Fourier
coefficients. As usual, the data is given by y = AΩ•x

? +
e? + ν where AΩ• is a partial Fourier matrix obtained from

subsampling rows of the full 2D Fourier matrix A, e? is a
sparse error vector whose nonzero entries can have arbitrarily
large magnitudes, and ν is a small dense noise vector. In this
experiment, x? is the Shepp-Logan phantom image (see Fig.
5), which is not sparse in the spatial domain but in the gradient
domain. Therefore, to reconstruct x?, we use the total variation
(TV) criterion and minimize

min
x,e
‖x‖TV + λ ‖e‖1 s.t. ‖y −AΩ•x− e‖2 ≤ σ, (49)

where ‖ν‖2 ≤ σ is assumed to be known and ‖x‖TV is the
`1-norm of the gradient, also known as the total-variation of
x. This norm is formally defined as

‖x‖TV =
∑
ij

√
(∇hx)2

ij + (∇vx)2
ij , (50)

where ∇h and ∇v denote the discrete finite difference opera-
tors along the horizonal and vertical coordinates. To optimize
(49), we employ the classic alternating direction method
(ADM) as presented in [32]. In this particular experiment, we
perform a two-step algorithm

1) We solve (49) via the ADM method. The optimal
solution is denoted as (x̂, ê).

2) Next, we select J ∈ {1, ...,m} as locations where
coefficients of ê are zeros or approximately zeros. These
locations correspond to reliable observations. Then, we
solve the following optimization

min
x
‖x‖TV s.t. ‖yJ −AJ•x‖2 ≤ σ, (51)

where only clean observations are considered. The out-
put of (51) is what we expect to get.

In this experiment, we sample 12267 Fourier coefficients of
the 256 × 256 phantom image x? along a number of radical
lines (as seen in the top right of Fig. 5, 45 radical lines are
sampled). We then select 50% of these coefficients uniformly
at random and purposely add them to a deterministic large
noise vector whose magnitudes are twice larger than the mag-
nitudes of Fourier coefficients. This process assumes that half
of the observed Fourier coefficients are significantly corrupted
during the data acquisition. We note that the locations of these
missing entries are unknown. All the Fourier coefficients is
afterward contaminated by a Gaussian noise vector with zero
mean and standard deviation 0.01. Fig. 5 on the bottom left and
right shows the reconstruction from minimizing the TV only
and from the aforementioned two-step algorithm, respectively.
In the optimization (49), λ is set to be

√
n

m logn . It is clear
that while the conventional TV minimization fails to recover
the original image, our proposed method recovers the image
almost exactly. Notably, the relative error ‖x

?−xrecovered‖2
‖x?‖2

of our
method is 0.0887.

VIII. DISCUSSION AND CONCLUSION

In this paper, we present a complete analysis of a surprising
phenomenon: one can recover perfectly a sparse signal from
grossly corrupted measurements by linear programming (5),
even if the corruption is up to a significant fraction of all the
entries. More specifically, we deliver an explicit connection
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Fig. 5. Top left: original 256×256 phantom image. Top right: Fourier domain
sampling positions with 45 radical lines. Bottom left: recovered image from
the TV only. Bottom right: recovered image from our proposed optimization
in (49).

between sparsity levels of the signal and the error. Our result
can be interpreted as a generalization of compressed sensing,
where measurements are both incomplete and corrupted by
sparse errors. Furthermore, our results indicate that robustness
is still retained even in a more challenging situation: the
convex program (12) can stably recover a sparse signal under
measurements perturbed by both gross sparse and small dense
errors. Particularly, recovery error lies within a constant frac-
tion of the dense noise level. We also establish stable recovery
for a much more general class of signals − approximately
sparse signals.

As exhibited in Theorem 1, when the fraction of error is
close to 1 − or in other words, most of the measurements are
corrupted, signal sparsity k is still allowed to be proportional
to m

µ2log2n in order to retain accurate recovery. We conjecture
that this bound is optimal. That is, we cannot achieve perfect
reconstruction when k ∼ O( m

µ2 logn ) and the error support
size s is close to m. In fact, we claim this conjecture in our
upcoming paper for a class of Gaussian measurement matrices
[33]. How to establish a similar result for suborthogonal
measurement matrices is an interesting open problem.

We would like to mention a related work that describes
a similar phenomenon. Recently, Candès et al. [13], [34],
Chandrasekaran et al. [35], Xu et al. [36] and Agarwal et
al. [37] have shown that one can exactly recover a low-
rank matrix L ∈ Rn1×n2 from its grossly corrupted entries
M = L+ S by solving the following convex program:

min
L,S
‖L‖∗ + λ ‖S‖1 subject to M = L+ S. (52)

More specifically, the authors of [13], [34] proved that as
long as the rank of L is an order of n

log2 n
with n =

max{n1, n2}, then the solution of (52) with an appropriate
choice of parameter λ is exact even if almost all entries of
L are arbitrarily perturbed. Interestingly, the results in these
papers shares similar behavior as what presented here in our
paper. We believe that similar phenomena also holds for other
high-dimensional signal and error models as well.

IX. APPENDIX

Proof of Corollary 1. At first, we observe a variant of Lemma
2. Assuming the existence of a dual vector (z(x), z(e)) satis-
fying properties of Lemma 2, then for any perturbation pair
(f, h) such that f = −AΩ•h, we have

‖x? + h‖1 + λ ‖e? + f‖1 ≥ ‖x
?
T ‖1 + λ ‖e?‖1

− ‖x?T c‖1 +
1

4
(‖hT c‖1 + λ ‖AJ•h‖1).

(53)

The proof is essentially analogous to that of Lemma 2. The
only difference is the non-sparse nature of x?. Now decompose
x? into x?T and x?T c and use the triangular inequality to provide
a lower bound for ‖x? + h‖1, we have

‖x? + h‖1+λ ‖e? + f‖1 ≥ ‖x
?
T + h‖1+λ ‖e? + f‖1−‖x

?
T c‖1 .

Applying Lemma 2 to the bound ‖x?T + h‖1 + λ ‖e? + f‖1
will lead to the inequality (53).

Following closely the proof of Theorem 4, except in bound-
ing the quantity M2, we employ the inequality in (53). With
the same notations, we have

∥∥x? + g(x)
∥∥

1
+
∥∥e? + g(e)

∥∥
1
≤

‖x?‖1 + ‖e?‖1 = ‖x?T ‖1 + ‖x?T c‖1 + ‖e?‖1. Using the lower
bound of

∥∥x? + g(x)
∥∥

1
+
∥∥e? + g(e)

∥∥
1

in (41) together with
(53), we get a similar result as in (42)

min{λ, 1}
4

(
∥∥f−J ∥∥2

+
∥∥h−T c

∥∥
2
) ≤
√
n(1 + λ)σ + 2 ‖x?T c‖1 .

The rest of our proof follows exactly from the analysis of
Theorem 4.

Proof of Lemma 6. The proof is essentially analogous to
the one presented in [14]. We first establish a bound for
E
∥∥A∗S0T

u
∥∥

2
, and then show that

∥∥A∗S0T
u
∥∥

2
concentrates

around its expectation.
Define S0 = {i : δi = 1} where δi is an independent

sequence of Bernoulli variables with parameter ρ0 and denote
by vi ∈ Rk the ith column of matrix A∗S0T

. With these
notations, we have

A∗S0Tu =
∑
i∈S0

uivi =

n∑
i=1

δiuivi.

Notice that from the orthogonality property of A,
∑n
i=1 uivi =

A∗•Ta = 0 where a is a column of matrix A•T c . Thus,
by subtracting this zero term from A∗S0T

u, one can see that
A∗S0T

u is a sum of zero-mean random variable

A∗S0Tu =

n∑
i=1

(δi − ρ0)uivi.

We can now estimate E
∥∥A∗S0T

u
∥∥

2
as follows

E
∥∥A∗S0Tu

∥∥2

2
= E

n∑
i=1

(δi − ρ0)2u2
i 〈vi, vi〉

+ E
∑
i,j;i 6=j

(δi − ρ0)(δj − ρ0)uiuj 〈vi, vj〉 .
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The second term vanishes due to the independence of δi, i =
1, ..., n. Furthermore, E(δi − ρ0)2 = ρ0(1− ρ0) ≤ ρ0. Hence,

E
∥∥A∗S0Tu

∥∥2

2
≤ ρ0 max

i
‖vi‖22 (

n∑
i=1

u2
i )

= ρ0 max
i
‖vi‖22 ≤ ρ0

µk

n
.

Therefore, by Jensen’s inequality, we conclude that

E
∥∥A∗S0T

u
∥∥

2
≤
√
E
∥∥A∗S0T

u
∥∥2

2
≤
√
ρ0

µk
n .

We now apply a remarkable result from Talagrand that
bounds the supremum of a sum of independent random vari-
ables. Let Z1, ..., Zn be a sequence of independent random
variables and let M be the supremum defined by

M = sup
g∈G

n∑
i=1

g(Zi),

where g is a family of real-valued functions.

Theorem 5. If |g| ≤ B for every g ∈ G and {g(Zi)}i=1,...,n

have zero mean for every g ∈ G, then for all τ ≥ 0,

P (|M − EM | ≥ τ) ≤ 3 exp

(
− t

CTB
log

(
1 +

Bτ

σ2 +BEM

))
,

where σ2 = supg∈G
∑n
i=1 Eg2(Zi), M =

supg∈G |
∑n
i=1 g(Zi)| and CT > 0 is a small numerical

constant.

By the definition of norm, we have

M :=
∥∥A∗S0Tu

∥∥
2

= max
‖g‖2≤1

〈
A∗S0Tu, g

〉
= max
‖g‖2≤1

n∑
i=1

(δi − ρ0)ui 〈vi, g〉 .

Denote Zi = (δi − ρ0)uivi, we have M is the supremum
sum of independent random variable g(Zi) where g(Zi) :=
(δi − ρ0)ui 〈vi, g〉. Since M ≥ 0, EM = EM . The absolute
value of g(Zi) is bounded by

|g(Zi)| ≤ ‖(δi − ρ0)uivi‖2 ‖g‖2 ≤ |ui| ‖vi‖2 ≤
µ

n

√
k := B.

In addition, from E(δi − ρ0)2 = ρ0(1 − ρ0), σ2 is computed
from the argument
n∑
i=1

Eg2(Zi) =

n∑
i=1

ρ0(1− ρ0)u2
i 〈vi, g〉

2

≤ ρ0 max
i
u2
i g(

n∑
i=1

viv
∗
i )g ≤ ρ0

µ

n
‖g‖22

∥∥∥∥∥
n∑
i=1

viv
∗
i

∥∥∥∥∥ .
Notice that

∑n
i=1 viv

∗
i = A∗T•A•T = I by the orthogonality

property of A. Then, σ2 ≤ max‖g‖2≤1 ρ0
µ
n ‖g‖

2
2 ≤ ρ0

µ
n .

Applying Talagrand’s inequality yields

P (M ≥ EM + τ)

≤ 3 exp

(
− τ

CT
√
kµ/n

log

(
1 +

τ
√
k

ρ0 + k
√
ρ0(µ/n)1/2

))
.

(54)

We need to consider two cases

1) If ρ0 ≥ k
√
ρ0

µ
n , or equivalently, ρ0 ≥ µk2

n , we select τ
such that τ ≤ ρ0/

√
k. Thus, the right-hand side of (54)

is bounded by

3 exp

(
− τ

CT
√
kµ/n

log

(
1 +

τ
√
k

2ρ0

))
,

which is in turn smaller than 3 exp
(
− τ2

3CT ρ0µ/n

)
due

to the simple observation that log(1 + x) ≥ 2x/3 for
0 ≤ x ≤ 1. Set τ2 := Cρ0

µ logn
n where C = 15CT ,

the right-hand side of (54) will be less than 3e− logn5

=
3n−1. Note that this choice of τ is consistent with the
condition τ ≤ ρ0/

√
k as long as ρ0 ≥ C µk logn

n . We
conclude that in this case

P

(
M ≥

√
ρ0
µk

n
+

√
Cρ0

µ log n

n

)
≤ 3n−1.

In other words, with high probability, M ≤√
C ′ρ0

max{k,logn}
n .

2) On the other hand, if ρ0 ≤ µk2

n , we select τ such that

τ ≤
√
ρ0

µk
n . The right-hand side of (54) is now less

than

3 exp

(
− τ

C
√
kµ/n

log

(
1 +

τ

2(ρ0kµ/n)1/2

))
≤ 3 exp

(
− τ2

3CT kρ
1/2
0 (µ/n)3/2

)
.

Similarly, the right-hand side of (54) will be less than
3n−1 by setting τ2 := Ckρ

1/2
0 (µn )3/2 log n. This choice

of τ is consistent with its bound as long as ρ0 ≥
C µ(logn)2

n . Therefore,

P

(
M ≥

√
ρ0
µk

n
+
√
Ck log nρ

1/4
0 (

µ

n
)3/4

)
≤ 3n−1.

In other words, with high probability, M ≤
√
C ′ρ0

µk
n

and the proof is completed.

REFERENCES

[1] J. Wright, A. Y. Yang, A. Ganesh, S. S. Sastry, and Y. Ma, “Robust face
recognition via sparse representation,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 31, no. 2, pp. 210–227, Feb. 2009.

[2] J. Wright and Y. Ma, “Dense error correction via l1 minimization,” IEEE
Trans. Inf. Theory, vol. 56, no. 7, pp. 3540–3560, July 2010.

[3] D. L. Donoho, “Compressed sensing,” IEEE Trans. Inf. Theory, vol. 52,
no. 4, pp. 1289–1306, April 2006.

[4] E. J. Candès, J.Romberg, and T. Tao, “Robust uncertainty principles:
exact signal reconstruction from highly incomplete frequency informa-
tion,” IEEE Trans. Inf. Theory, vol. 52, no. 2, pp. 5406–5425, Feb. 2006.

[5] H. Rauhut, “Random sampling of sparse trigonometric polynomials,”
Appl. Comput. Harmon. Anal., vol. 22, no. 1, pp. 201–224, Jan. 2007.

[6] E. J. Candès, J.Romberg, and T. Tao, “Stable signal recovery from
incomplete and inaccurate measurements,” Comm. Pure Appl. Math.,
vol. 59, no. 8, pp. 1207–1223, Aug. 2006.

[7] E. J. Candès and T. Tao, “Decoding by linear programming,” IEEE
Trans. Inf. Theory, vol. 51, no. 12, pp. 4203–4215, Dec. 2005.

[8] ——, “Near-optimal signal recovery from random projections: Universal
encoding strategies,” IEEE Trans. Inf. Theory, vol. 52, no. 12, pp. 5406–
5425, Nov. 2005.



IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. XXX, NO. XXX, XXX 2011 18

[9] M. Rudelson and R. Vershynin, “On sparse reconstruction from Fourier
and Gaussian measurements,” Comm. Pure Applied Math., vol. 61, no. 8,
pp. 1025–1045, April 2008.

[10] D. L. Donoho, M. Elad, and V. N. Temlyakov, “Stable recovery of sparse
overcomplete representations in the present of noise,” IEEE Trans. Inf.
Theory, vol. 52, no. 1, pp. 6–18, Jan. 2006.

[11] H. Rauhut, “Stability results for random sampling of sparse trigonomet-
ric polynomials,” IEEE Trans. Inf. Theory, vol. 54, no. 12, pp. 5661–
5670, Dec. 2008.

[12] J. A. Tropp, “Just relax: Convex programming methods for identifying
sparse signals,” IEEE Trans. Inf. Theory, vol. 51, no. 3, pp. 1030–1051,
Mar. 2006.

[13] E. J. Candès, X. Li, Y. Ma, and J. Wright, “Robust principal component
analysis?” Journal of the ACM, vol. 58, no. 3, pp. 1–37, May 2011.

[14] E. J. Candès and J.Romberg, “Sparsity and incoherence in compressive
sampling,” Inverse Problems, vol. 23, no. 3, pp. 969–985, April 2007.

[15] T. T. Do, L. Gan, N. H. Nguyen, and T. D. Tran, “Fast compressive sam-
pling with structurally random matrices,” IEEE Trans. Signal Process.,
Jan. 2012, to appear.

[16] M. Elad, J.-L. Starck, P. Querre, and D. Donoho, “Simultaneous cartoon
and texture image inpainting using morphological component analysis,”
Applied Comput. Harmon. Anal., vol. 19, pp. 340–358, Nov. 2005.

[17] J.-L. Starck, M. Elad, and D. Donoho, “Image decomposition via the
combination of sparse representation and a variational approach,” IEEE
Trans. Image Process., vol. 14, no. 10, pp. 1570–1582, Oct. 2005.

[18] J. Haupt, W. Bajwa, M. Rabbat, and R. Nowak, “Compressed sensing
for networked data,” IEEE Signal Process. Mag., vol. 25, no. 2, pp.
92–101, Mar. 2008.

[19] Z. M. Charbiwala, S. Chakraborty, S. Zahedi, Y. Kim, T. He, C. Bis-
dikian, and M. B. Srivastav, “Compressive oversampling for robust data
transmission in sensor networks,” in Proc. INFOCOM conf., San Diego,
CA, USA, Mar. 2010, pp. 1–9.

[20] Z. Li, F. Wu, and J. Wright, “On the systematic measurement matrix for
compressed sensing in the presence of gross error,” in Data compress.
conf. (DCC), Snowbird, UT, USA, Mar. 2010, pp. 356–365.

[21] E. J. Candès and Y. Plan, “A probabilistic and RIPless theory of
compressed sensing,” IEEE Trans. Inf. Theory, 2012, to appear.

[22] J. Wright, Y. Ma, J. Mairal, G. Sapiro, T. Huang, and S. Yan, “Sparse
representation for computer vision and pattern recognition,” the Pro-
ceedings of the IEEE, vol. 98, no. 6, pp. 1031 – 1044, June 2010.

[23] J. N. Laska, M. A. Davenport, and R. G. Baraniuk, “Exact signal
recovery from sparsely corrupted measurements through the pursuit of
justice,” in Asilomar conf. Sig. Sys. Comput., Pacific Grove, CA, USA,
Nov. 2009, pp. 1556–1560.

[24] C. Studer, P. Kuppinger, G. Pope, and H. Bolcskei, “Sparse signal
recovery from sparsely corrupted measurements,” in Proc. Inter. Symp.
Inf. Theory (ISIT), St. Pertersburg, Russia, Aug. 2011, pp. 1422–1426.

[25] X. Li, “Compressed sensing and matrix completion with
constant proportion of corruptions,” April 2011, preprint at
http://arxiv.org/abs/1104.1041.

[26] M. Rudelson and R. Vershynin, “Sampling from large matrices: An
approach through geometric functional analysis,” Journal of the ACM,
vol. 54, no. 4, pp. 1–19, July 2007.

[27] J. A. Tropp, “On the conditioning of random subdictionaries,” Appl.
Comput. Harmon. Anal., vol. 25, pp. 1–24, 2008.

[28] N. H. Nguyen, T. T. Do, and T. D. Tran, “A fast and efficient algorithm
for low-rank approximation of a matrix,” in Proc. 41st ACM Symp.
Theory Comput., Bethesda, MD, USA, June 2009, pp. 215–224.

[29] E. J. Candès and Y. Plan, “Matrix completion with noise,” Proceedings
of the IEEE, vol. 98, no. 6, pp. 925–936, June 2010.

[30] Z. Zhou, X. Li, J. Wright, E. J. Candès, and Y. Ma, “Stable principal
component pursuit,” in Proc. Inter. Symp. Inf. Theory (ISIT), Austin, TX,
USA, June 2010, pp. 1518–1522.

[31] M. S. Asif and J. Romberg, “Dynamic updating for l1 minimization,”
IEEE Sel. Topics Signal Proc., vol. 4, no. 2, pp. 421–434, April 2010.

[32] J. Yang, Y. Zhang, and W. Yin, “A fast alternating direction method for
tvl1-l2 signal reconstruction from partial fourier data,” IEEE Sel. Topics
Signal Proc., vol. 4, no. 2, pp. 288–297, April 2010.

[33] N. H. Nguyen, N. M. Nasrabadi, and T. D. Tran, “Robust lasso with
missing and grossly corrupted observations,” in Ad. Neural Infor. Proc.
Sys. (NIPS), Granada, Spain, Dec. 2011.

[34] A. Ganesh, X. Li, J. Wright, E. J. Candès, and Y. Ma, “Dense error
correction for low-rank matrices via principal component pursuit,” in
Proc. Inter. Symp. Inf. Theory (ISIT), Austin, TX, USA, June 2010, pp.
1513–1517.

[35] V. Chandrasekaran, S. Sanghavi, P. A. Parrilo, and A. S. Willsky, “Rank-
sparsity incoherence for matrix decomposition,” SIAM Journal Opt.,
vol. 21, no. 2, pp. 572–596, June 2011.

[36] H. Xu, C. Caramanis, and S. Sanghavi, “Robust PCA via outlier pursuit,”
in Ad. Neural Infor. Proc. Sys. (NIPS), Vancouver, BC, Canada, Dec.
2010, pp. 2496–2504.

[37] A. Agarwal, S. Negahban, and M. Wainwright, “Noisy matrix decom-
position via convex relaxation: Optimal rates in high dimensions,” in
Proc. 28th Inter. Conf. Mach. Learn. (ICML), Bellevue, Washington,
USA, June 2011, pp. 1129–1136.


