
FAST DIMENSION REDUCTION THROUGH RANDOM PERMUTATION

Lu Gan†, Thong T. Do� and Trac D. Tran‡∗

† School of Engineering and Design, Brunel University, UK
� Thomson Corporate Research, USA

‡ Dept. of Electrical and Computer Engineering, The Johns Hopkins University, USA

ABSTRACT

This paper studies permutation-based dimension reduction, which
can be implemented by first scrambling the input data, then applying
the FFT, DCT or Walsh-Hadamard transform and finally using either
uniformly random sampling or sparse random projection. By ex-
ploiting concentration inequalities of random permutation, we show
that this sublcass of operators can offer (near) optimal theoretical
guarantee. Besides, as random permutation of N elements can be
implemented in O(N) time, the proposed algorithm has very low
complexity. Some numerical examples are presented to demonstrate
the validity of our theoretical development and their promising ap-
plications in image processing.

Index Terms— Random permutation, dimension reduction,
structurally random matrix, Johnson−Lindenstrauss lemma, Stein’s
method, compressed sensing;

1. INTRODUCTION

Random projection (RP) has been proposed as a simple technique for
efficient acquisition and processing of large scale data sets. Simply
speaking, the basic idea is to project a high dimensional signal x ∈
RN to a low dimensional one y ∈ RM through the following linear
transform

y = Φx, (1)

whereΦ is an M × N random matrix. So far, the RP methods have
led to theoretical breakthroughs in compressed sensing [1, 2], di-
mension reduction [3] and numerical algebra. Practically, RP meth-
ods have found many image/video processing applications such as
compressive imaging [4], secure image retrieval [5] and image hash-
ing [6].

In this paper, we focus on the study of RP methods in dimen-
sion reduction. Recall that the celebrated Johnson-Lindenstrauss
(JL) lemma [3] states that any set of Q points in RN can be em-
bedded into M = O(ε−2 logQ)- dimensional Euclidean space so
that all pairwise distances are kept within an arbitrarily small fac-
tor ε. It is well known that when Φ is a full random matrix with
i.i.d Gaussian/Bernoulli variables on its entities, optimal theoretical
performance can be achieved. However, for large scale applications,
full random matrices have huge memory requirement and high com-
putational cost. To address these issues, various fast JL transforms
have been developed. Sparse random projection was proposed by
Achlioptas in [7], where the number of non-zero coefficients in Φ is
about 1

3
as that of a full random matrix. However, it was shown that

the matrix can not be further sparse without incurring a penalty in di-
mensionality. Later, N. Ailon et al. [8] proposed Fast JL-Transform
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(FJLT) using randomized FFT followed by a even more sparse ran-
dom projection. In [9], J. Matousek then proved that by replacing
Gaussian distribution with Bernoulli (±1) distribution, the theoret-
ical performance is still guaranteed. A simpler variant of FJLT was
developed in [10] by replacing the sparse random projector with a
deterministic 4-wise independent code matrix (e.g. BCH codes).
More recently, E. Liberty introduced the Lean Walsh transform [11].
In our previous work [12], we demonstrated that by using uniform
random sampling, rather than sparse random projection of FJLT, the
computation complexity can be significantly reduced and the num-
ber of required projection is increased to M = O(ε−2 log3 Q).

Note that most existing fast dimension reduction algorithms rely
on pre-processing the input vector through random sign flipping. In
this paper, we study fast scrambling-based dimension reduction al-
gorithm, whereΦ takes the following form

Φ =

�
1 0
0 αS

�
FP, (2)

in which

• P is an N × N uniform random permutation operator;

• F represents an N × N fast-computable unitary matrix
such as the FFT, the DCT or the Walsh-Hadamard transform
(WHT);

• S is either a sampling operator or a sparse projection matrix.
Specifically, in sampling-based postprocessing, S selects ex-
actly M − 1 rows out of N − 1 ones (except the first row) of
F uniformly at random. In projection-based postprocessing,
S takes the same form as that defined in [8], i.e.,

Sij ∼ N (0, 1/q) with probability q;
Sij = 0 with probability (1− q),

(3)

where N (0, 1/q) means a zero-mean normal distribution
with variance 1/q, in which

q = min

�
O
�
log2 Q

N

�
, 1

�
,

with Q denoting the total number of points.

• α is a scaling factor used to normalize the expected vector
norm of each column ofΦ. In particular,

α =

��
�
�

N−1
M−1

, Sampling-based postprocessing,�
1

M−1
, Projection-based postprocessing.

(4)
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Compared with existing work, the main difference is that our al-
gorithm uses a random permutation operator P for pre-processing,
rather than a sign flipping operator [8, 12, 13]. There are several
reasons to study permutation-based algorithm. First, as P can be
implemented with only O(N) time, the algorithm has very low com-
plexity. Besides, analog video scrambling was already implemented
in some commercial satellite and cable TV systems [14]. Hence, Φ
given in (2) has a hardware friendly structure. Moreover, unlike ran-
dom sign flipping, the operation of permutation does not change the
dynamic range of the input data. Furthermore, the operation of per-
mutation is widely used in encryption and watermarking as it offers
a large key space with N ! choices. In this light, the proposed dimen-
sion reduction method could be combined with these security-related
algorithms.

The rest of this paper is organized as follows. In Section 2, we
developed new concentration inequality of random permutations us-
ing Stein’s method of exchangeable pairs. Based on this inequality,
we present theoretical analysis of permutation-based dimension re-
duction in Section 3. Simulation results are shown in Section 4,
followed by conclusions and future works in Section 5.

2. CONCENTRATION INEQUALITIES OF RANDOM
PERMUTATION

Recall that for FJLT in [8], the analysis relies on concentration in-
equalities of the sum of a sequence of independent random variables.
Although some results of concentration inequalities for random per-
mutations were developed before, they are not sharp enough. Bear-
ing this in mind, we developed a new concentration inequality by
exploiting Stein’s method of exchangeable pairs [15], as presented
in the following theorem:

Theorem 1. Consider two fixed vectors v = [v1, v2, v3, · · · , vN ]
T

andw = [w1, w2, w3, · · · , wN ]
T in �N . Define a random variable

U as

U =

N�
i=1

viwπ(i),

where π is drawn from the uniform distribution over the set of all
permutations of {1, · · · , N}. Then, the expectation of U is

�(U) =
SvSw

N
, (5)

in which Sv and Sw represent the sums of v and w, respectively,
i.e., Sv =

�N
i=1 vi and Sw =

�N
i=1 wi. Besides, the following

inequality holds

P {|U − �(U)| ≥ t} ≤ 2 exp

�
− t2

Nζ2

�
. (6)

where
ζ2 = 4min

�|vmax|2σ2
w, |wmax|2σ2

v

�
,

in which vmax and wmax represent the maximum magnitude of v
andw, respectively, i.e.,

vmax = max
1≤i≤N

| vi | and wmax = max
1≤i≤N

| wi |,

while σ2
w and σ2

v individually represent the variances of v andw

σ2
w =

�N
i=1 w2

i

N
− S2

w

N2
and σ2

v =

�N
i=1 v2

i

N
− S2

v

N2
. (7)

The proof of the above theorem is a modification of Proposition
1.1 in [15]. Due to lack of space, details are omitted here and they
will be provided in the journal version. Note that (6) resembles the
classical Hoeffding inequality for sum of a sequence of independent
random variables. Intuitively, the smaller the variance of v (or w),
the better U will concentrate around its mean, as suggested by (6).
In the special case when all elements in v (or w) are identical, i.e.,
vi = α (or wi = α) for all i, U becomes a constant and the right-
hand side of (6) becomes 0 as σ2

v = 0 (or σ2
w = 0).

3. PERFORMANCE ANALYSIS

This section presents theoretical analysis of permutation-based di-
mension reduction algorithm. To this end, let us first present some
important properties of F that are crucial to our development. Note
that when F is a fast-computable transform such as the FFT, the
Type-II DCT and the WHT, it satisfies the following conditions:

F1,j =

�
1

N
for 1 ≤ j ≤ N ; (8)

N�
j=1

Fi,j = 0 for 2 ≤ i ≤ N, (9)

max | Fi,j | =
�

c0

N
for some constant c0; (10)

Eq. (8) implies that the first row of F is used to capture the DC
component of the input signal. (9) indicates that the remaining rows
have zero DC leakages, which act as band-pass or high pass filters.
Finally, Eq. (10) suggests that F is a dense matrix with the magni-
tude of its elements on the same order. By exploiting these properties
of F and the concentration inequality of (6), we can derive the fol-
lowing theorem:

Theorem 2. Let Ω be an arbitrary set of Q points in RN and sup-
pose that Q ≥ N . For an M × N operator Φ given in (2), assume
that the unitary transform matrix F satisfies (8)-(10). Then, for all
u, v ∈ Ω, the following inequality

(1− ε)‖u− v‖2 ≤ ‖Φu−Φv‖2 ≤ (1 + ε)‖u− v‖2 (11)

holds with probability at least 1− 1
Q

, if

(i)
M = O(ε−2 log3 Q) (12)

when S is a sampling operator that uniformly picks up M −1
samples from N − 1 outputs of F;

(ii)
M = O(ε−2 logQ) (13)

when S is a sparse projection matrix as given in (3).

Proof. According to [10, 12], the proof of the above theorem is
achieved if we can show that for any arbitrary N -dimensional vector
x with ‖x‖2 = 1, the following inequality holds,

P(
��‖Φx‖2 − 1�� > ε) < O

�
1

Q3

�
. (14)

Also, since the DC component of x is completely captured by the
first output of F, without loss of generality, we can assume that x is
a unit norm vector with zero mean.
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Define z = FPx. Just as in [8, 12], we then need to bound
zmax = ‖z‖∞, the maximum magnitude of elements in z. Note that
the i-th entry of z can be expressed as

zi =

N�
j=1

Fi,jxπ(j).

The zero-mean condition of x indicates that z1 = 0. For other zi

(2 ≤ i ≤ N), by Theorem 1, we have

�(zi) = 0; (15)

P(|zi| ≥ t) ≤ 2 exp

�−Nt2

4c0

�
. (16)

Here, (15) can be easily obtained from (9) or the zero-mean assump-
tion of x. (16) holds because of (10) and σx =

1
N

. Then, applying
the union bound for a supreme of a random sequence yields

P(zmax ≥ t) ≤ 2(N − 1) exp
�−Nt2

4c0

�
≤ 2N exp

�−Nt2

4c0

�
,

where zmax = max2≤i≤N |zi|. Setting t =

�
4c0 log(2NQ3)

N
pro-

duces

P

�
zmax ≥

�
4c0 log(2NQ3)

N

�
≤ 1

Q3
. (17)

The above result implies that the scrambled transform FP spreads
the AC component of the input vector so that the magnitude of zi is

bounded by
�

O(log Q)
N

.
When S is a sparse random projection matrix as in (3), the rest

of the proof is the same as that in [8]. For sampling-based postpro-
cessing, one can follow the method in [12] by modelling S with a
Bernoulli distribution and then applying Bernstein’s inequality. In
what follows, we provide an alternative way of proof by using the
random permutation model. Note that since both F and P are uni-
tary matrix, we have ‖z‖2

2 = ‖x‖2
2 = 1. As the sampling operator S

chooses M − 1 outputs of z uniform at random from 2, 3, ...N , we
can express ‖Φx‖2

2 using a permutation operator S as follows:

‖Φx‖2
2 =

N − 1
M − 1

M−1�
i=1

z2
S(i) =

N − 1
M − 1

N−1�
i=1

βiz
2
S(i), (18)

in which S is drawn from the uniform distribution over the set of all
permutations of {2, · · · , N} and βi take the following form:

βi =

�
N
M

, 1 ≤ i ≤ M − 1;
0, M ≤ i ≤ N − 1.

It can be easily shown that Sβ = (N − 1) and σβ = N−1
M−1

− 1.
Substituting them into (5) and (6), we arrive at

�
	

‖Φx‖2

2 − 1


 > ε

�
<2 exp

�
− (M − 1)ε2

4(N − 1)(N − M)z4
max

�

<2 exp

�
− Mε2

4N2z4
max

�
.

(19)

Finally, combining (17) with (19) yields

�
	

‖Φx‖2

2 − 1


 > ε

�
<2 exp

�
− Mε2

64c2
0(log(2NQ3))2

�
+

1

Q3

(20)

When M ≥ 64c2
0ε

−2(logQ3)(log 2NQ3)2 = O(ε−2 log3 Q), the
first term on the right side of (20) is less than 2

Q3 and thus the right

side is less than 3
Q3 , which completes the proof.

Note that (12) and (13) are identical to those obtained in [12]
and [8], respectively. This suggests that the effect of random per-
mutation is similar to that of random sign flipping. One can also
notice that in sampling-based postprocessing, there is an upscaling
factor of log2 Q in M . But we want to stress here that (12) is only
a theoretical bound for the worst case analysis. Our numerical ex-
periments suggest that sampling-based postprocessing provides very
similar performance as that of full random matrix at much lower im-
plementation cost. In terms of computation complexity, as we have
mentioned before, random permutation requires O(N) operations.
When S is a sampling operator, the computation of an M×N partial
FFT/DCT/WHT requires O(M logN) = O 	ε−2 log3 Q logN

�
operations. Hence, the total complexity is

max
	O 	ε−2 log3 Q logN

�
,O(N)� .

For projection-based approach, it remains the same as that of FJLT
in [8], which requires

O 	N logN +min(Nε−2 logQ, ε−2 log3 Q)
�

operations.

4. SIMULATION RESULTS

To demonstrate the effectiveness of permutation-based dimension re-
duction operators, we evaluate their performance on a Corel database
with 1000 images 1 through a couple of experiments as follows:

Experiment 1: In this experiment, the global HSV histogram is
used as feature vector due to its popularity in image indexing and re-
trieval. Specifically, a N = 128-dimensional vector was computed
for every image by quantizing the hue, the saturation, and the inten-
sity channels into 8, 4 and 4 levels, respectively, as suggested by [5].
The reduced dimensionality M ranges from 5 to 90. For each M ,
we generateΦ according to (2) whereF is chosen as the WHT. 3000
pairs of image feature vectors were then selected randomly and for
each pair of ui and vi, the projection distortion is measured by

DM (i) =





‖Φ(ui − vi)‖2

‖ui − vi‖2
− 1




 .

The average distortions for each M are shown in Fig. 1(a). In
this figure, ‘SWHT+P’ and ‘SWHT+S’ represent scrambled WHT
(SWHT) with projection-based and sampling-based post-processing,
respectively. For comparison purposes, we also include the results
of i.i.d Gaussian random matrix and FJLT [8].

Experiment 2: This experiment was motivated by the recent
work in [6] and the experiment suggested by [16]. For each image in
the database, we random select 20 subimages with size of 32 × 32,
yielding Q = 20 ∗ 1000 = 2 × 104 vectors in total. For each M ,
we did a similar experiment in Experiment 1 calculating the pairwise
distance for 4000 pairs and the results are given in Fig. 1(b).

As one can see, in both experiments, permutation-based opera-
tors offer comparable performance to those of full random Gaussian
matrix and FJLT. This suggests that the this subclass of operators is
quite promising in practical large-scale applications. In fact, it could
be easily combined with recent works on secure image retrieval [5]

1Available at http://wang.ist.psu.edu/docs/related.shtml
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Fig. 1. Average relative distortion with different random projection
methods. (a) Results of HSV histogram; (b) Results of random sam-
pled 32 × 32 image patches. The projection methods include (1)
i.i.d Gaussian matrix; (2) FJLT proposed in [8]; (3)SWHT+P: Our
proposed scrambled WHT (SWHT) with random sparse projection;
(4) SWHT+S: Our proposed SWHT with random sampling;

and image hashing [6], where random projection plays a key role. It
should be pointed out that although sampling-based post-processing
schemes (e.g., SWHT+S in Fig. 1) do not provide optimal theoret-
ical performance, the simulation results suggest that they could be
used as a fast dimension reduction tool for practical image process-
ing without much performance degradation. This also implies that
in Theorem 2, the power 3 of the logQ term could be very likely
improved to 1.

5. CONCLUSIONS

In this paper, we propose fast dimension algorithm that can be imple-
mented through the following steps (i) Preprocessing the input vector
using random permutation; (ii) Applying a fast transform such as the
FFT, DCT or the WHT; (iii) Post-processing the output vector using
either random sampling or sparse random projection. Theoretically,
the proposed algorithms were proved to be (sub)optimal Johnson-
Linderstrauss transforms. Simulation results are also included to
demonstrate their promising applications in image processing.
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