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A Family of Lapped Regular Transforms With Integer
Coefficients

Masaaki IkeharaSenior Member, IEEETrac D. Tran Member, IEEEand Truong Q. NguyerSenior Member, IEEE

Abstract—nvertible transforms with integer coefficients are The simplest example of ai/-channel transform with in-
highly desirable because of their fast, efficient, VLSI-suitable teger coefficients is the Walsh—-Hadamard transform (WHT) [3],

implementations and their lossless coding capability. In this paper, \yhqse coefficients consist of either 16 without normaliza-
a large class of lapped regular transforms with integer coefficients tion factor. The eiaht-noint DWT is defined b
(ILT) is presented. Regularity constraints are also taken into ac- lon tactor. The eight-poin IS detined by

count to provide smoother reconstructed signals. In other words,

this ILT family can be considered to be anM-band biorthogonal

wavelet with integer coefficients. The ILT also possesses a fast

and efficient lattice that structurally enforces both linear-phase

and exact reconstruction properties. Preliminary image coding
experiments show that the ILT yields comparable objective W =
and subjective performance to those of popular state-of-the-art

transforms with floating-point coefficients.
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In addition, the discrete WHTSs for a si2é = 2% are given non-
recursively. This is an orthogonal matrix. However, the WHT is
ITH integer-coefficient transforms, the coefficientsoo simple to achieve good coding performances (analogously
representing the signal can be obtained very efficientty the comparison between the Haar and other high-performance
by shift-and-add operations, leading to multiplierless systemgavelets), and its basis functions are not overlapped. In image
Transforms with integer coefficients not only lead to fastoding, the synthesis lowpass filter should be long and smooth
low-powered VLSI implementations but also yield integeto avoid blocking and checkerboarding. To obtain smooth syn-
output, which is a necessary condition for lossless transfothesis function, the synthesis lowpass filter is required to have
coding. In the two-channel case, there are extensive wosmany vanishing moments as possible. To achieve this, we can
in this area, and most solutions have been found (see [dfilize the maximally flatd/th-band filter as our synthesis low-
[5], and references therein). On the other hand, research gss filter.
integer-coefficient\/ -channel systems is still at an early stage. In this paper, we present a nontrivial/-channel lapped
It has been shown recently that multiband transforms witliorthogonal transforms with integer coefficients, where the
floating-point coefficients, when appropriately designed argynthesis lowpass filter of the WHT is replaced by a factorizable
utilized, can outperform state-of-the-art wavelets by significapiaximally flat A/th-band filter. The replacement increases the
margins [6], [7], [9], [11]. The overlapping basis functions ofransform’s efficiency in representing smooth signal compo-
these transforms can eliminate annoying blocking artifacts jusénts to avoid blocking artifacts. Next, we show that the length
as efficiently as any wavelet. However, the wavelet transforof the lowpass filter can be traded off between the analysis and
requires many more operations per output coefficient, andsignthesis side by applying balancing [2]. As result, the ILT with
may need a large memory buffer in its implementation. LTarbitrary regularities can be designed. Several lifting steps or a
are more advantageous than wavelets because they caraliéler structure can then be applied to improve the transform
implemented as block transforms. further. The resulting ILT is biorthogonal, has linear-phase
basis functions of variable lengths, and, most importantly, has
integer coefficients. The ILT can also be thought of as a class

of M-band biorthogonal wavelets with integer coefficients and
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forms (GLBTS) is presented in [9] and [10]. The polyphase ma- x(n)

. - + M > - -
trix E(z) can be factorized as [9] A
+ M > > -
E(Z) =G _1Grg_9... Gl(z)Eo : E(z) R(2)
11U, o||I I I o I 1 .
Gilz) =3 [ 0 VZ} [I —I} [0 z_lI} [I —I} @ +' ;
Al M > > A M
2 20, WA(2)W 2 y(n)
2 ()W, @ <+Analysis Bank-» Synthesis Bank-»
and
_ Uy Ugd Fig. 1. Polyphase representation of an LPPRFB.
E) = 1v2 {VOJ% e ®

A. Maximally FlatAMth-Band Filters

This lattice results in all filters having length = KM. K One way to construct GLBT is to use a spectral factor of
is often called the overlapping factor. Each cascading structyre Asth-band filter as the analysis and synthesis filters. The
G;(2) increases the filter length by/. All U; and'V,,i =  Mth-band filterP(z) satisfies Nyquist's condition, which is de-
0,1,...,K — 1 are arbitrary(M/2) x (M/2) invertible ma- fined asp(Mk) = (6(k)/M) in the time domain and is ex-
trices, and they can be completely parameterized by their sjessed agﬁz—ol P(zW™) = 1 in the frequency domain. On
gular value decomposition (SVD), i.dJ; = U;ol;U;; and  the other hand, the perfect reconstruction condition (PR) of LP-
Vi = VioA;V;1, wherel'; andA; are diagonal matrices with PRFB is expressed by
positive elements.
> hi(n) (ML —n) = 8(0)8(i — ) 5)

B. Outline of the Paper n

The paper begins with thé//th-band filter. Section II Wherek;(n) andf;(n) are the analysis and synthesis filter, re-
shows the basic ILT structure, using the factorization of tHaectively. If the analysis and synthesis filter pairipfr) and
maximally flat Mth-band filter. Section 1l presents balancingfi(n) are the spectral factors 8f-the band filter, one condition
method forM-channel filterbanks, which is well known for theof PR is satisfied. Then, the maximally flafth-band filter is
two-channel case. Section IV gives the lifting steps based Bfeful to construct ITL.
the basic ILT to improve the coding performance while keeping Définition: A filter P(z) is said to be a maximally flat
the regularities. Finally, Section V investigates the applicatigh th-band filter if it has the following form [13]:
of the new transform in image coding. . C(M—1)72K

Notations: Boldfaced letters indicate vectors and matrices. P(z) = [1 AR e } Q(2) (6)
Superscriptl’ denotes transposition, adg denotes thé: x & M
identity matrix.

where
2K-2
Il. BASIC ILT STRUCTURE Q(z) = > qli)z"" = 1)
. . . =0
In this paper, we restrict the class of lapped transforms in the 2K 2 .
discussion taM -channel uniform linear phase perfect recon- g(é) = (2K — 1 —4) Z <2K -2 z)
struction filterbanks (LPPRFBs) whose polyphase representa- s ¢
tion is depicted in Fig. 1 [1]. The neccesary and sufficient con- x (=1)"Byy1 i={0,1 2K — 2}
dition for perfect reconstruction of the GLBT is expressed byand + T :
R()E(z)=1 4 ol
__ M T (2 _ 1212

Now, the analysis and synthesis filters are expressed by Be= (2K — 1) kli[[ (& — B2M7).

H(z) = E(»)Z(2) andF7(2) = = M-DZT(>"HR(2),
respectively, wherdl(z) = [Ho(2), H1(2),...,Hy—1(2)]Y, P(z) and its first (2K — 1) derivatives vanish for
F(z) = [Fo(2), Fi(2),..., Fy_1(2)]7, andZ(z) = [1,27Y, 2 = &?™/ME = 1,2....M — 1. When P(z) =
oz M=DIT i the GenLOT [8], the synthesis fil- Py(z)Po(2 1), Py(z) is said to bek -regularM-band unitary
ters are time-reversed versions of the analysis filter asdaling filter [13]. Sinc&l(z) has the binomial and symmetric
R(z) = ET(»7!). GenLOT can be constructed by latticecoefficient, this is clearly a factorizable polynomial with integer
structures that consist of the orthogonal matrices and tbeefficients, andP(z) is a polynomial of degre@(M K — 1)
diagonal matices with delays. On the other hand, the latticez and has linear phase. Thus, the maximally fath-band
matrices of the GLBT are not restricted to be orthogonal. Wiffiiter all have binominal coefficients that are integers that are
the added degrees of freedom, GLBT outperforms GenLOT dlivisible by 2 and have the maximum number of vanishing
image coding. moments.
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Fig. 2. Analysis bank using lifting scheme.
B. Basic ILT From (9) and (11), we obtain
SinceP(z) is anMth-band filter, its impulse respongén) M-1M—-1 [
has the following characteristic: P(z) = Ho(2)Fo(2) = 37 Z > MRy (M),

k=0 =0
p(n) = 0. n=Mp—1, pintegerp+K (7) Zlgizﬁégég%;n (8) corresponds to the case= k, Py;_1(z)

If P(z) is expressed by the polyphase representation, it has the M-1
following form: Pr_q( Z Roi(z) =2~
~ 1 Therefore, it can be easily shown that
P(z) = Z HFPM),  Pua(z) = MZ_K ®) erefore, it can be easily shown tha
k=0 11 - 1R=[% 0o -~ 0 (@13
We construct the ILT's polyphase matricB%~) andR(z) where the vectofl 1 --- 1] is the polyphase component of
from a simple modification of the WHT and a series of liftingHo(z) corresponding to the first row of the WHT. Next, we have
steps based on the maximally flatth-band filter. to prove that the determinant B(>) must be a monomial, i.e.,

Theorem: Let the synthesis bank be WHW. If the WHT’s the filterbank achieves PR and is FIR.
synthesis lowpass filters that correspond to the first column ofMultiplying WW?* = T to R(z) on the left yields

W are replaced by the following filtefy(2), which is a factors . 4K 0
of P(2) WWIR(z) =W |:WTR5(Z) IA/I—1:| ’
14 g (-1 2EL Hence,det(R(z)) = »~*. In addition, notice thafy(z) is
Fo(z) = [ i Q(z) factorizable. Therefore, the synthesis bank can be implemented
N1 by lifting the submatrixW?RJ (») following the WHT. The
4 Z L (M-1-Dp (M) 9) corresponding analysis polyphase maEik ) is then given by
o —Kp-l/y _ o1 0 T
B = MR = | _grgy sy | W

then the synthesis polyphase mafiixz) form a perfect recon-

struction FIR system, and the resulting analysis polyphase nfde analysis bank is also implementable using lifting, as illus-

trix E(z) is FIR with linear phase and has binomial coefficientdrated in Fig. 2. Itis noted that the lifting filte®/” R (=) have
Proof: With the proposed synthesis filteFj(z), the integer coefficients. We label the combinatiorEif:) andR(é)

polyphase matriR(z) of the synthesis bank now becomes above as the basic ILT.
The basic ILT is constructed by WHT and a series of lifting

R(z) = [ROT(z) W} (10) Steps, as shown in Fig. 2. As result, the analysis lowpass filter
has lengthi/, and other filters have length/ (2K — 1). In-
versely, the synthesis lowpass filter has lenbff2K — 1) and

WhGTERo( ) [Ro 0( ) Ro 1( ) Ro M— 1( )] andW IS . _ . )
the WHT matrixW with the first column deleted. To achieve PRJS (2K — 1) regular. Itis noted that the total length of the anal
ysis and corresponding synthesis filter@id K .

in the filterbanks, the analysis lowpass fil#g (=) is expressed

by lll. BALANCING
o) — T4z 4D 1 The lowpass analysis filter in the basic ILT is one-regular,
o(2) = M ’ (11) and the lowpass synthesis filter(8K — 1)-regular. However,
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changing the filter length and regularities are required in sorites noted that™*" () andR™*"¥(») still have PR. As a result,
applications [2]. Since the length of the analysis lowpass filtéhe synthesis filters are expressed by

is very short compared with the synthesis lowpass filter, one _—

wants to trade the length between the analysis and synthesis S|dﬁvnew( )= 1427 4 D 0(2)

while keeping the mteger coefficients and PR. Then, some of M

the factor((1 + 271 + --- + z=(M=)/M) in the synthesis  prew () = M(1 — z~1)Fy(z) fori=1,2,...,M —1.

bank should be moved to the analysis bank while keeping some (18)
regularities. This operation is called balancing, and it is easy to

move((1+2z~1)/2) in the two-channel filterbank [2]. We extendThus all synthesis filters have binomial coefficients. Similar to

balancing taM -channel basic ILT. the synthesis bank, the analysis filters are expressed by
Moving (1424 - 42~ M =D /M) from Fy(z) to Ho(#)

maintains integer coefficients and symmetry. HEew () = [1 +2 b+ z<Ml)} 2
M-1 0 w M
hgew Z hO 71 _ 1 —+ Z_l + .o+ Z—(]\l—l)
H™eV () — Hz ”
7 (2) M1 = 2 (2)
M—1 1 .
61ew( ) Z new k (14) = mHZ(Z) fori = 1,2,...,M—1.

(19)
The product H3*V(2)FP¥(z) equals Ho(z)Fy(z) and the . _ . _
maximally flat Mth-band filter P(z). However, this operation Thus,H}**¥(z) is the rational function. Since the frequency re-
destroys the perfect reconstruction in the filterbank. Then, @onse of the scaling filter correspondingftg(z) has a zero

apply this operation to all analysis and synthesis filters. order2K — 1 at the Mth roots of unity, all moments up to
Multiplying H;(z) by (1 + 2= + -+ + 2=M=D)/M) is order2K — 2 of the wavelet corresponding tH;(>) vanish
expressed in the polyphase representation [13]. That is,H;(») has2K — 1 zeros atz = 1. Therefore,
the denominator off **¥(z) is cancelled by the numerator, and
}1 L L HPV(z) is the FIR transfer function and still has binomial co-
1 z 1 Lo 1 efficients. By recursively applying this algorith2d — 1 times,
E™(z) = ME(Z) : : L we can obtair2 K kinds of filterbanks with integer coefficients.
Z7to 2zt 1 When this balancing algorithm is appliedimes, which means
21 ! HEev(2) = (1+ 271 44 2~ (M=D) A1)+ the resulting

= E(2)I'(»). (15) analysis lowpass filter has lengif (s + 1) — s, and the other
analysis filter has lengt/ (2K — 1) — s. The total length of
the analysis and corresponding synthesis filters is &K .
Similarly to the two-channel case, the balancing operation may

Dividing F;(z) by (1427 +- - -+2~M~1) /M) is expressed
in the polyphase representation

1 -1 0--v - O make the frequency response poor; however, we can show the
0 1 -1 -~ 0 balancing ford/-channel, which has never known.
R™V(z) = M - : - R(z) Example 1: A basic eight-channel ILT wittK' = 2 in (9)
1—27 0 0 1 1 is designed. The analysis lowpass filter has length 8, and other
.1 9 ... 0 1 bandpass filters have length 24. In the synthesis bank, the low-
_ pass filter has length 24, and the rest have length 8. Then, a
=T (2)R(z). (16)

(1427 4+ -2~ M=) /M) is moved fromiy () to Ho(z).
Because the determinant &(z) is ((1 — z~1)/M)M-1) In the resulting ILT, the analysis lowpass filter has length 15, and
I'1(z) is the rational matrix polynomial. If we use this formother bandpass filters have length 23. In the synthesis bank of
as it is, the synthesis filters are not FIR but IIR. Then, thi&e resulting ILT, the lowpass filter has length 17, and the rest
polyphase matrices are transformed such that the determirf@¥e length 9. Itis noted that the total length of the resulting ILT
of the new polyphase matrix is a monomial, and the lowpalsunchanged even if the balancing is applied. Fig. 3(a) and (b)

filter is invariable. shows the magnitude response of the resulting balanced ILT.
1 0 - 0
0 1_1—1 0... IV. FURTHERLIFTING STEPS
E*Y(2) = | | . . | EGT() A. Lifting
(:) 0 1 When we consider image coding application, the resulting

ILT is not enough to achieve good coding performances be-
cause the frequency response is poor. Then, several lifting steps
_ or ladder structure are applied to the basic ILT to improve the
v ¢ . an transform further. Fig. 4(a) and (b) show the magnitude and
: : impulse responses of the analysis and synthesis filters in the
0 0 (1—2z71 eight-channel basic ILT with{ = 2. All filters have integer
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Fig. 3. Magnitude responses of (a) the balanced ILTs analysis bank. (b) Balanced ILTs synthesis bank.
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Fig. 4. Magnitude and impulse responses of (a) basic ILTs analysis bank, (b) basic ILT's synthesis bank, (c) lifted ILTs analysis bank, andT8)difteHesis

bank.

coefficients so far. Since the synthesis lowpass filter has length

24 and three-regularities, this can eliminate the blocking arti-  index ones to keep antisymmetry and length.
facts. Since the other bandpass filters have length 8, these fil-
ters can also avoid the ringing artifacts. Therefore, a basic ILT M2

2i—1(2) = Hoi1(2) + Z agi—1,jHaj_1(2).

is suitable for image compression. However, the analysis bank
does not have high enough attenuation and coding gain. We can
improve our basic ILT further by applying the following lifting

J=Lji

steps while keeping the filter length and symmetric polarity. versely:

1) Fori =1: M/2.
2) Since the analysis filterH2;_; (») with odd indices are
antisymmetric and have the same lendffi2 K —1), each

Fyj1(2) = Foj—1(2) — azi—1,;F2i-1(2)

analysis filter with odd index is lifted by only scaled odd

In the synthesis bank, each synthesis filter is lifted in-

forj=1,2,...,M/2.
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TABLE |
COMPARISON OF TRANSFORM COMPLEXITY: NUMBER OF OPERATIONSPER 8 TRANSFORM COEFFICIENTS
Transform No.of Multiplications | No. of Additions | Total No. of Ops.
9/7 Wavelet, 3-level 63 98 161
& x 8 DCT 13 29 42
8 x 16 GLBT 61 96 160
LILT 31 55 86
TABLE I

OBJECTIVE CODING RESULT (PSNRIN DECIBELS) USING DIFFERENT TRANSFORMS ONTEST IMAGES LENA, GOLDHILL , AND BARBARA

Lena Goldhill Barbara

Comp 8x8 8x16 | 8x24 8x8& 8x16 | 8x24 &x8& 8x16 | 8x24
Ratio || SPIHT | DCT | GLBT | LILT || SPIHT | DCT { GLBT | LILT | SPIHT | DCT | GLBT | LILT

1:8 40.41 39.91 40.35 | 40.08 36.55 36.25 | 36.69 | 36.41 36.41 36.31 37.84 36.63
1:16 37.21 36.38 | 37.28 | 36.82 33.13 32.76 | 33.31 32.99 31.40 3111 33.02 31.66
1:32 34.11 3290 | 34.14 33.63 30.56 30.07 | 30.70 | 30.43 27.58 2728 29.04 27.93
1:64 31.10 29.67 | 31.04 30.63 28 48 27.93 | 2858 | 2841 24,86 24.58 26.00 | 2524

3) Since the analysis filter&l»;(z) with even indices are B. Optimization

symmetric, each analysis filter, except for the lowpass tpg jifted ILT can be designed such that the bandpass and
filter, is lifted by only even index ones. Since the analyjghnass filters in the analysis bank have enough stopband at-
ysis lowpass filterto(z) has length and other anal- oy ation in the low-frequency region and the coding gain of the
ysis filters Hy; () has lengthM/ (2K" — 1), the difference  anstorm is maximized since we are interested mainly in image
betweenHo(z) and H;(z) is 2M(K — 1). Therefore, cq4ing applications. There afé/ — 1)(M/2 — 1) free parame-
Ho(z) is lifted after multiplying the symmetry polyno- o< for jifting. The cost function used in this paper is a weighted
mial g2;(z) with order2(K — 1) to make the length same e combination of coding gain and stopband attenuation.
and keep symmetry.
o = a C(Codinggain + QQCstopband- (22)
o M/2-1 Generally, dc leakage and attenuation around mirror frequen-
Hoi(2) = Hoi(2) + goi (27 )Ho(2) + Z azi,jH2j(7)  cies are added to the cost function for image coding applica-

=i tion [12]. However, we do not take care of these cost functins
wheregy;(z) = az; (1 — z7+)* = because ILT already has some reguralities. The sgtgf con-
Fo(z) = Fy(2) — gos (M) Fai(2) trols the tradeoff between various filter bank characteristics. We

N . L found that the sef10, 1} works well for image coding. The
Foj(2) = Fo(z) = aai g Faalz) TOrj = 12,0, M2, resulting lifting coefficients are rounded to become binary. This
(21) may influence the optimized frequency response and the coding
gain. However, we can ignore these effects since the basic ILT
already has good responses. Fig. 4(c) and (d) shows the magni-
Since Fy(z) is lengthM (2K — 1) and F;(z) is length  tude and impulse responses of the lifted analysis and synthesis

M, the length ofFjy(z) is kept. filters with binary lifting coefficients.
4) end

o ) o C. Comparison
Note that the analysis filters with even and odd indices are

lifted by only the even and odd filter, respectively. Fig. 2 show, The comparison of computational complexny between the
the analysis bank using the lifting scheme. One can select a|J it and other popular transfqrms are tabulated in .Table I Itis
trarily symmetric polynomialgs; with order2(K — 1). How- noted t_hat the lifted ILT(LILT)_ is |mplem(_ented by shl_ft-and-add
ever, the synthesis lowpass filtéi () should be kept long and opergtlons because QII multiplications in ILT are b|nary. Thus,
have some degrees of regularity to avoid blocking and check }I__T is fasterthan various popular transforms in spite of the fact
bord distortion. Since the synthesis lowpass filter of the badiedt the coding performance is comparable.

ILT is 2K — 1 regular, andy;(z) are2(K — 1)-regular as well,

the resulting synthesis lowpass filter is guanranteed to be at least
2(K — 1)-regular. If one does not need higher regularities, one The coding performance of the new ILT is evaluated through
can selectp; (=) as arbitrarily symmetric polynomials. an image coding comparison. To be fair, the same transform-

V. APPLICATION IN IMAGE CODING
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Fig. 5. Coding results of Barbara at 1:32 compression ratio. (a) SPIFHFtap biorthogonal wavelet. (b) Embeddeck® DCT. (c) Embedded & 16 GLBT.
(d) Embedded & 24 LILT.

based progressive image coder SPIHT [14] is used in all cases. VI. CONCLUSION

The difference lies at the transform stage, where the transformsl_h, introd | £l d biorth Lt
in comparison are the following: is paper introduces a class of lapped biorthogonal trans-

« 9/7-tap biorth | let: forms with integer coefficients and variable-length basis func-
D/C'-I'agigr:(t)rfiltgrgsor; i\;v?;/s.e, tions known as ILT. The ILT is built on a simple modifica-

) SN TS, a4 -1ab, tion of the WHT ies of lifting steps. Hence, it is fast

. GLBT. eight filters, all 16-tap [9]; ion of the and a series of lifting steps. Hence, it is fas

. ; . i computable via only shift-and-add operations. Image coding
lifted ILT(LILT), eight filters, only lowpass filter has examples show that the new integer-coefficient transform con-
8-tap, others have 24-tap.

. ; . i ly yiel I i f ith th f
It is noted that the total filter length of the lifted ILT aresstenty yields comparable coding performance with those o

] -of-the- f ith h high lexity.
the same as that of GLBT. In the latter three uniform-bangorc O he-arttransforms with much higher complexity
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