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ABSTRACT In hyperspectral imagery (HSI), pixels are represented by
vectors whose entries correspond to spectral bands, and im-

This letter proposes a simultaneous joint sparsity model fo . :
target detection in hyperspectralimagery. The key inriegat ages are represented by three-dimensional cubes. One of the
most important applications of HSI is target detection,ckhi

idea here is that h tral pixels withi [l neigh-
aea nere 1S that Typerspectra’ pIXe's within) a smat nelg n be viewed as a binary classification problem where pix-

borhood in the test image are simultaneously represented .
a linear combination of a few common training samples bu Is are Iapelgd as target or backgroun_d based on their apectr
weighted with a different set of coefficients for each pixel. characteristics. Support vectpr machlqgs (SVM) have been a
The joint sparsity model automatically incorporates therin powerful tool to solve supervised c_IaSS|f|cat|on problemi;_a_
pixel correlation within the hyperspectral imagery by assu ?avelahi)wn _godeperformagggz}r(l:hypers\EJelr:tratl cllazsggg:a-
ing that neighboring pixels usually consists of similar eaat lon (Melgani an oruzzone » Lamps-valls et al. ):
rials. The sparse representations of the neighboringsaierA number of statistical hypothesis testing techniques haye
are obtained by simultaneously decomposing the pixels ov Isg)sbr(]aen Zr)éggosgd for tahrget detectlorrl] in HSI (Malmolak;]s q
a given dictionary consisting of training samples of both th an Si/IV\IIZ )- h rr(;ongbt ese ag)proac es',\/lsggctra (rjna(tjc N
target and background classes. The recovered sparse coeﬂ‘ﬂer( ), matched subspace detectors ( : ), and adap-
tive subspace detectors (ASD) have been widely used to de-

cient vectors are then directly used for determining thellab tect vari ; s of int s (K dN badi 2007
of the test pixels. Simulation results show that the progose ect various targets of interests (Kwon and Nasrabadi )

algorithm outperforms the classical hyperspectral tadget
tection algorithms, such as the popular spectral matched fil |, this letter, we propose a new HSI target detection al-

ters, matched subspace detectors, adaptive subspace deiggyithm hased on a joint sparsity model (Tropp et al. 2006:
tors, as well as binary classifiers such as support vector Mg ier et al. 2005) for pixels in a small neighborhood. It

chines. is observed that pixels belonging to the same class approxi-
mately lie in a low-dimensional subspace. Therefore, an un-
known pixel lies in the union of the low-dimensional target
1 INTRODUCTION and background subspa_ce_s and can be approximately rep-
resented by very few training samples from target or back-

Most natural signals are inherently sparse in certain basifghrpur!d lsup-dlct|onar|es. Howte\/tgr, a dlrlzc_t apphca_tl(H)_n of
or with respect to a given dictionary. They can be approxi- is pixel-wise sparse representation would ignore siiatia

mately represented by a few coefficients carrying the mosf[ormatmn in the detection process. In this letter, we ipoer

relevant information. The sparsity of signals has played a{ate the spatial information from neighboring pixels by us-

very important role in many classical signal processing aplng the joint sparsity model where pixels in a small neigh-

plications such as compression and image denoising. TI'1|l\3:OrhOOOI arte)z_ ast§umefd t(; be 5|multanetoulsl_y represelntedbbyt/ a
recent development in sparse modeling of signals and imaear c;]Jm. mlatlr?n 0 ta rew commoln raining §af|1”rt]pdes,_thu
ages (Bruckstein et al. 2009) has provided an extremely povJ—or each pixel these training sampies are weighted with a

erful tool for computer vision and pattern recognition (@¥ri d|fferent_set of Coeﬁ'C'ems' I_n this way, we force the rep-
etal. 2010). resentations of neighboring pixels to have a common sparse



support with respect to the training dictionary. The supporonly few non-zero entries). The numb€nf nonzero entries
is recovered by simultaneously decomposing the test pixels a is called the sparsity level @f and the index setk on
over the training dictionary. The recovery process imglici  which the entries ofr are nonzero is called the supportoof
involves a competition between the target and backgroundhe sparse representatianis very discriminative and con-
subspaces and the recovered sparse representation is natins important information about the class of the test amp
rally discriminative. The labels of the test samples ar@the x.

directly determined by the property of the recovered sparse S )
vectors. Given the training dictionarg, the sparse representation

a satisfyingAa = x can be obtained by solving the following
The letter is structured as follows. The joint sparsity problem:
model and the proposed target detection algorithm is pre-
sented in Section 2. The effectiveness of the proposed metho
is demonstrated by simulation results presented in Se8tion where||-||, denotedo-norm which is defined as the number
Conclusions are drawn in Section 4. of non-zero entries in the vector. The above problem is NP-
hard, which can be relaxed to a linear programming, if the so-
lution is sufficiently sparse, by replacing thgnorm by/;-
2. SSIMULTANEOUS JOINT SPARSITY MODEL FOR norm and solved by convex programming techniques (Bruck-
HSI TARGET DETECTION stein et al. 2009). The problem in (2) can also be solved by
greedy pursuit algorithms such as Orthogonal Matching Pur-
In this section, we first briefly introduce the HSI target suit (OMP) (Tropp and Gilbert 2007) which efficiently ap-
detection technique based on sparse representation for a siproximates the solution with computational complexity
gle pixel. Next, we show how to incorporate a joint sparsity ¢ (BNK) for K iterations. Due to the presence of approxi-
constraint across neighboring pixels of HSI by adopting themation error in empirical data, the equality constraintban
simultaneous joint sparsity model (Cotter et al. 2005; prop relaxed to an inequality one
et al. 2006).

a =argmin/a|, subjectto Aa =x, (2)

a =argmin/al, subjectto |Aa—x|,<a, (3)

1. Pixel-wise Sparsity-based Target Detection whereo is the error tolerance. The above problem can also
be interpreted as minimizing the approximation error with
Letx € RB be aB-dimensional hyperspectral pixel obser- certain sparsity level
vation whose entries correspond to the spectral bands. The
spectrum ofx is modeled to lie in the union of two low-
dimensional subspaces: the background and target sulsspasghereKg is a given upper bound on the sparsity level (Tropp
spanned by background training samp{a.?,}i:l‘2 """ Ny and and Wright 2010). In fact, the greedy algorithm OMP solves
target training samplegal}_;, " respectively. There- (3) or (4)_depe_nding on the st(_)pping criteri(_)n Qf the algo-
fore, x can be written as a sparse linear combination of alfithm, which will be explained in more details in the next
training pixels section.

a =argmin|Aa —x|, subjectto |a|, <Ko, (4)

The decomposition of the test sampl®ver the entire

[ 4bab . b b tat At oat
X= (ala1+ + aNbaNb) + (03 4+ anay) training dictionaryA for the few most representative atoms

af al leads to a competition between the two subspaces and there-
_ [aki aa } i [atl am : fore the recovered sparse yectmns itself d!scr|m|nat|\(e.
—_— b —_— | The class ok can be determined by comparing the residuals
AD aN A INJ (1) rp(x) =[x~ APGP||, andr(x) = || x— A'@'||,, whered® and
ab at a' represent the recovered sparse coefficients corresponding
b to the background and target sub-dictionaries, respégtive
=APa®+Aa' = [A® A {at} =Aa. The output of detector is calculated by
N—— a
A D(X) = rp(X) — e (X) = Hx—Ab&b ]2_\yx_Ataty\2. ()

In the above equatiom® and Al are the background and If D(x) > & with & being a prescribed threshold, theis de-
target sub-dictionaries consisting of tNg background and termined as a target pixel; otherwiseis labeled as a back-

N target training samples (also called atoms), respectivelyground pixel.

whereasr® andat are vectors whose entries correspond to

the atoms inA® andA!, respectively. The matriA ¢ RB*N 2. Joint Sparsity Model

with N = Ny + N is the training dictionary consisting of both

background and target training samples angdRN is a con- In the previous section, detection is performed for each
catenation of the two vectors® anda!. In this sparsity pixel in the test image independently regardless of the cor-
model,a turns out to be a sparse vector (i.e., a vector withrelation between neighboring pixels. However, in a typical



HSI, neighboring pixels usually consist of similar matkria be solved by greedy algorithms (Cotter et al. 2005; Tropp
and thus their spectral characteristics are highly caedla et al. 2006), or relaxed to a convex programming (Bruckstein
To exploit this crucial inter-pixel correlation, we could-e et al. 2009). For empirical data, the problem in (7) can also
plicitly include an additional smoothing term, such as thebe rewritten to account for the approximation errors (Rako-
Laplacian (Chen et al. 2010) or total variation (Rudin et al.tomamonjy submitted for publication, 2010), as it was done
1992), in the optimization problem formulation (2). How- in (3) and (4):

ever, in this paper we propose to exploit the inter-pixeteor

lation by adopting the joint sparsity model, in which the un- minimize  [|§}|ou,0

derlying sparse representations of multiple neighborirg p subjectto:  ||AS—X|| < 0O, ®)
els share a common sparsity pattern. Since neighboring HSI

pixels consist of similar materials, they can be approxadat

by a sparse linear combination of a few common atoms in minimize [|AS—X||e

the training dictionary but weighted with a different set of subject to: ISl om0 < Ko- (10)

coefficients. The problem of simultaneous sparse represen-
tation and approximation for multiple measurement vectors

has previously been studied in the literature (Cotter et al. |, this letter, the simultaneous sparse recovery problem

2005; Tropp et al. 2006), but it has never been applied ing golved by a greedy algorithm, called the Simultaneous Of-
HSI for target detection and classification. thogonal Matching Pursuit (SOMP), whose implementation
.. : - : : details are presented in (Tropp et al. 2006). SOMP recov-
The joint sparsity model for pixels in a small neighbor- ors the comF;non support(S'e,t Fi)rE)a sequentia)l fashion (i.e
hood. 4% consisting ofT pixels is formulated as follows. Let . - . . o
Abe theB x N training dictionary anX — [Xl % ] atoms in the dictionarjis sequentially selected). At each it-

be aB x T data matrix whose columr },_, 1 are pixels grattl_on, tthe I"l’ltofn:hthat S.';nUIltane?US|Y ylellds :hg b_ﬁ?t aspgﬁp
in 4. Since pixels in4z could consist of similar materials, imation 1o all oT the residual vectors 1S selected. The

they should be represented by a linear combination of a co _Igﬁqu_thrg termlﬂateir:/vh(jen _th% (Ierrorl ris'd“A_Bt_ XHEBI;
mon set ofK training sample{a,\l,...,aAK}. Specifically, sufficiently small, or the desired level of sparsity (co

: : by the number of iterations) is achieved, which solves the

the sparse representation®f .4 is expressed as problems in (9) or (10), respectively.
X = Al = 0138 F Ota@, + e+ G After the sparse matri$ is recovered, the labels of the
The index sef\k = {A1,A,..., Ak } is the support oér; and test samples can be determined based on the characteristics
of the sparse coefficients as is done in Section 1. We calcu-
late and compare the total error residuals between the orig-
inal test samples and the approximations obtained from the
background and target sub-dictionaries. The output of the
X=[x % - xr]=Alay a, - at]=AS proposed sparsity-based detector is computed as in (5) by

the difference of the total residuals from all of the pixels i
6) the neighborhood

each pixelx, has a different set of coefficient{&xt,k}keAK

associated with it. The data matXxcan then be represented
as

S

where each of the sparse vect¢ms },_; 1 has the same
supportAx andSis a sparse matrix with onli nonzero

rows. For convenience, we call the index Agt of a; also

the support of.

o <[« #8],[x 8w

Where§’ consists of the firshl, rows of the recovered matrix
Scorresponding to the backgroundAsub—dictiorAﬁyandS
Given the dictionar, the matrixSis obtained by solv-  consists of the remaininl: rows inS corresponding to the

ing the following joint sparse recovery problem. target sub-dictionaril. If the output is greater than a pre-
scribed threshold, then the test sample is labeled as a;targe
minimize ISrow.0 @ otherwise it is labeled as background.

subjectto:  AS=X, An example of the proposed detection technique based

on the joint sparsity model is illustrated in Fig. 1. The test
pixel x; is taken from the background region in the upper-
right corner of the Desert Radiance Il data collection, sihow
in Fig. 3(a). More details about this image will be discussed
S— @, @, --- ar] (8) in Section 3. The dictionarf consists off\: = 18 target
training samples and, = 216 background training samples.
is anN x T sparse matrix with only few nonzero rows. Sim- Using the sparsity model for a single pixel in (1) and the
ilar to the sparse recovery problem in (2), the simultaneou®©MP algorithm, the sparse vectd of this background in-
sparse recovery problem in (7) is an NP-hard problem. It cawolves both background and target training samples, as seen

where the notatiot}§||,,,, o denotes the number of non-zero
rows of S (also called the diversity o8 in (Cotter et al.
2005)). The solution to the above problem



in Fig. 1(a). Neither of the approximations obtained from th 3. SSIMULATION RESULTSAND ANALYSIS
background and target sub-dictionaries represents well th
original test pixel (Fig. 1(b)). On the other hand, when in-  The proposed target detection algorithm, as well as the
corporating the spatial correlation by applying the jojpdils  classical techniqgues SMF, MSD, ASD, and SVM are ap-
sity model in (6) on a X 3 neighborhood centered =, plied to several real HSI. The results are compared both visu
the test sampla; is well approximated by the background ally and quantitatively by the receiver operating chanaste
sub-dictionary, as seen in Fig. 1(d). Therefore, with the aptics (ROC) curves. The ROC curve describes the probability
propriate help from the joint sparsity model, the test pigel of detection (PD) as a function of the probability of false
more accurately represented as background. alarms (PFA). To calculate the ROC curve, we pick thou-
sands of thresholds between the minimum and maximum of

the detector output. The class labels for all pixels in tis¢ te

region are determined at each threshold. The PFA is cal-
culated by the number of false alarms (background pixels
determined as target) over the total number of pixels in the

° N SN A v ‘x ’ test region, and the PD is the ratio of the number of hits (tar-
. _ | [Fommegenies seonn 7 get pixels determined as target) and the total number of true
— ?:rcc:(egtmu"d‘ —Reconstructed ;;gm target dictionar H
50 100 150 200 0 50 300 = 150 target plxels'
a b . . .
(@) (b) The two hyperspectral images used in the experiments,
2 ‘ 2 2 the desert radiance Il data collection (DR-11) and foredi-ra
0 0 0 ance | data collection (FR-), are from the hyperspectmg di
00 20 o 100 200 o 100 200 ital imagery collection experiment (HYDICE) sensor (Base-

dow et al. 1995). The HYDICE sensor generates 210 bands
across the whole spectral range from 0.4 to 2B which

includes the visible and short-wave infrared bands. We use
_20 100 200 _20 100 200 _20 100 200 150 of the 210 bands (23rd-1015t, 109th-136th, and 152nd-

2 2 ‘ 2

5 ) ) 194th) by removing the absorption and low-SNR bands. The

o I, o o \ DR-Ilimage contains 6 military targets on the dirt road, kehi
_2 s _2 the FR-1 image contains 14 targets along the tree line, as
0 100 200 O 100 200 O 100 200 seen in Fig. 3(a) and Fig. 4(a), respectively. For these two
(c) HYDICE images, every pixel on the targets is considered

0.1 01) vt | 01 a target pixel when computing the ROC curves. We use a
o.osm 0.05 0.05 small target sub-dictionary constructedy= 18 pixels on
Op—r——u o~ 0 the leftmost target in the scene. For the background sub-
0 50100150 0 50 100150 O 50 100 150 dictionary, we use an adaptive local background dictionary

o.1m 0.1 01 Specifically, the background sub-dictiona¥ is generated
0.05 o.osw 0.05 locally for each test pixel using a dual window centered at

0 0 — 0 the pixel of interest. The inner window should be larger than
0 50100150 0 50 100150 0 50 100150 the size of the targets in the scene and only pixels in the oute

0_1/% 0.1 ghymult | 01 region will form the atoms ifA°. In this way, the subspace

0.05 0.05 0.05 spanned by the background sub-dictionary becomes adaptive
O] O O to the local statistics. For DR-1l and FR-I, the outer andeinn

0 50 100150 0 50 100150 0 50 100 150 windows have size 2% 21 and 15« 15, respectively, so there

(d) areN, = 216 background training samples in the dictionary.

)

)

y

Fig. 1. An example comparing the pixel-wise sparsity model
and the joint sparsity model for a background test sam- The detection techniques using the single-pixel sparsity
ple x;. (a) Solution to (4) (pixel-wise sparsity model). model (1) and the joint sparsity model (6) are applied on
(b) From (4), the reconstructions from the backgroundthese two HYDICE images. The OMP algorithm (Tropp
sub-dictionary (green) and from the target sub-dictionaryand Gilbert 2007) is used to solve the sparsity-constrained
(red), and the original test sample (black). (c) Solutionproblem in (4). The SOMP algorithm is used to solve the
to (10) (joint-sparsity model) for a 8 3 window centered simultaneous sparse recovery problem in (10). The ROC
at the pixelx;. (d) From (10), the reconstructions from the curves obtained using OMP and SOMP are shown in Fig. 2,
background sub-dictionary (green) and from the target subyith the sparsity level being set €y = 10. For SOMP, a
dictionary (red), and the original test sample (black). 5 x 5 square neighborhood (= 25 in the problem formula-
tion (6)) is used. The detector output for these two sparsity
based algorithms are shown in Figs. 3(c)-(d) for DR-1l and



Figs. 4(c)-(d) for FR-1. We see that the incorporation of the
spatial correlation between neighboring pixels through th
joint sparsity model yields better detection results thaii a
rect application of the pixel-wise sparsity model (1).

1 (b)
0.8

s
o]
06
3 (d)
2
g0 Fig. 3. DR-II. (a) Averaged image over 150 bands. Detec-
2 tion results for DR-1I using (b) SVM with composite kernel,

0.2} (c) OMP, (d) SOMP.

% 0.05 0.1 0.15 0.2
False alarm rate
(@)
17 200 2m0 300 S0 aon a0 son
(b)
0.8
5
3
06
©
kS
g 04 —SOMP (©) (d)
2 —OMP ) )
02 —SVM Fig. 4. FR-I. (a) Averaged image over 150 bands. Detec-
' gﬁ? tion results for FR-I using (b) SVM with composite kernel,
—ASD (c) OMP, (d) SOMP.
% 0.05 0.1 0.15 0.2

False alarm rate X .
both spectral and spatial features. The parameters atsibcia

(b) with SVM and composite kernels are defined and explained

Fig. 2. ROC curves using various detection and classifinatio N details in (Melgani and Bruzzone 2004; Camps-Valls et al.
algorithms for (a) DR-1l and (b) FR-I using local background 2006). For comparison, the results obtained from SVM with

dictionary (dual window approach); = 18 andN, = 216. composite kernels are also shown in Fig. 3(b) and Fig. 4(b).
The ROC curves for the two test HYDICE images using

Under the same settings (i.e., same target and backgrourtiF MSD, ASD, and SVM are shown in Fig. 2. Overall
training samples for all detectors), the classical statibtle- from this figure, one can observe that for both images the de-

tectors SMF, MSD, and ASD as well as the binary classi-tector based on the joint sparsity model yields the besoperf

fier SVM are also applied to detect the targets of interestd@nce- The simultaneous sparse recovery algorithmsylearl
The first three statistical detectors are pixel-wise detsct outperforms the classical target detection/classificalgo-

and their implementation details can be found in (Kwon andithms.

Nasrabadi 2007). For SVM, we use a composite kernel that ..+ \ve show the effect of neighborhood size on the de-

combines the spectral and spatial information via awe@htetection performance. In this experiment, the simultaneous

summation, which is shown to outperform the spectral-only, L ; :
. e sparse approximation problem in (10) is solved by SOMP
SVM in HSI classification (Camps-Valls et al. 2006). For P PP P (10) y

. ) for different neighborhood at a fixed sparsity letgl= 10.
each p|xgl, .the spatial features (e.g., the mean and the Stagpecifically, we use % 1 neighborhood (equivalent to the
dhard deV|at_|okr]1 pekr] spectral band) ar:e e>§plll<:|tly extrqmtlar]d pixel-wise sparsity model), 4-connected neighborhood, 3
t e_5>< 5 neighborhood centergd at_t at PIXEL. ASVMist €N3 5x 5, and 7x 7 window neighborhood, corresponding to
trained for each spectral-spatial pixel using atomafirand

. ) . T=1,5,9, 25, and 49, respectively. The ROC curves for the
A' as belonging to two different classes with RBF kernels for P y



various types of neighborhood are shown in Fig. 5. By in-native power. In this letter, the sparsity levelis chosen to
corporating the contextual interaction between neighitgpri  be slightly smaller than the size of the target dictionary.
pixels, the detector performance is significantly impraved

As the neighborhood size increases, the performance tends 1ir
to saturate. r
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c
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0 ‘ : ; ‘ . . .
0 0.05 . Ol.l . 0.15 0.2 Fig. 6. Effects of the sparsity lev&l on detection perfor-
alse alarm rate mance for (a) DR-Il and (b) FR-I.
(b)
Fig. 5. Effects of the neighborhood siZeon detection per-
formance for (a) DR-1l and (b) FR-I. 4. CONCLUSIONS

Next we demonstrate how the detection results are af- | this letter, a joint sparsity model is proposed for target
fected by the sparsity level of the representation. The-spagetection in HSI. The inter-pixel correlation in HSI is ieo
;ity level refers to the number of nonzero rowsSrwhich _porated by employing the joint-sparsity model where pixels
is also the number of common atoms selected from the dicy, 3 small neighborhood in the test image are represented
tionary by the greedy algorithms to simultaneously approxi py 3 finear combination of a few common training samples
mate all of the neighboring pixels. The neighborhood 8ize eighted with a different set of coefficients for each pixel.
is fixed to 25 (i.e., a 5 5 window is used) in this experiment. The sparse representations of the neighboring pixels are ob
The ROC curves for both images using SOMP with sparsitytained by a simultaneous sparse recovery algorithm SOMP.
levelsK =1, 2, 3, 5, 10, and 15 are shown in Fig. 6. For Then resulting sparse representations are then usedlyirect
very smallK, the sparsity-based technique recovery problentor target detection. Simulation results show that the pro-
is reduced to a simple template matching and leads to undefpsed algorithm outperforms the classical hyperspeeral t

fitting. Generally the detection performance improves as th get detection algorithms, including SMF, MSD, ASD, and
sparsity leveK increases to a certain level. HoweverKif  gypm.

is too large, the solution becomes dense and involves both
background and target atoms, and thus it loses its discrimi-
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