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ABSTRACT

This letter proposes a simultaneous joint sparsity model for
target detection in hyperspectral imagery. The key innovative
idea here is that hyperspectral pixels within a small neigh-
borhood in the test image are simultaneously represented by
a linear combination of a few common training samples but
weighted with a different set of coefficients for each pixel.
The joint sparsity model automatically incorporates the inter-
pixel correlation within the hyperspectral imagery by assum-
ing that neighboring pixels usually consists of similar mate-
rials. The sparse representations of the neighboring pixels
are obtained by simultaneously decomposing the pixels over
a given dictionary consisting of training samples of both the
target and background classes. The recovered sparse coeffi-
cient vectors are then directly used for determining the label
of the test pixels. Simulation results show that the proposed
algorithm outperforms the classical hyperspectral targetde-
tection algorithms, such as the popular spectral matched fil-
ters, matched subspace detectors, adaptive subspace detec-
tors, as well as binary classifiers such as support vector ma-
chines.

1. INTRODUCTION

Most natural signals are inherently sparse in certain basis
or with respect to a given dictionary. They can be approxi-
mately represented by a few coefficients carrying the most
relevant information. The sparsity of signals has played a
very important role in many classical signal processing ap-
plications such as compression and image denoising. The
recent development in sparse modeling of signals and im-
ages (Bruckstein et al. 2009) has provided an extremely pow-
erful tool for computer vision and pattern recognition (Wright
et al. 2010).

In hyperspectral imagery (HSI), pixels are represented by
vectors whose entries correspond to spectral bands, and im-
ages are represented by three-dimensional cubes. One of the
most important applications of HSI is target detection, which
can be viewed as a binary classification problem where pix-
els are labeled as target or background based on their spectral
characteristics. Support vector machines (SVM) have been a
powerful tool to solve supervised classification problems and
have shown good performances in hyperspectral classifica-
tion (Melgani and Bruzzone 2004; Camps-Valls et al. 2006).
A number of statistical hypothesis testing techniques have
also been proposed for target detection in HSI (Manolakis
and Shaw 2002). Among these approaches, spectral matched
filter (SMF), matched subspace detectors (MSD), and adap-
tive subspace detectors (ASD) have been widely used to de-
tect various targets of interests (Kwon and Nasrabadi 2007).

In this letter, we propose a new HSI target detection al-
gorithm based on a joint sparsity model (Tropp et al. 2006;
Cotter et al. 2005) for pixels in a small neighborhood. It
is observed that pixels belonging to the same class approxi-
mately lie in a low-dimensional subspace. Therefore, an un-
known pixel lies in the union of the low-dimensional target
and background subspaces and can be approximately rep-
resented by very few training samples from target or back-
ground sub-dictionaries. However, a direct application of
this pixel-wise sparse representation would ignore spatial in-
formation in the detection process. In this letter, we incorpo-
rate the spatial information from neighboring pixels by us-
ing the joint sparsity model where pixels in a small neigh-
borhood are assumed to be simultaneously represented by a
linear combination of a few common training samples, but
for each pixel these training samples are weighted with a
different set of coefficients. In this way, we force the rep-
resentations of neighboring pixels to have a common sparse
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support with respect to the training dictionary. The support
is recovered by simultaneously decomposing the test pixels
over the training dictionary. The recovery process implicitly
involves a competition between the target and background
subspaces and the recovered sparse representation is natu-
rally discriminative. The labels of the test samples are then
directly determined by the property of the recovered sparse
vectors.

The letter is structured as follows. The joint sparsity
model and the proposed target detection algorithm is pre-
sented in Section 2. The effectiveness of the proposed method
is demonstrated by simulation results presented in Section3.
Conclusions are drawn in Section 4.

2. SIMULTANEOUS JOINT SPARSITY MODEL FOR
HSI TARGET DETECTION

In this section, we first briefly introduce the HSI target
detection technique based on sparse representation for a sin-
gle pixel. Next, we show how to incorporate a joint sparsity
constraint across neighboring pixels of HSI by adopting the
simultaneous joint sparsity model (Cotter et al. 2005; Tropp
et al. 2006).

1. Pixel-wise Sparsity-based Target Detection

Letxxx ∈R
B be aB-dimensional hyperspectral pixel obser-

vation whose entries correspond to the spectral bands. The
spectrum ofxxx is modeled to lie in the union of two low-
dimensional subspaces: the background and target subspaces
spanned by background training samples

{
aaab

i

}

i=1,2,...,Nb
and

target training samples{aaat
i}i=1,2,...,Nt

, respectively. There-
fore, xxx can be written as a sparse linear combination of all
training pixels
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(1)

In the above equation,AAAb andAAAt are the background and
target sub-dictionaries consisting of theNb background and
Nt target training samples (also called atoms), respectively,
whereasαααb andαααt are vectors whose entries correspond to
the atoms inAAAb andAAAt , respectively. The matrixAAA ∈ R

B×N

with N = Nb +Nt is the training dictionary consisting of both
background and target training samples andααα ∈R

N is a con-
catenation of the two vectorsαααb andαααt . In this sparsity
model,ααα turns out to be a sparse vector (i.e., a vector with

only few non-zero entries). The numberK of nonzero entries
in ααα is called the sparsity level ofααα and the index setΛK on
which the entries ofααα are nonzero is called the support ofααα.
The sparse representationααα is very discriminative and con-
tains important information about the class of the test sample
xxx.

Given the training dictionaryAAA, the sparse representation
ααα satisfyingAAAααα = xxx can be obtained by solving the following
problem:

α̂̂α̂α = argmin‖ααα‖0 subject to AAAααα = xxx, (2)

where‖·‖0 denotesℓ0-norm which is defined as the number
of non-zero entries in the vector. The above problem is NP-
hard, which can be relaxed to a linear programming, if the so-
lution is sufficiently sparse, by replacing theℓ0-norm byℓ1-
norm and solved by convex programming techniques (Bruck-
stein et al. 2009). The problem in (2) can also be solved by
greedy pursuit algorithms such as Orthogonal Matching Pur-
suit (OMP) (Tropp and Gilbert 2007) which efficiently ap-
proximates the solution with computational complexity
O(BNK) for K iterations. Due to the presence of approxi-
mation error in empirical data, the equality constraint canbe
relaxed to an inequality one

α̂̂α̂α = argmin‖ααα‖0 subject to ‖AAAααα −xxx‖2 ≤ σ , (3)

whereσ is the error tolerance. The above problem can also
be interpreted as minimizing the approximation error with
certain sparsity level

α̂̂α̂α = argmin‖AAAααα −xxx‖2 subject to ‖ααα‖0 ≤ K0, (4)

whereK0 is a given upper bound on the sparsity level (Tropp
and Wright 2010). In fact, the greedy algorithm OMP solves
(3) or (4) depending on the stopping criterion of the algo-
rithm, which will be explained in more details in the next
section.

The decomposition of the test samplexxx over the entire
training dictionaryAAA for the few most representative atoms
leads to a competition between the two subspaces and there-
fore the recovered sparse vectorααα is itself discriminative.
The class ofxxx can be determined by comparing the residuals
rb(xxx) =

∥
∥xxx−AAAbα̂̂α̂αb

∥
∥

2 andrt(xxx) = ‖xxx−AAAtα̂̂α̂αt‖2, whereα̂̂α̂αb and
α̂̂α̂αt represent the recovered sparse coefficients corresponding
to the background and target sub-dictionaries, respectively.
The output of detector is calculated by

D(xxx) = rb(xxx)− rt(xxx) =
∥
∥
∥xxx−AAAbα̂̂α̂αb

∥
∥
∥

2
−

∥
∥xxx−AAAtα̂̂α̂αt

∥
∥

2 . (5)

If D(xxx) > δ with δ being a prescribed threshold, thenxxx is de-
termined as a target pixel; otherwise,xxx is labeled as a back-
ground pixel.

2. Joint Sparsity Model

In the previous section, detection is performed for each
pixel in the test image independently regardless of the cor-
relation between neighboring pixels. However, in a typical
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HSI, neighboring pixels usually consist of similar materials
and thus their spectral characteristics are highly correlated.
To exploit this crucial inter-pixel correlation, we could ex-
plicitly include an additional smoothing term, such as the
Laplacian (Chen et al. 2010) or total variation (Rudin et al.
1992), in the optimization problem formulation (2). How-
ever, in this paper we propose to exploit the inter-pixel corre-
lation by adopting the joint sparsity model, in which the un-
derlying sparse representations of multiple neighboring pix-
els share a common sparsity pattern. Since neighboring HSI
pixels consist of similar materials, they can be approximated
by a sparse linear combination of a few common atoms in
the training dictionary but weighted with a different set of
coefficients. The problem of simultaneous sparse represen-
tation and approximation for multiple measurement vectors
has previously been studied in the literature (Cotter et al.
2005; Tropp et al. 2006), but it has never been applied in
HSI for target detection and classification.

The joint sparsity model for pixels in a small neighbor-
hoodNε consisting ofT pixels is formulated as follows. Let
AAA be theB×N training dictionary andXXX =

[
xxx1 xxx2 · · · xxxT

]

be aB×T data matrix whose columns{xxxt}t=1,...,T are pixels
in Nε . Since pixels inNε could consist of similar materials,
they should be represented by a linear combination of a com-
mon set ofK training samples

{
aaaλ1

, . . . ,aaaλK

}
. Specifically,

the sparse representation ofxxxt ∈ Nε is expressed as

xxxt = AAAαααt = αt,λ1
aaaλ1

+ αt,λ2
aaaλ2

+ · · ·+ αt,λK
aaaλK

.

The index setΛK = {λ1,λ2, . . . ,λK} is the support ofαααt and
each pixelxxxt has a different set of coefficients

{
αt,k

}

k∈ΛK
associated with it. The data matrixXXX can then be represented
as

XXX =
[
xxx1 xxx2 · · · xxxT

]
= AAA

[
ααα1 ααα2 · · · αααT

]

︸ ︷︷ ︸

SSS

= AAASSS,

(6)
where each of the sparse vectors{αααt}t=1,...,T has the same
supportΛK andSSS is a sparse matrix with onlyK nonzero
rows. For convenience, we call the index setΛK of αααt also
the support ofSSS.

Given the dictionaryAAA, the matrixSSS is obtained by solv-
ing the following joint sparse recovery problem.

minimize ‖SSS‖row,0

subject to: AAASSS = XXX ,
(7)

where the notation‖SSS‖row,0 denotes the number of non-zero
rows of SSS (also called the diversity ofSSS in (Cotter et al.
2005)). The solution to the above problem

Ŝ̂ŜS =
[
α̂̂α̂α1 α̂̂α̂α2 · · · α̂̂α̂αT

]
(8)

is anN ×T sparse matrix with only few nonzero rows. Sim-
ilar to the sparse recovery problem in (2), the simultaneous
sparse recovery problem in (7) is an NP-hard problem. It can

be solved by greedy algorithms (Cotter et al. 2005; Tropp
et al. 2006), or relaxed to a convex programming (Bruckstein
et al. 2009). For empirical data, the problem in (7) can also
be rewritten to account for the approximation errors (Rako-
tomamonjy submitted for publication, 2010), as it was done
in (3) and (4):

minimize ‖SSS‖row,0

subject to: ‖AAASSS−XXX‖F ≤ σ ,
(9)

or

minimize ‖AAASSS−XXX‖F

subject to: ‖SSS‖row,0 ≤ K0.
(10)

In this letter, the simultaneous sparse recovery problem
is solved by a greedy algorithm, called the Simultaneous Or-
thogonal Matching Pursuit (SOMP), whose implementation
details are presented in (Tropp et al. 2006). SOMP recov-
ers the common support setΓK in a sequential fashion (i.e.,
atoms in the dictionaryAAA is sequentially selected). At each it-
eration, the atom that simultaneously yields the best approx-
imation to all of the residual vectors is selected. The SOMP
algorithm terminates when the error residual‖AAASSS−XXX‖F is
sufficiently small, or the desired level of sparsity (controlled
by the number of iterations) is achieved, which solves the
problems in (9) or (10), respectively.

After the sparse matrix̂ŜŜS is recovered, the labels of the
test samples can be determined based on the characteristics
of the sparse coefficients as is done in Section 1. We calcu-
late and compare the total error residuals between the orig-
inal test samples and the approximations obtained from the
background and target sub-dictionaries. The output of the
proposed sparsity-based detector is computed as in (5) by
the difference of the total residuals from all of the pixels in
the neighborhood

D(xxx) =
∥
∥
∥XXX −AAAbŜ̂ŜSb

∥
∥
∥

F
−

∥
∥
∥XXX −AAAt Ŝ̂ŜSt

∥
∥
∥

F
, (11)

whereŜ̂ŜSb consists of the firstNb rows of the recovered matrix
Ŝ̂ŜS corresponding to the background sub-dictionaryAAAb, andŜ̂ŜSt

consists of the remainingNt rows in Ŝ̂ŜS corresponding to the
target sub-dictionaryAAAt . If the output is greater than a pre-
scribed threshold, then the test sample is labeled as a target;
otherwise it is labeled as background.

An example of the proposed detection technique based
on the joint sparsity model is illustrated in Fig. 1. The test
pixel xxx1 is taken from the background region in the upper-
right corner of the Desert Radiance II data collection, shown
in Fig. 3(a). More details about this image will be discussed
in Section 3. The dictionaryAAA consists ofNt = 18 target
training samples andNb = 216 background training samples.
Using the sparsity model for a single pixel in (1) and the
OMP algorithm, the sparse vectorα̂̂α̂α1 of this background in-
volves both background and target training samples, as seen
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in Fig. 1(a). Neither of the approximations obtained from the
background and target sub-dictionaries represents well the
original test pixel (Fig. 1(b)). On the other hand, when in-
corporating the spatial correlation by applying the joint spar-
sity model in (6) on a 3× 3 neighborhood centered atxxx1,
the test samplexxx1 is well approximated by the background
sub-dictionary, as seen in Fig. 1(d). Therefore, with the ap-
propriate help from the joint sparsity model, the test pixelis
more accurately represented as background.
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Fig. 1. An example comparing the pixel-wise sparsity model
and the joint sparsity model for a background test sam-
ple xxx1. (a) Solution to (4) (pixel-wise sparsity model).
(b) From (4), the reconstructions from the background
sub-dictionary (green) and from the target sub-dictionary
(red), and the original test sample (black). (c) Solution
to (10) (joint-sparsity model) for a 3× 3 window centered
at the pixelxxx1. (d) From (10), the reconstructions from the
background sub-dictionary (green) and from the target sub-
dictionary (red), and the original test sample (black).

3. SIMULATION RESULTS AND ANALYSIS

The proposed target detection algorithm, as well as the
classical techniques SMF, MSD, ASD, and SVM are ap-
plied to several real HSI. The results are compared both visu-
ally and quantitatively by the receiver operating characteris-
tics (ROC) curves. The ROC curve describes the probability
of detection (PD) as a function of the probability of false
alarms (PFA). To calculate the ROC curve, we pick thou-
sands of thresholds between the minimum and maximum of
the detector output. The class labels for all pixels in the test
region are determined at each threshold. The PFA is cal-
culated by the number of false alarms (background pixels
determined as target) over the total number of pixels in the
test region, and the PD is the ratio of the number of hits (tar-
get pixels determined as target) and the total number of true
target pixels.

The two hyperspectral images used in the experiments,
the desert radiance II data collection (DR-II) and forest radi-
ance I data collection (FR-I), are from the hyperspectral dig-
ital imagery collection experiment (HYDICE) sensor (Base-
dow et al. 1995). The HYDICE sensor generates 210 bands
across the whole spectral range from 0.4 to 2.5µm which
includes the visible and short-wave infrared bands. We use
150 of the 210 bands (23rd-101st, 109th-136th, and 152nd-
194th) by removing the absorption and low-SNR bands. The
DR-II image contains 6 military targets on the dirt road, while
the FR-I image contains 14 targets along the tree line, as
seen in Fig. 3(a) and Fig. 4(a), respectively. For these two
HYDICE images, every pixel on the targets is considered
a target pixel when computing the ROC curves. We use a
small target sub-dictionary constructed byNt = 18 pixels on
the leftmost target in the scene. For the background sub-
dictionary, we use an adaptive local background dictionary.
Specifically, the background sub-dictionaryAAAb is generated
locally for each test pixel using a dual window centered at
the pixel of interest. The inner window should be larger than
the size of the targets in the scene and only pixels in the outer
region will form the atoms inAAAb. In this way, the subspace
spanned by the background sub-dictionary becomes adaptive
to the local statistics. For DR-II and FR-I, the outer and inner
windows have size 21×21 and 15×15, respectively, so there
areNb = 216 background training samples in the dictionary.

The detection techniques using the single-pixel sparsity
model (1) and the joint sparsity model (6) are applied on
these two HYDICE images. The OMP algorithm (Tropp
and Gilbert 2007) is used to solve the sparsity-constrained
problem in (4). The SOMP algorithm is used to solve the
simultaneous sparse recovery problem in (10). The ROC
curves obtained using OMP and SOMP are shown in Fig. 2,
with the sparsity level being set toK0 = 10. For SOMP, a
5×5 square neighborhood (T = 25 in the problem formula-
tion (6)) is used. The detector output for these two sparsity-
based algorithms are shown in Figs. 3(c)-(d) for DR-II and
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Figs. 4(c)-(d) for FR-I. We see that the incorporation of the
spatial correlation between neighboring pixels through the
joint sparsity model yields better detection results than adi-
rect application of the pixel-wise sparsity model (1).
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Fig. 2. ROC curves using various detection and classification
algorithms for (a) DR-II and (b) FR-I using local background
dictionary (dual window approach),Nt = 18 andNb = 216.

Under the same settings (i.e., same target and background
training samples for all detectors), the classical statistical de-
tectors SMF, MSD, and ASD as well as the binary classi-
fier SVM are also applied to detect the targets of interests.
The first three statistical detectors are pixel-wise detectors
and their implementation details can be found in (Kwon and
Nasrabadi 2007). For SVM, we use a composite kernel that
combines the spectral and spatial information via a weighted
summation, which is shown to outperform the spectral-only
SVM in HSI classification (Camps-Valls et al. 2006). For
each pixel, the spatial features (e.g., the mean and the stan-
dard deviation per spectral band) are explicitly extractedin
the 5×5 neighborhood centered at that pixel. A SVM is then
trained for each spectral-spatial pixel using atoms inAAAb and
AAAt as belonging to two different classes with RBF kernels for
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Fig. 3. DR-II. (a) Averaged image over 150 bands. Detec-
tion results for DR-II using (b) SVM with composite kernel,
(c) OMP, (d) SOMP.
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Fig. 4. FR-I. (a) Averaged image over 150 bands. Detec-
tion results for FR-I using (b) SVM with composite kernel,
(c) OMP, (d) SOMP.

both spectral and spatial features. The parameters associated
with SVM and composite kernels are defined and explained
in details in (Melgani and Bruzzone 2004; Camps-Valls et al.
2006). For comparison, the results obtained from SVM with
composite kernels are also shown in Fig. 3(b) and Fig. 4(b).
The ROC curves for the two test HYDICE images using
SMF, MSD, ASD, and SVM are shown in Fig. 2. Overall
from this figure, one can observe that for both images the de-
tector based on the joint sparsity model yields the best perfor-
mance. The simultaneous sparse recovery algorithms clearly
outperforms the classical target detection/classification algo-
rithms.

Next we show the effect of neighborhood size on the de-
tection performance. In this experiment, the simultaneous
sparse approximation problem in (10) is solved by SOMP
for different neighborhood at a fixed sparsity levelK0 = 10.
Specifically, we use 1× 1 neighborhood (equivalent to the
pixel-wise sparsity model), 4-connected neighborhood, 3×
3, 5×5, and 7×7 window neighborhood, corresponding to
T = 1, 5, 9, 25, and 49, respectively. The ROC curves for the
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various types of neighborhood are shown in Fig. 5. By in-
corporating the contextual interaction between neighboring
pixels, the detector performance is significantly improved.
As the neighborhood size increases, the performance tends
to saturate.
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Fig. 5. Effects of the neighborhood sizeT on detection per-
formance for (a) DR-II and (b) FR-I.

Next we demonstrate how the detection results are af-
fected by the sparsity level of the representation. The spar-
sity level refers to the number of nonzero rows inSSS, which
is also the number of common atoms selected from the dic-
tionary by the greedy algorithms to simultaneously approxi-
mate all of the neighboring pixels. The neighborhood sizeT
is fixed to 25 (i.e., a 5×5 window is used) in this experiment.
The ROC curves for both images using SOMP with sparsity
levelsK = 1, 2, 3, 5, 10, and 15 are shown in Fig. 6. For
very smallK, the sparsity-based technique recovery problem
is reduced to a simple template matching and leads to under-
fitting. Generally the detection performance improves as the
sparsity levelK increases to a certain level. However, ifK
is too large, the solution becomes dense and involves both
background and target atoms, and thus it loses its discrimi-

native power. In this letter, the sparsity levelK is chosen to
be slightly smaller than the size of the target dictionary.
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Fig. 6. Effects of the sparsity levelK on detection perfor-
mance for (a) DR-II and (b) FR-I.

4. CONCLUSIONS

In this letter, a joint sparsity model is proposed for target
detection in HSI. The inter-pixel correlation in HSI is incor-
porated by employing the joint-sparsity model where pixels
in a small neighborhood in the test image are represented
by a linear combination of a few common training samples
weighted with a different set of coefficients for each pixel.
The sparse representations of the neighboring pixels are ob-
tained by a simultaneous sparse recovery algorithm SOMP.
Then resulting sparse representations are then used directly
for target detection. Simulation results show that the pro-
posed algorithm outperforms the classical hyperspectral tar-
get detection algorithms, including SMF, MSD, ASD, and
SVM.
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