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Abstract—In this paper, a novel nonlinear technique for hy-
perspectral image classification is proposed. Our approachrelies
on sparsely representing a test sample in terms of all of the
training samples in a feature space induced by a kernel function.
For each test pixel in the feature space, a sparse representation
vector is obtained by decomposing the test pixel over a training
dictionary, also in the same feature space, by using a kernel-based
greedy pursuit algorithm. The recovered sparse representation
vector is then used directly to determine the class label of the
test pixel. Projecting the samples into a high-dimensionalfeature
space and kernelizing the sparse representation improves the
data separability between different classes, providing a higher
classification accuracy compared to the more conventional linear
sparsity-based classification algorithms. Moreover, the spatial
coherency across neighboring pixels is also incorporated through
a kernelized joint sparsity model, where all of the pixels within
a small neighborhood are jointly represented in the feature
space by selecting a few common training samples. Kernel
greedy optimization algorithms are suggested in this paperto
solve the kernel versions of the single-pixel and multi-pixel
joint sparsity-based recovery problems. Experimental results on
several hyperspectral images show that the proposed technique
outperforms the linear sparsity-based classification technique, as
well as the classical Support Vector Machines and sparse kernel
logistic regression classifiers.

I. I NTRODUCTION

Hyperspectral imaging sensors capture images in hundreds
of continuous narrow spectral bands, spanning the visible to
infrared spectrum. Each pixel in a hyperspectral image (HSI)
is represented by a vector whose entries correspond to various
spectral-band responses. Different materials usually reflect
electromagnetic energy differently at specific wavelengths.
This enables discrimination of materials based on their spectral
characteristics. One of the most important applications ofHSI
is image classification, where pixels are labeled to one of the
classes based on their spectral characteristics, given a small
set of training data for each class. Various techniques have
been developed for HSI classification. Among the previous
approaches, the support vector machine (SVM) [1], [2] has
proven to be a powerful tool to solve many supervised clas-
sification problems and has shown good performances in hy-
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perspectral classification, as well [3]–[5]. Variations ofSVM-
based algorithms have also been proposed to improve the
classification accuracy. These variations include transductive
SVM, which exploits both labeled and unlabeled samples [6],
and SVM with composite kernels, which incorporates spatial
information directly in the SVM kernels [7]. Multinomial
logistic regression [8] is another widely used classifier, which
uses the logistic function to provide the posterior probability.
A fast algorithm for sparse multinomial logistic regression
has been developed in [9] and successfully adopted for HSI
segmentation in [10], [11]. Some of the other recent HSI
classification techniques can be found in [12]–[17]. In these re-
cent methods, a feature extraction strategy is proposed in [12]
for classification which generalizes the linear discriminative
analysis and nonparametric discriminative analysis. In [13], the
derivative information of the spectral signatures is exploited as
features and then decisions obtained from spectral reflectance
and derivative information are fused for the final decisions.
In [14], each image band is decomposed into intrinsic mode
functions (IMFs) which are adaptive to local properties via
empirical mode decomposition and then SVM is applied to
the lower-order IMFs for classification. In [15], thek-nearest-
neighbor classifier is applied to the local manifolds to exploit
the intrinsic nonlinear structure of hyperspectral images. A
semi-supervised classification algorithm is proposed in [16] in
order to use a kernel machine which is iteratively updated
by manifold regularization. In [17] the results from multi-
ple classification/segmentation techniques are fused by post-
processing to generate the final spectral-spatial classification
map. Most of the above-mentioned HSI image classification
techniques do not directly incorporate the spatial or the con-
textual information into the classifier.

Recently, sparse representation [18], [19] has also been pro-
posed to solve many computer vision tasks [20]–[25], where
the usage of sparsity as a prior often leads to state-of-the-
art performance. Sparse representation has also been applied
to HSI target detection and classification [26]–[28], relying on
the observation that hyperspectral pixels belonging to thesame
class approximately lie in the same low-dimensional subspace.
Thus, an unknown test pixel can be sparsely represented by
a few training samples (atoms) from a given dictionary and
the corresponding sparse representation vector will implicitly
encode the class information. The sparse representation-based
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classifier is different from the conventional sparse classifier
SVM in the following aspects. SVM is a discriminative model,
while the sparse representation method can be viewed as a
generative model, where the signal (pixel) is expressed as a
linear combination of atoms [19]. SVM is a binary classifier
that finds the separating hyperplane between two classes
(multi-class SVM requires a one-against-one or one-against-
all strategy). The sparse representation-based classifieris from
a reconstruction point of view. The sparse decomposition of
the test pixel over the entire dictionary implicitly leads to
a competition between the subspaces (classes) and thus the
recovered sparse representation is discriminative. Moreover, in
SVM, there is an explicit training stage. The SVM classifier
is trained only once and then this classifier with its fixed
sparse support vectors is used to classify all of the test data.
On the other hand, in our proposed approach, a new sparse
representation vector is extracted for each test pixel and is thus
adaptive, representing the sparsely selected atoms which are
adapted to reconstruct the current test pixel.

Hyperspectral images are usually smooth in the sense the
pixels in a small neighborhood represent the same material and
have similar spectral characteristics. Various techniques have
been proposed recently to exploit the contextual correlation
within HSI which have notably improved the classification
and segmentation performance. Post-processing procedures are
used in [29], [30] on the individually-labeled samples based on
certain decision rules to impose the smoothness. Markov ran-
dom fields exploit the statistical dependency among neighbor-
ing pixels and are usually applied in Bayesian approaches [11].
The composite kernel approach [7] is another way to in-
corporate the spatial information, which explicitly extracts
spatial information for each spectral pixel and then combines
the spectral and spatial information via kernel composition.
Joint sparsity model [31] is exploited in sparsity-based HSI
target detection and classification [27], [28], where the neigh-
boring pixels are simultaneously represented by a sparse
linear combination of a few common training samples. Each
pixel, although sharing the same common support, might have
weighting coefficients taking on different values. In this way,
the smoothness across neighboring spectral pixels is enforced
directly in the classification stage, and no post-processing
steps are performed. The details of composite kernels and the
joint sparsity model will be further discussed in the following
sections.

It is well known that for the classical HSI image clas-
sification and target detection algorithms, the use of kernel
methods yields a significant performance improvement [5],
[32], because the kernel-based algorithms implicitly exploit
the higher-order structure of the given data which may not be
captured by the linear models. Therefore, if the data set is not
linearly separable, kernel methods [33]–[36] can be applied
to project the data into a nonlinear feature space in which
the data becomes more separable. In practical implementation,
the kernel trick [37] is often used in order to avoid explicitly
evaluating the data in the feature space.

In this paper, we propose a new HSI classification algorithm
based on kernel sparse representation by assuming that a test
pixel can be linearly represented by a few training samples in

the feature space. The kernel sparse representation vectoris
then obtained by decomposing the test pixel represented in a
high dimensional feature space over a structured dictionary
consisting of training samples from all of the classes in
the same feature space. The recovered sparse vector is used
directly for classification. Although the proposed approach has
a similar formulation as previous kernel regression approaches
with a sparse prior such as kernel matching pursuit [33],
kernel basis pursuit [34], and generalized LASSO [38], the
underlying ideas are quite different. The objective of these
previous approaches is to approximate a function as a linear
combination of dictionary functions, which are the kernels
centered at the training points, by minimizing certain loss
function evaluated at these training points and subject to a
sparsity prior. Therefore, the target vector for fitting consists
of the observations of the function value at the training points,
and the dictionary is then the dictionary functions evaluated at
the training points which turns out to be the kernel matrix. In
our proposed approach, the target vector is the test pixel itself
in the feature space. It is not the similarity measure between
the test sample and training samples and may not have an
explicit expression. The dictionary also consists of the training
samples in the feature space and can not assume an explicit
expression either. The recovered sparse representation vector
can be viewed as a discriminative feature extracted from the
test pixel and is used directly for classification.

The contextual correlation between pixels within a small
spatial neighborhood can be incorporated into the kernel sparse
representation through the joint sparsity model [31], where all
neighboring pixels are simultaneously represented by a linear
combination of a few common training samples in the feature
space. Furthermore, the composite kernel approach [7] can
also be used with the proposed kernel sparse representation
model in order to combine spectral and spatial information.
Efficient kernel-based optimization algorithms are discussed in
this paper for the recovery of the kernel sparse representations
for both single-pixel and multi-pixel joint sparsity models.

Notation-wise, vectors and matrices are denoted by lower-
and upper-case bold letters, respectively. For a vectorααα ∈R

N

and an index setΛ⊆ {1, . . . ,N} with |Λ| = t, αααΛ ∈ R
t is the

portion of ααα indexed onΛ. For a matrixSSS∈ R
N1×N2, index

setsΛ1⊆{1, . . . ,N1} with |Λ1|= t1, andΛ2⊆{1, . . . ,N2} with
|Λ2|= t2, SSSΛ1,: ∈ R

t1×N2 is a submatrix ofSSS consisting of the
t1 rows in SSS indexed onΛ1, SSS:,Λ2 ∈ R

N1×t2 consists of thet2
columns inSSS indexed onΛ2, andSSSΛ1,Λ2 ∈R

t1×t2 is formed by
the rows and columns ofSSS indexed onΛ1 andΛ2, respectively.

The remainder of this paper is structured as follows. Sec-
tion II briefly introduces the sparsity-based HSI classification
technique. Section III defines the sparsity models in the feature
space, then discusses how to incorporate spatial information,
and describes the kernel sparse recovery algorithms. Experi-
mental results are shown in Section IV, and conclusions are
drawn in Section V.

II. SPARSITY-BASED HSI CLASSIFICATION

This section briefly introduces the sparsity-based algorithm
for HSI classification, and more details can be found in [26]–
[28]. It is assumed that the spectral signatures of pixels
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belonging to the same class approximately lie in the same low-
dimensional subspace. Thus, an unknown test samplexxx∈R

B,
whereB is the number of spectral bands, can be written as a
sparse linear combination of all of the training pixels as

xxx=AAAααα, (1)

whereAAA=
[
aaa1 aaa2 · · · aaaN

]
∈ R

B×N is a structured dictio-
nary whose columns{aaai}i=1,2,...,N areN training samples (re-
ferred to as atoms) from all classes, andααα∈RN is an unknown
sparse vector. The index set on whichααα have nonzero entries is
the support ofααα. The number of nonzero entries inααα is called
the sparsity levelK of ααα and denoted byK = ‖ααα‖0. Given the
dictionary AAA, the sparse coefficient vectorααα is obtained by
solving

α̂αα = argmin‖xxx−AAAααα‖2 subject to ‖ααα‖0≤ K0, (2)

where K0 is a preset upper bound on the sparsity level.
The problem in (2) is NP-hard, which can be approximately
solved by greedy algorithms, such as Orthogonal Matching
Pursuit (OMP) [39] or Subspace Pursuit (SP) [40]. The class
label of xxx is determined by the minimal residual betweenxxx
and its approximation from each class sub-dictionary:

Class(xxx) = arg min
m=1,...,M

‖xxx−AAA:,Ωmα̂ααΩm‖2 , (3)

where Ωm ⊂ {1,2, . . . ,N} is the index set associated with
the training samples belonging to themth class. As pointed
out in [25], the sparse representation-based classifier canbe
viewed as a generalization of the nearest neighbor classi-
fier [41].

In HSI, pixels within a small neighborhood usually consist
of similar materials and, thus, their spectral characteristics are
highly correlated. The spatial correlation between neighboring
pixels can be incorporated through a joint sparsity model [27],
[31] by assuming the underlying sparse vectors associated with
these pixels share a common sparsity pattern as follows. Let
{xxxt}t=1,...,T be T pixels in a spatial neighborhood centered at
xxx1. These pixels can be compactly represented as

XXX =
[
xxx1 xxx2 · · · xxxT

]
=
[
AAAααα1 AAAααα2 · · · AAAαααT

]

=AAA
[
ααα1 ααα2 · · · αααT

]

︸ ︷︷ ︸

SSS

=AAASSS. (4)

In the joint sparsity model, the sparse vectors{αααt}t=1,...,T
share the same supportΛ and, thus,SSS is a sparse matrix
with only |Λ| nonzero rows. The row-sparse matrixSSS can be
recovered by solving the following optimization problem

ŜSS= argmin‖XXX−AAASSS‖F subject to ‖SSS‖row,0≤ K0, (5)

where ‖SSS‖row,0 denotes the number of non-zero rows ofSSS
and ‖·‖F denotes the Frobenius norm. The problem in (5)
can be approximately solved by the simultaneous versions of
OMP (SOMP) [31] or SP (SSP) [28]. The label of the center
pixel xxx1 is then determined by the minimal total residual:

Class(xxx1) = arg min
m=1,...,M

∥
∥
∥XXX−AAA:,ΩmŜ̂ŜSΩm,:

∥
∥
∥

F
, (6)

where‖·‖F denotes the Frobenius norm.

III. K ERNEL SPARSEREPRESENTATION

If the classes in the dataset are not linearly separable,
then the kernel methods can be used to project the data
into a feature space, in which the classes become linearly
separable [1]. The kernel functionκ : RB×R

B 7→R is defined
as the inner product

κ(xxxi ,xxx j) =
〈
φ(xxxi),φ(xxx j)

〉
. (7)

Commonly used kernels include the radial Basis Func-
tion (RBF) kernelκ(xxxi ,xxx j) = exp

(

−γ
∥
∥xxxi−xxxj

∥
∥2
)

with γ > 0
controlling the width of the RBF, and order−d homogeneous
and inhomogeneous polynomial kernelsκ(xxxi ,xxx j) = (xxxi ·xxx j)

d

and κ(xxxi ,xxx j) = (xxxi ·xxxj +1)d, respectively. In this section, we
describe how the sparsity models in Section II can be extended
to a feature space induced by a kernel function.

A. Pixel-wise Sparsity in Feature Space

Let xxx ∈ R
B be the data point of interest andφ(xxx) be

its representation in the feature space. The kernel sparse
representation of a samplexxx in terms of training atomsaaai ’s
can be formulated as

φ(xxx) =
[
φ(aaa1) · · · φ(aaaN)

]

︸ ︷︷ ︸

AAAφ

[
α′1 · · · α′N

]T

︸ ︷︷ ︸

ααα′

=AAAφααα′, (8)

where the columns ofAAAφ are the representations of training
samples in the feature space andααα′ is assumed to be a sparse
vector.

Similar to the linear sparse recovery problem in (2),ααα′ can
be recovered by solving

α̂αα′ = argmin
∥
∥φ(xxx)−AAAφααα′

∥
∥

2 subject to
∥
∥ααα′
∥
∥

0≤ K0. (9)
The problem in (9) can be approximately solved by kernelizing
the OMP and SP algorithms (denoted by KOMP and KSP,
respectively). Note that in the above problem formulation,we
are solving for the sparse vectorααα′ directly in the feature space
using the implicit feature vectors, but not evaluating the kernel
functions at the training points.

In KOMP and KSP, essentially each dot product operation
in OMP/SP is replaced by the kernel trick in (7). LetKKKAAA ∈
R

N×N be the kernel matrix whose(i, j)th entry isκ(aaai ,aaa j), and
kkkAAA,xxx ∈ R

N be the vector whoseith entry isκ(aaai ,xxx). Using the
feature representations, the correlation (dot product) between
a pixel φ(xxx) and a dictionary atomφ(aaai) is then computed by

ci = 〈φ(xxx) ,φ(aaai)〉= κ(xxx,aaai) =
(
kkkAAA,xxx
)

i , (10)
the orthogonal projection coefficient ofφ(xxx) onto a set of
selected dictionary atoms{φ(aaan)}n∈Λ is given as

pppΛ =
(

(KKKAAA)Λ,Λ

)−1(
kkkAAA,xxx
)

Λ , (11)

and the residual vector betweenφ(xxx) and its approximation us-
ing the selected atoms{φ(aaan)}n∈Λ =

(
AAAφ
)

:,Λ is then expressed
as

φ(rrr) = φ(xxx)−
(
AAAφ
)

:,Λ

(

(KKKAAA)Λ,Λ

)−1(
kkkAAA,xxx
)

Λ . (12)

Note that the feature representation of the residual vectorφ(rrr)
in (12) cannot be evaluated explicitly. However, the correlation
betweenφ(rrr) and an atomφ(aaai) can be computed by

ci = 〈φ(rrr) ,φ(aaai)〉=
(
kkkAAA,xxx
)

i− (KKKAAA)i,Λ

(

(KKKAAA)Λ,Λ

)−1(
kkkAAA,xxx
)

Λ .

(13)
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The KOMP and KSP greedy algorithms, similar to the linear
OMP and SP algorithms, are used to locate the supportΛ of the
sparse vector̂ααα′. The KOMP algorithm augments the support
set by only one index, which is given byλ = argmaxi=1,...,N ci

with ci being defined in (13) andφ(rrr) being the residual
vector from the previous iteration, at each iteration untilK0

atoms are selected or the approximation error (i.e., norm ofthe
residual vector in (12)) is within a preset threshold. The KSP
algorithm maintains a set ofK0 indices with a backtracking
mechanism. At each iteration, the index set is refined by
addingK0 new candidates, whose associated atoms have the
K0 highest correlation (13) to the residual vector from the
previous iteration, to the current list and then discardingK0

insignificant ones from the list of 2K0 candidates. This process
repeats until certain stopping criterion is met. In both of the
KOMP and KSP algorithms, after the support setΛ of α̂αα′ is
determined, the entries of̂ααα′ indexed onΛ are computed by
the orthogonal projection of the test pixel onto the selected
dictionary atoms using (11). The KOMP/KSP algorithms can
be viewed as special cases, withT = 1, of the kernelized
SOMP/SSP algorithms (Algorithms 1 and 2) proposed in the
next section, respectively. The details are thus omitted herein.

Once the sparse vectorα̂αα′ is recovered, the residual between
the test sample and themth-class reconstruction in the high-
dimensional feature space is then computed by

rm(xxx) =
∥
∥
∥φ(xxx)−

(
AAAφ
)

:,Ωm
α̂αα′Ωm

∥
∥
∥

=
〈

φ(xxx)−
(
AAAφ
)

:,Ωm
α̂αα′Ωm

,φ(xxx)−
(
AAAφ
)

:,Ωm
α̂αα′Ωm

〉1/2

=
(

κ(xxx,xxx)−2α̂αα′TΩm

(
kkkAAA,xxx
)

Ωm
+ α̂αα′TΩm

(KKKAAA)Ωm,Ωm
α̂αα′Ωm

)1/2
,

(14)
wherekkkAAA,xxx andKKKAAA are as defined above, andΩm is the index
set associated with themth class. The class label ofxxx is
determined as

Class(xxx) = arg min
m=1,...,M

rm(xxx). (15)

B. Joint Sparsity in Feature Space

The joint sparsity model in (4) can also be extended to the
feature space as follows:

XXXφ =
[
φ(xxx1) · · · φ(xxxT)

]
=
[
AAAφααα′1 · · · AAAφααα′T

]

=AAAφ
[
ααα′1 · · · ααα′T

]

︸ ︷︷ ︸

SSS′

=AAAφSSS
′, (16)

where the vectors{ααα′t}t=1,...,T share the same support. The
row-sparse matrixSSS′ is recovered by solving

ŜSS
′
= argmin

∥
∥XXXφ−AAAφSSS′

∥
∥

F subject to
∥
∥SSS′
∥
∥

row,0 ≤ K0.
(17)

In this paper, we propose the kernelized SOMP (KSOMP) and
the kernelized SSP (KSSP) algorithms in order to approxi-
mately solve the above joint sparse recovery problem in (17).

In KSOMP, at every iteration, the atom that simultaneously
yields the best approximation to all theT pixels (or residuals
after initialization) is selected. Specifically, letCCC ∈ R

N×T be
the correlation matrix whose(i, j)th entry is the correlation
betweenφ(aaai) andφ(rrr j), whereφ(rrr j) is the residual vector of
φ(xxx j). The new atom is then selected as the one associated with

the row ofCCC, which has the maximalℓp-norm for somep≥ 1.
The KSOMP algorithm is summarized in Algorithm 1. Note
that when computing the projection in (11) and correlation
in (13), a regularization termλIII is added in order to have a
stable inversion, whereλ is typically a small scalar (e.g. in the
order of 10−5) andIII is an identity matrix whose dimensionality
should be clear from the context.

Input: B×N dictionaryAAA=
[
aaa1 · · · aaaN

]
, B×T data ma-

trix XXX =
[
xxx1 · · · xxxT

]
, kernel functionκ, and a stopping

criterion

Initialization: compute the kernel matricesKKKAAA in Algo-
rithm 1 (Initialization) andKKKAAA,XXX ∈R

N×T whose(i, j)th entry

is κ(aaai ,xxx j). Set index setΛ0 = arg max
i=1,...,N

∥
∥
∥

(
KKKAAA,XXX

)

i,:

∥
∥
∥

p
with

somep≥ 1 and iteration countert = 1.
while stopping criterion has not been metdo

(1) Compute the correlation matrix

CCC=KKKAAA,XXX−(KKKAAA):,Λt−1

(

(KKKAAA)Λt−1,Λt−1
+λIII

)−1(
KKKAAA,XXX

)

Λt−1,:
∈RN×T

(2) Select the new index asλt = arg max
i=1,...,N

‖CCCi,:‖p, p≥ 1

(3) Update the index setΛt = Λt−1
⋃
{λt}

(4) t← t +1
end while

Output: Index set Λ = Λt−1, the sparse representation
ŜSS
′

whose nonzero rows indexed byΛ are ŜSS
′
Λ,: =

(KKKΛ,Λ +λIII)−1(KKKAAA,XXX
)

Λ,:

Algorithm 1: Kernelized Simultaneous Orthogonal Matching
Pursuit (KSOMP)

Similarly, KSSP is a simultaneous version of KSP where
the K0 atoms that best simultaneously approximate all of the
T residuals in terms of theℓp-norm are chosen. The KSSP
algorithm is summarized in Algorithm 2. Note that the step
for computing the residual vectors (12) is incorporated into
the computation of the correlation vector in Step (1) of both
KSOMP and KSSP.

Once the matrix̂SSS
′

is recovered, the total residual between
the T neighboring pixels and their approximations from the
mth-class training samples is computed by

rm(xxx1)=

(
T

∑
i=1

(

κ(xxxi ,xxxi)−2ŜSS
′T
Ωm,i

(
KKKAAA,XXX

)

Ωm,i
+ ŜSS
′T
Ωm,i (KKKAAA)Ωm,Ωm

ŜSS
′
Ωm,i

)
)1/2

,

(18)
whereKKKAAA,XXX andKKKAAA are as defined in Algorithms 1 and 2, and
Ωm ∈ {1,2, . . . ,N} is the index set associated with themth
class. The label for the center pixelxxx1 is then determined by
the total residual

Class(xxx1) = arg min
m=1,...,M

rm(xxx1). (19)

C. Kernel Sparse Representation with a Composite Kernel

Another way to address the contextual correlation within
HSI is though a composite kernel [7], which takes into
account the spatial correlation between neighboring pixels
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Input: B×N dictionaryAAA=
[
aaa1 · · · aaaN

]
, B×T data ma-

trix XXX =
[
xxx1 · · · xxxT

]
, kernel functionκ, and a stopping

criterion

Initialization: compute the kernel matricesKKKAAA in Algo-
rithm 1 (Initialization) andKKKAAA,XXX ∈R

N×T whose(i, j)th entry

is κ(aaai ,xxx j). Set index setΛ0 =
{

K0 indices corresponding to

theK0 largest numbers in
∥
∥
∥

(
KKKAAA,XXX

)

i,:

∥
∥
∥

p
, p≥ 1, i = 1, . . . ,N

}

,

and set iteration countert = 1.
while stopping criterion has not been metdo

(1) Compute the correlation matrix

CCC=KKKAAA,XXX−(KKKAAA):,Λt−1

(

(KKKAAA)Λt−1,Λt−1
+λIII

)−1(
KKKAAA,XXX

)

Λt−1,:
∈RN×T

(2) Find the index setI =
{

K0 indices corresponding to

the K0 largest numbers in‖CCCi,:‖p, p≥ 1, i = 1, . . . ,N
}

(3) Update the candidate index setΛ̃t = Λt−1
⋃

I

(4) Compute the projection coefficients

PPP=
(

(KKKAAA)Λ̃t ,Λ̃t
+λIII

)−1(
KKKAAA,XXX

)

Λ̃t ,:
∈ R

2K0×T

(5) Update the index setΛt =
{

K0 indices in Λ̃t cor-

responding to theK0 largest numbers in‖PPPi,:‖p, p≥ 1,

i = 1, . . . ,N
}

(6) t← t +1
end while

Output: Index set Λ = Λt−1, the sparse representation
ŜSS
′

whose nonzero rows indexed byΛ are ŜSS
′
Λ,: =

(KKKΛ,Λ +λIII)−1(KKKAAA,XXX
)

Λ,:

Algorithm 2: Kernelized Simultaneous Subspace Pur-
suit (KSSP)

by combining kernels dedicated to the spectral and spatial
information. The composite kernel approach has been shown
to significantly outperform the spectral-only classifier inHSI
classification [42]. This method, although originally proposed
for SVM, can be readily incorporated into other classifiers
which operate in the feature space, such as kernel logistic
regression and the kernel sparse representation-based classifier
proposed in this paper. Specifically, letxxxw

i be the spectral
pixel at location i in a hyperspectral image andxxxs

i be the
spatial information extracted from a small neighborhood cen-
tered at locationi, which is usually the mean and/or the
standard deviation of the pixels within the neighborhood.
The new pixel entity at this location can be redefined as
xxxi = {xxxi ,xxxs

i }. Note that in previous sectionsxxxi contains only
spectral information (i.e.,xxxi = xxxw

i ). The spectral and spatial
information can then be combined in a variety of ways,
including stacking, direct summation, weighted summation,
and cross-information kernels [7]. In this paper, we consider
the weighted summation kernel, which is shown to yield the
best classification performance compared to other types of
composite kernels [7]. The kernel function in this case is

κ(xxxi ,xxx j) = µκs
(
xxxs

i ,xxx
s
j

)
+(1−µ)κw

(
xxxw

i ,xxx
w
j

)
, (20)

whereµ∈ (0,1), andκs andκw are the kernel functions of the
spatial and spectral features, respectively.

The composite kernels can be directly applied to the pixel-
wise sparsity model in the feature space in (8). The sparse
representation vector can be recovered using the KOMP or
KSP algorithm, where the kernel matrixKAKAKA is now a weighted
summation of the spectral and spatial kernel matrices of the
training dictionaryAAA, and the vectorkkkAAA,xxx also needs to be
modified accordingly.

It is worth noting that the composite kernel approach is
different from the kernel joint sparsity model discussed in
Section III-B. The joint sparsity model involves only the
spatial information of the test pixels, and no prior knowledge
about the neighbors of the training pixels is needed. On the
other hand, for the composite kernels, the spatial information
for both training and test sets are necessary. Moreover, thejoint
sparsity model does not assume a sum or average of the same
samples, but treats all pixels in a small neighborhood equally
and finds the sparsity pattern that simultaneously represents
these pixels.

IV. EXPERIMENTAL RESULTS

In this section, we show the effectiveness of the proposed
algorithms on classification of several hyperspectral datasets.
For each image, we solve the sparse recovery problems
in (2), (5), (9), and (17) for each test sample, and then deter-
mine the class by the minimal residual (the results are denoted
by OMP/SP, KOMP/KSP, SOMP/SSP, and KSOMP/KSSP,
respectively). The results of KOMP and KSP with composite
kernels, as discussed in Section III-C, are denoted by KOM-
PCK and KSPCK, respectively. The classification results are
then compared visually and quantitatively to those obtained
by the classical SVM classifier and sparse multinomial kernel
logistic regression (KLR). For SVM and KLR classifiers,
we use a spectral-only kernel (denoted by SVM/KLR), as
well as a composite kernel (denoted by SVMCK/KLRCK).
In all classifiers with a composite kernel, we use a weighted
summation kernel and the spatial information is the mean
of pixels in a small neighborhood. The parameters for KLR,
KLRCK, SVM, and SVMCK are obtained by cross-validation.

The first hyperspectral image in our experiments is the
Airborne Visible/Infrared Imaging Spectrometer (AVIRIS)im-
age Indian Pines [43]. The AVIRIS sensor generates 220
bands across the spectral range from 0.2 to 2.4µm. In the
experiments, the number of bands is reduced to 200 by
removing 20 water absorption bands. This image has spatial
resolution of 20 m per pixel and spatial dimension 145×145. It
contains 16 ground-truth classes. For each class, we randomly
choose around 10% of the labeled samples for training and use
the remaining 90% for testing, as shown in Table I and Fig. 1.
Radial Basis Function (RBF) kernels are used in all kernel-
based classifiers (i.e., SVM, SVMCK, KLR, KLRCK, KOMP,
KSP, KSOMP, KSSP, KOMPCK, and KSPCK). Since this
image consists of large homogenous regions, a large spatial
window of size 9× 9 (T = 81) is used in classifiers with a
composite kernel and the joint sparsity models (4) and (16).

The classification performance for each of the 16 classese,
overall accuracy (OA), average accuracy (AA), and theκ
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coefficient measure [44] on the test set are shown in Table II.
The OA is the ratio between correctly classified test samples
and the total number of test samples, the AA is the mean of the
16 class accuracies, and theκ coefficient is a robust measure of
the degree of agreement. The classification maps on labeled
pixels are presented in Fig. 2, where the algorithm and OA
are shown on top of each corresponding map. One can clearly
see that incorporating the contextual correlation and operating
in the feature space both have significantly improved the
classification accuracy. The KOMPCK and KSPCK algorithms
outperform all other classifiers - the OA for both of which are
greater than 98%. The KSOMP and KSSP algorithms also
yield superior performance, which have only about 1% lower
OA than KOMPCK and KSPCK. Note that the kernel joint
sparsity model for KSOMP and KSSP does not assume any
prior knowledge of the neighbors of the training samples as
the composite kernel approach does.

TABLE I
THE 16 GROUND-TRUTH CLASSES IN THEAVIRIS I NDIAN PINES IMAGE.

Class Samples
No Name Train Test
1 Alfalfa 6 48
2 Corn-notill 144 1290
3 Corn-min 84 750
4 Corn 24 210
5 Grass/Pasture 50 447
6 Grass/Trees 75 672
7 Grass/Pasture-mowed 3 23
8 Hay-windrowed 49 440
9 Oats 2 18
10 Soybeans-notill 97 871
11 Soybeans-min 247 2221
12 Soybean-clean 62 552
13 Wheat 22 190
14 Woods 130 1164
15 Building-Grass-Trees-Drives 38 342
16 Stone-steel Towers 10 85

Total 1043 9323

The sparsity levelK0 and RBF parameterγ used in the
above experiments are obtained from a small validation set.
An n-fold cross validation would not be appropriate for finding
the optimal sparsity level, unlessn is large (e.g., leave-one-
out cross validation). This is because the sparsity levelK0

is related to the size of dictionary, therefore the optimal
K0 for part of the dictionary may not be optimal anymore
for the entire dictionary. Now we examine how these two
parameters affect the classification performance on the Indian
Pines image. We use randomly selected 10% of all labeled
samples as the training set and the remaining samples as the
test set, then varyK0 from 5 to 80 andγ from 2−3 to 212

in KOMP, KSP, KSOMP, and KSSP. The experiment for each
γ, K0, and each of the four algorithm is repeated five times
using different randomly-chosen training sets to avoid anybias
induced by random sampling. The window size is fixed at
9×9 for KSOMP and KSSP due to its smoothness. The OA
on the test set, averaged over five independent realizations,
are shown in Fig. 3. The bars indicate the maximal and
minimal accuracies in five runs at each point, and we see
that the the fluctuation is usually within 2% and within 1%
in a majority of cases. One can observe from Figs. 3(a) and

(a) (b)
Alfalfa

Corn−notill

Corn−min

Corn

Grass/Pasture

Grass/Trees

Grass/Pasture−mowed

Hay−windrowed

Oats

Soybeans−notill

Soybeans−min

Soybean−clean

Wheat

Woods

Building−Grass−Trees−Drives

Stone−steel Towers

Fig. 1. (a) Training and (b) test sets for the Indian Pines image.

(b) that for the pixel-wise kernel sparsity model,γ = 512
leads to the highest OA at all sparsity levels. For a fixed
γ, the performance of KOMP and KSP generally improves
as K0 increases, and tends to saturate asK0 reaches 30-50.
For KSOMP and KSSP, as shown in Figs. 3(c) and (d), the
same tendency cannot be observed. However, the kernel joint
sparsity model is more stable than the pixel-wise model, as
for a large range of sparsity levelK0 and sufficiently large
γ, the overall accuracy is always around 96% with a small
variance. The stable performance suggests that we could also
use empirical parametersK0 andγ.

In KSOMP and KSSP algorithms, a regularization termλIII
is added to stabilize the matrix inversion, whereλ is a small
scalar and is chosen asλ = 10−5 in our implementation. This
parameter, however, does not seriously affect the classification
performance, because the kernel matrixKAKAKA is usually invertible
and regularization is not really needed. Fig. 4 shows the OA as
a function ofλ on the Indian Pines image, using the KSOMP
and KSSP algorithms with 10% training samples while all
other parameters are fixed. The classification performance
remains the same untilλ becomes as large as 10−3.

The next two hyperspectral images used in our experiments,
the University of Pavia and the Center of Pavia images,
are urban images acquired by the Reflective Optics System
Imaging Spectrometer (ROSIS). The ROSIS sensor generates
115 spectral bands ranging from 0.43 to 0.86µm and has a
spatial resolution of 1.3-meters per pixel [42]. The University
of Pavia image consists of 610×340 pixels, each having 103
bands, with the 12 most noisy bands removed. There are nine
ground-truth classes of interests, as shown in Table III. For
this image, we follow the same experiment settings for the
training and test sets as used in [30], [42], in which about 9%
of labeled data are used as training and the rest are used for
testing, as shown in Table III and Fig. 5.

The classification accuracies and theκ coefficients on the
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TABLE II
CLASSIFICATION ACCURACY (%) FOR THE INDIAN PINES IMAGE USING10%TRAINING SAMPLES AS SHOWN INFIG. 1 AND TABLE I.

Class SVM SVMCK KLR KLRCK OMP KOMP SOMP KSOMP KOMPCK SP KSP SSP KSSP KSPCK
1 81.25 95.83 64.58 75.00 68.75 72.92 85.42 97.92 97.92 68.75 72.92 81.25 91.67 95.83
2 86.28 96.67 89.46 96.43 65.97 86.36 94.88 97.21 99.22 74.65 87.91 95.74 97.98 99.15
3 72.80 90.93 70.67 95.47 60.67 77.47 94.93 96.67 96.93 63.20 78.53 92.80 97.73 96.93
4 58.10 85.71 67.14 86.19 38.57 62.86 91.43 93.33 95.24 40.00 62.86 82.38 96.67 97.14
5 92.39 93.74 90.60 96.42 89.49 90.38 89.49 95.75 98.43 89.04 90.60 93.29 94.85 98.21
6 96.88 97.32 98.07 98.66 95.24 97.17 98.51 99.55 99.11 95.98 96.88 98.81 98.96 99.11
7 43.48 69.57 17.39 82.61 21.74 21.74 91.30 60.87 100 21.74 21.74 82.61 17.39 100
8 98.86 98.41 98.86 97.95 97.05 98.18 99.55 100 100 99.09 98.64 99.77 100 99.97
9 50 55.56 16.67 50 33.33 55.56 0 0 88.89 61.11 55.56 0 0 100
10 71.53 93.80 74.97 93.80 68.20 77.61 89.44 94.60 98.05 70.72 79.33 91.27 94.37 97.70
11 84.38 94.37 84.87 95.54 75.96 85.68 97.34 99.28 97.43 77.94 86.90 97.43 98.33 98.20
12 85.51 93.66 81.16 91.85 54.53 77.90 88.22 95.65 98.73 61.23 78.44 89.13 97.46 98.73
13 100 99.47 100 100 100 100 100 100 100 100 100 99.47 100 100
14 93.30 99.14 95.02 96.56 92.87 95.70 99.14 99.83 99.40 95.62 95.96 99.05 99.91 99.48
15 64.91 87.43 61.70 88.01 41.23 55.85 99.12 91.81 97.95 48.25 55.56 97.95 97.08 97.37
16 88.24 100 57.65 88.24 94.12 92.94 96.47 91.76 97.65 92.94 94.12 92.94 94.12 95.29
OA 84.52 94.86 84.78 95.10 74.78 85.26 95.28 97.33 98.33 78.10 86.09 95.34 97.46 98.47
AA 79.24 90.73 73.05 89.55 68.61 78.02 88.45 88.39 97.81 72.52 78.50 87.12 86.03 98.31
κ 0.823 0.941 0.826 0.944 0.712 0.832 0.946 0.970 0.981 0.749 0.841 0.947 0.971 0.983
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Fig. 4. Effect of the regularization termλIII in the kernel sparse recovery
algorithms using 10% of all labeled samples in the Indian Pines image as the
training set.

test set using various techniques are shown in Table IV, and
the classification maps for all labeled pixels are presented
in Fig. 6. Again, the RBF kernel is used for all kernel-
based algorithms. This urban image lacks the large spatial
homogeneity. Therefore, a smaller neighborhood of size 5×5
is optimal for algorithms using a composite kernel, and the
linear and kernel joint sparsity models. Similar to the Indian
Pines image, the proposed KSOMP/KSSP algorithms achieve
better or comparable performance when compared with the
SVMCK classifier for most of the classes. KSOMP yields the
best accuracy in five out of the total nine classes, and KSSP
has the highest OA, AA, andκ coefficient. The overall perfor-
mance of SVM, KOMP, and KSP, which are kernel methods
for pixel-wise models, are comparable, and by incorporating
the contextual information, the SVMCK, KSOMP, and KSSP
techniques still have comparable performance. The sparsity-
based algorithms generally do not handle the second class,
representing Meadows, very well. For example, the accuracy
for the second class for KSOMP and KSSP is 5%-9% lower

than that for SVMCK and KLRCK, which affect the OA
because this class contains more than 45% of the samples in
the entire test set. This could be circumvented by selectingor
learning a more representative training set which is sufficiently
comprehensive to span the class subspace.

TABLE III
THE 9 GROUND-TRUTH CLASSES IN THEUNIVERSITY OF PAVIA IMAGE .

Class Samples
No Name Train Test
1 Asphalt 548 6304
2 Meadows 540 18146
3 Gravel 392 1815
4 Trees 524 2912
5 Metal sheets 265 1113
6 Bare soil 532 4572
7 Bitumen 375 981
8 Bricks 514 3364
9 Shadows 231 795

Total 3921 40002

Asphalt

Meadows

Gravel

Trees

Metal sheets

Bare soil

Bitumen

Bricks

Shadows

(a) (b)

Fig. 5. (a) Training and (b) test sets for the University of Pavia image.

In the sequel, we examine how the number of training
samples affects the classification performance for variousalgo-
rithms on the Indian Pines and the University of Pavia images.
The algorithm parameters are fixed to be the same as those
used to generate the results in Tables II and IV. For the Indian
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Ground Truth SVM, OA = 84.52 SVMCK, OA = 94.86 KLR, OA = 84.78 KLRCK, OA = 95.10

OMP, OA = 74.78 KOMP, OA = 85.26 SOMP, OA = 95.28 KSOMP, OA = 97.33 KOMPCK, OA = 98.33

SP, OA = 78.10 KSP, OA = 86.09 SSP, OA = 95.34 KSSP, OA = 97.46 KSPCK, OA = 98.47

Fig. 2. Classification maps and overall classification accuracy (OA) for the Indian Pines image on labeled pixels with 10%training samples.

TABLE IV
CLASSIFICATION ACCURACY (%) FOR THEUNIVERSITY OF PAVIA IMAGE USING 3921 (AROUND 9%) TRAINING SAMPLES AS SHOWN INFIG. 5 AND

TABLE III.

Class SVM SVMCK KLR KLRCK OMP KOMP SOMP KSOMP KOMPCK SP KSP SSP KSSP KSPCK
1 84.30 79.85 82.96 74.40 68.23 76.09 59.33 94.23 82.23 69.78 76.67 69.59 89.56 89.64
2 67.01 84.86 83.34 85.91 67.04 69.61 78.15 76.74 72.47 67.90 70.92 72.31 79.98 72.68
3 68.43 81.87 64.13 61.71 65.45 72.12 83.53 79.23 82.26 69.20 73.39 74.10 85.45 80.06
4 97.80 96.36 96.33 96.22 97.29 98.11 96.91 95.12 98.56 96.77 98.15 95.33 98.66 98.94
5 99.37 99.37 99.19 99.10 99.73 99.73 99.46 100 99.82 99.64 99.82 99.73 99.91 100
6 92.45 93.55 80.05 84.45 73.27 87.66 77.41 99.50 93.92 78.96 89.70 86.72 95.76 94.77
7 89.91 90.21 84.51 85.32 87.26 88.07 98.57 99.80 92.46 88.18 88.28 90.32 97.96 89.81
8 92.42 92.81 83.17 93.37 81.87 89.51 89.09 98.78 78.78 83.68 87.54 90.46 96.43 89.54
9 97.23 95.35 89.81 96.48 95.97 93.96 91.95 29.06 96.98 94.59 95.22 90.94 98.49 96.48

OA 79.15 87.18 83.56 84.77 73.30 78.33 79.00 85.67 81.07 74.86 79.18 78.39 87.65 83.19
AA 87.66 90.47 84.83 86.33 81.79 86.10 86.04 85.83 88.61 83.19 86.63 85.50 93.58 90.21
κ 0.737 0.833 0.784 0.799 0.661 0.725 0.728 0.815 0.758 0.681 0.735 0.724 0.840 0.785

Pines image, in each test, we randomly choose 1% to 30% of
the labeled data in each class as the training samples and the
remaining samples as the test ones. The classification accuracy
plots under various conditions are shown in Fig. 7(a) for the
Indian Pines image, where thex-axis denotes the percentage
of training samples from the total available labeled samples,
and they-axis is the OA on the test set. The accuracies are
averaged over five runs for each classifier at each percentage
level to avoid any bias induced by random sampling, and the
bars indicate the maximal and minimal accuracies for each
point in the five runs. The OA monotonically increase as the
size of training set increases, and the variance is small (the
difference between the maximum and minimum is within 1%)
when at least 5%-10% training samples become available. The

KOMPCK and KSPCK consistently yield higher OA than any
other classifiers.

For the University of Pavia image, we create a balanced
dictionary by randomly choosingL = 10,20,30,50,100, and
200 training samples per class, and these training samples are
a subset of the entire training set shown in Fig. 5(a). Since
the dictionary is considerably small, the sparsity levelK0 is
set to be no more thanL. The classification accuracy plots
are shown in Fig. 7(b), where thex-axis denotes the number
of training samples per class, and they-axis is the overall
classification accuracy on the test set. Again, the accuracies
are averaged over five runs for each classifier at eachL and the
bars represent the maximum and minimum in the five runs. It
is obvious that in most cases the OA increases monotonically
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Fig. 3. Effect of sparsity levelK0 and RBF kernel parameterγ on the Indian Pines image using (a) KOMP, (b) KSP, (c) KSOMP, and (d) KSSP.

and the variance decreases as the number of training samples
increases. For the University of Pavia image, the performance
at L = 50 is almost the same as that atL = 100 for all
classifiers. The SVMCK classifier consistently outperformsall
of the other classifiers when the number of training samples is
small, but the curves for SVMCK and KSSP tend to converge
as more training samples are available (see Table IV for the
performance comparison of SVMCK and KSSP with a large
training set). It should also be pointed out again that during the
training stage of algorithms using a composite kernel, in order
to extract the spatial features for each training sample, one
requires knowledge of the neighboring pixels or the location of
the training sample, which may not be available in the training
set. Moreover, the proposed sparsity-based algorithms rely on
the approximation accuracy from each class sub-dictionary.
Therefore, if the size of the sub-dictionary is too small, the
training samples may not be sufficient to faithfully represent
the subspace associated with each class, leading to a lower
classification accuracy than the discriminative classifierSVM.

A closer inspection of the performance gain, as a function
of the dictionary size, obtained by kernelization and contex-

tualization is shown in Figs. 8 and 9, respectively. They-axis
represents the relative gain in percentage (averaged over five
runs), which is ratio between the improvement in accuracy and
the OA of the algorithm before kernelization/contextualization.
For example, in the case of contextualization of KOMP using
the joint sparsity model, the relative gain is computed by

g=
OAKSOMP−OAKOMP

OAKOMP
∗100%,

where OAKSOMP and OAKOMP are the overall accuracy for
the KSOMP and KOMP algorithms, respectively. The relative
gain obtained by kernelization of the SP, SSP, OMP, and
SOMP algorithms is shown in Figs. 8(a) and (b) for the Indian
Pines and University of Pavia images, respectively. One can
observe that in most cases, kernelization consistently leads
to a performance gain of 5% to 20%. The only exception
exists in the KSSP and KSOMP algorithms for the Indian
Pines image with a higher percentage of training samples,
which is partly due to the fact that SSP and SOMP before
kernelization already achieve an OA of at least 95%. In this
case, an improvement of 2% to 3% means the error rate is
reduced by half which could be considered significant.
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Ground Truth SVM, OA = 79.15 SVMCK, OA = 87.18 KLR, OA = 83.56 KLRCK, OA = 84.77

OMP, OA = 73.30 KOMP, OA = 78.33 SOMP, OA = 79.00 KSOMP, OA = 85.67 KOMPCK, OA = 81.07

SP, OA = 74.86 KSP, OA = 79.18 SSP, OA = 78.39 KSSP, OA = 87.65 KSPCK, OA = 83.19

Fig. 6. Classification maps and overall classification accuracy (OA) for the University of Pavia image using around 9% labeled samples as training set.

The relative gain obtained by incorporation of spatial infor-
mation in OMP, KOMP, SVM, and KLR is shown in Figs. 9(a)
and (b) for the Indian Pines image and the University of
Pavia image, respectively. The contextualization of SP and
KSP has a similar effect to that of OMP and KOMP, and
the results are not reported here. Note that with the kernel
sparse representation model, the contextual correlation can
be incorporated through either a joint sparsity model (JSM)
or a composite kernel (CK), and thus the relative gain of
KSOMP (through JSM) and KOMPCK (through CK) over

KOMP are both shown in Fig. 9. One can observe that for
the India Pines image, the linear method OMP is the most
sensitive to the spatial information, in which the relativegain
is generally more than 20%. The other classifiers all work in
the feature space, and the gain ranges from 10% to 15% in
most cases, with a slight decrease as the number of training
samples increases. For the University of Pavia image, the
relative gain in classification accuracy is usually around 10%
to 14%. Contrary to the case of the Indian Pines image, the
improvement of the linear approach OMP is slightly less than
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Fig. 7. Effect of dictionary size for (a) the Indian Pines image and (b) the
University of Pavia image.

the kernel methods. Moreover, the performance of KLR is not
as consistent as the other methods.

The third image in our experiments, Center of Pavia, is the
other urban image collected by the ROSIS sensor over the
center of the Pavia city. This image consists of 1096× 492
pixels, each having 102 spectral bands after 13 noisy bands
are removed. The nine ground-truth classes and the number of
training and test samples for each class are shown in Table V
and illustrated in Fig. 10. For this image, about 5% of the
labeled data are used as training samples. The classification
results are summarized in Table VI, and the classification maps
are shown in Fig. 11. KLRCK achieves a 100% accuracy on
the first class (water), which occupies 66% of the test set, and
thus yields the best OA. The KSOMP and KSSP work very
well on the other classes, except that KSSP fails for the ninth
class (Shadow).

In general, one can observe from the experimental results
on these three images that the incorporation of contextual
information improves the classification performance (e.g., SP
vs. SSP, KSP vs. KSSP, SVM vs. SVMCK, etc). Moreover, op-
erating in the kernel feature space also significantly improves
the accuracy (e.g., SP vs. KSP, SSP vs. KSSP, etc).
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Fig. 8. Relative performance gain by kernelization for sparsity-based
classifiers on (a) the Indian Pines image and (b) the University of Pavia image
with different dictionary size.

TABLE V
THE 9 GROUND-TRUTH CLASSES IN THECENTER OFPAVIA IMAGE AND

THE TRAINING AND TEST SETS.

Class Samples
No Name Train Test
1 Water 745 64533
2 Trees 785 5722
3 Meadow 797 2094
4 Brick 485 1667
5 Soil 820 5729
6 Asphalt 678 6847
7 Bitumen 808 6479
8 Tile 223 2899
9 Shadow 195 1970

Total 5536 97940

V. CONCLUSIONS

In this paper, we propose a new HSI classification technique
based on sparse representations in a nonlinear feature space
induced by a kernel function. The spatial correlation between
neighboring pixels is incorporated through a joint sparsity
model. Experimental results on AVIRIS and ROSIS hyperspec-
tral images show that the kernelization of the sparsity-based
algorithms improve the classification performance compared to
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Ground Truth SVM, OA = 94.63 SVMCK, OA = 96.81 KLR, OA = 97.99 KLRCK, OA = 98.92

OMP, OA = 96.68 KOMP, OA = 97.19 SOMP, OA = 97.66 KSOMP, OA = 98.53 KOMPCK, OA = 98.46

SP, OA = 96.40 KSP, OA = 97.08 SSP, OA = 96.93 KSSP, OA = 97.82 KSPCK, OA = 97.55

Fig. 11. Classification maps and overall classification accuracy (OA) for the Center of Pavia image using 5536 training samples (around 5% of all labeled
samples) as shown in Fig. 11 and Table V.
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TABLE VI
CLASSIFICATION ACCURACY (%) FOR THECENTER OFPAVIA IMAGE USING 5536TRAINING SAMPLES (AROUND 5% OF ALL LABELED SAMPLES AS

SHOWN IN FIG. 10 AND TABLE V).

Class SVM SVMCK KLR KLRCK OMP KOMP SOMP KSOMP KOMPCK SP KSP SSP KSSP KSPCK
1 99.19 97.46 99.63 100 98.91 98.13 99.32 99.07 98.98 98.20 98.09 97.79 99.26 98.79
2 77.74 93.08 93.18 95.39 86.75 92.76 92.38 95.30 96.31 86.98 91.17 92.82 91.23 91.70
3 86.74 97.09 96.18 95.89 96.04 97.04 95.46 97.09 96.08 96.61 97.28 97.80 97.71 99.57
4 40.38 77.02 81.76 89.80 81.22 88.84 85.66 89.68 97.78 84.16 86.86 78.52 95.26 94.54
5 97.52 98.39 96.25 98.59 94.40 94.89 96.37 97.56 97.82 94.01 95.76 95.81 97.45 94.99
6 94.77 94.32 93.91 96.67 91.94 96.13 92.83 98.31 96.54 92.92 95.82 96.52 97.41 93.92
7 74.37 97.50 95.22 97.31 93.18 95.40 94.68 98.80 98.63 93.80 95.57 95.96 97.82 96.90
8 98.94 99.83 99.52 98.41 98.62 99.34 99.69 99.93 100 98.79 99.24 99.79 99.90 99.55
9 100 99.95 99.90 99.49 98.07 99.39 98.68 100 96.65 99.34 99.39 98.83 71.42 93.60

OA 94.63 96.81 97.99 98.92 96.68 97.19 97.66 98.53 98.46 96.40 97.08 96.93 97.82 97.55
AA 85.52 94.96 95.06 96.84 93.24 95.77 95.01 97.30 97.64 93.87 95.47 94.87 94.16 95.95
κ 0.899 0.943 0.963 0.980 0.940 0.949 0.958 0.973 0.972 0.935 0.947 0.945 0.960 0.956
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Fig. 9. Relative performance gain by contextualization forvarious classifiers
on (a) the Indian Pines image and (b) the University of Pavia image with
different dictionary size.

the linear version. It is also shown that the proposed algorithm
has a better or comparable performance to the recent spectral-
spatial single-classifiers such as SVMCK.

The proposed sparsity-based classifier is different from the
conventional sparse classifier SVM in many aspects. SVM is
a discriminative model, which finds the separating hyperplane
between two classes. A model with a fixed set of sparse

Water

Trees
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Brick
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Asphalt

Bitumen

Tile

Shadow

(a) (b)

Fig. 10. (a) Training and (b) test sets for the Center of Paviaimage.

support vectors is obtained by a training process over the
whole training set and then this SVM is used to classify all
of the test data. However, our method can be considered as a
generative model. The subspaces representing different classes
implicitly compete with each other during the sparse recovery
process, leading to a discriminative representation vector. This
sparse representation vector is extracted for each test pixel
and is thus adaptive. This will inevitably lead to an increase
in the computational cost, but the kernel matrixKKKAAA can be
computed offline. Therefore, the most intensive part in the
sparse recovery is the inversion of a matrix of at most size
K0×K0 for the OMP-based algorithms and(2K0)× (2K0)
for the SP-based algorithms. Moreover, in the OMP-based
algorithms, since the support set is sequentially augmented
by one index at a time, the inversion can be accelerated by
Cholesky decomposition [45].

Our proposed dictionary-based classifier provides several
advantages. Firstly, new training samples can be easily added
to the dictionary without re-training the model, unlike theother
classifiers (e.g., SVM and KLR) that need to re-train the model
for the new training data. Also, our algorithm is especially
useful for creating a dictionary invariant to the environmental
variations by adding synthetically generated spectral signa-
tures that account for various illuminations and atmospheric
conditions [46]. Moreover, the joint sparsity model in kernel
space is still applicable when the training data is synthetically
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generated or from a spectra library rather than taken from the
scene. On the other hand, classifiers using composite-kernels
require knowledge of the spatial features of each training data
which may not be available, and thus these classifiers may not
be applicable in the case of a synthetic or library training set.

The classification accuracy can be further improved by
a post-processing step, or combining the proposed tech-
nique with other state-of-the-art classifiers to generate a
mega-classifier [17]. Another possible direction is the de-
sign/learning of a better dictionary such that the dictionary
provides more accurate reconstruction, more discriminative
power, and/or better adaptivity to the test data.
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