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ABSTRACT
Laplacian Pyramid (LP) provides a redundant signal representation
and can be characterized as an oversampled filter bank (FB). In this
paper, a generic lifting-based parameterization reconstruction algo-
rithm is proposed to characterize all LP synthesis banks that can sat-
isfy the perfect reconstruction property. Two typical lifting-based LP
reconstruction schemes are then derived from this general represen-
tation. The first scheme presents the dual frame LP reconstruction
and its closed-form solutions for any LP filters. The second LP re-
construction scheme leads to an efficient FB, which demonstrates
improvements over the usual LP reconstruction in the presence of
noise.

Index Terms— Laplacian pyramid, lifting, oversampled filter
bank, dual frame

1. INTRODUCTION

The Laplacian pyramid (LP) introduced by Burt and Adelson [1]
has been proved to be a useful tool in image/video processing and
communication [2]. For example, LP has been the basic module to
support spatial scalability in video coding standards such as H.264
SVC standard [3]. The LP provides an overcomplete representa-
tion of visual signals, which can capture salient features of signals
at different resolutions. It is an implicit oversampling system, and
can be characterized as an oversampled filter bank (FB) or frame
[4]. As the inverse of an oversampled analysis FB, the LP recon-
struction should then have infinite realizations that can satisfy per-
fect reconstruction (PR) property [5]. From the frame theory, Do
and Vetterli presented a complete parameterization of all synthesis
FBs that can yield PR for a given LP decomposition with decima-
tion factor M [4]. Such general LP reconstruction has M 2 + M
free entries. Moreover, they revealed that the traditional LP recon-
struction is suboptimal, and proposed an efficient frame-based LP
reconstruction scheme. This scheme requires the LP filters to be
biorthogonal in order to achieve PR [4]. While a biorthogonal fil-
ter may introduce significant aliasing in the downsampled coarse LP
signal. Thus, it may not be advisable for some applications such
as spatially scalable video coding [6]. To overcome the biorthog-
onality limitation, a method called lifted pyramid was presented to
improve scalable video coding efficiency in [6]. The lifted pyramid
introduced an additional lifting step into the LP decomposition so
that the PR condition can be satisfied. However, this modification in
the LP decomposition causes the lifted pyramid has more significant
high-frequency components thus requires larger bit rate. Therefore,
it is still undesirable in the context of scalable video compression.

In this paper, we revisit the FB representation for a given LP de-
composition, and present a generic lifting-based FB representation.

We offer a complete lifting-based parameterization of all LP synthe-
sis FBs, and derive two typical LP reconstruction schemes. Both
schemes are shown to perform better than the usual LP reconstruc-
tion method.

This paper is organized as follows. Section 2 reviews the LP
scheme and its FB representation. Section 3 presents the generic
lifting-based representation of the LP scheme. As an important typ-
ical case, the close-form solutions of dual frame for the LP recon-
struction are given in Section 4. Because the dual frame recon-
struction usually invokes IIR filters, Section 5 studies another typical
lifting-based LP reconstruction scheme with an efficient FB, which
is demonstrated to have better performance than the usual LP recon-
struction. Finally, conclusions are drawn in Section 6.

2. LAPLACIAN PYRAMID AND OVERSAMPLED FILTER
BANK

The LP decomposition and its usual reconstruction can be illustrated
in Fig 1, where H(z) and G(z) are the decimation and interpolation
filters, respectively. In the LP decomposition, the coarse approxima-
tion c[n] of an input signal x[n] is generated through H(z) filtering
followed by downsampling. Then, c[n] is upsampled and filtered
to provide a prediction signal to generate the prediction error signal
d[n]. In the usual LP reconstruction, the reconstruction signal x̂[n]
is obtained by simply adding d[n] back to the prediction from c[n].
Since c[n] and d[n] have more coefficients than x[n], the LP is an
overcomplete system.
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G(z)

  M
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d[n] x[n]^

Fig. 1. The LP decomposition (left part) and its usual reconstruction
(right part).

The LP realizes a frame expansion as x[n] can be always recon-
structed from c[n] and d[n] [4]. In the FB point of view, the LP can
be formulated as an M +1-channel oversampled FB with a sampling
factor M [4]. Let superscript H denote the Hermitian transpose. The
polyphase analysis matrix for the LP decomposition in Fig. 1 is

E(z) =

[
h(z)

IM − gH(z)h(z)

]
, (1)
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where 1 × M vectors h(z) and g(z) are Type-I polyphase matri-
ces of H(z) and G(z), respectively. The corresponding polyphase
synthesis matrix of the usual LP reconstruction scheme is

R(z) =
[

gH(z) IM

]
. (2)

For any H(z) and G(z), (1) and (2) satisfy the PR condition, i.e.,

R(z)E(z) = IM . (3)

While the LP reconstruction (2) is suboptimal as explained in [4].

x[n]^

H(z)

  M

G(z)

  M

c[n]

d[n]

Fig. 2. The frame-based reconstruction scheme for the LP.

As illustrated in Fig. 2, the frame-based LP reconstruction scheme
proposed in [4] has the polyphase synthesis matrix as

R(z) =
[

gH(z) IM − gH(z)h(z)
]
. (4)

The PR condition (3) is satisfied only when H(z) and G(z) are
biorthogonal filters, i.e., h(z)gH(z) = 1. And the reconstruc-
tion (4) leads an improvement over the traditional reconstruction (2)
when H(z) and G(z) are orthogonal or near orthogonal filters. Un-
der this restriction, E(z) is a paraunitary matrix, and (4) becomes
the dual frame of (1).

3. GENERIC LIFTING-BASED RECONSTRUCTION

For any LP filters H(z) and G(z), the PR condition (3) can be al-
ways satisfied. In [4], a general complete parameterization of all PR
synthesis FBs is formulated as

R(z) = R̃(z) + U(z)[IM+1 −E(z)R̃(z)], (5)

where R̃(z) can be any particular left inverse of E(z), and U(z) is
an M×(M +1) matrix with bounded entries. (5) thus has M 2 +M
degrees of design freedom. However, the number of free parameters
can be further reduced based on the following lifting parameteriza-
tion.

For any LP filters, (1) can be factorized into two lifting steps as

E(z) =

[
1 01×M

−gH(z) IM

] [
1 h(z)

0M×1 IM

] [
01×M

IM

]
.

(6)
To invert a lifting step, we can simply subtract out what has been
added in at the forward transform. Thus, the left inverse of E(z) can
be easily achieved by inverting the lifting steps in (6). We then can
obtain the new generic form of R(z).

Theorem 1. For a given LP, its synthesis polyphase matrix R(z)
has the general lifting-based representation as

R(z) =
[

0M×1 IM

] [
1 01×M

pH(z) IM

]

×
[

1 −h(z)
0M×1 IM

] [
1 01×M

gH(z) IM

]
(7)

=
[

pH(z) IM

] [
1− h(z)gH(z) −h(z)

gH(z) IM

]
,

where p(z) is an arbitrary 1×M vector with bounded entries.
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Fig. 3. Generic lifting-based LP reconstruction scheme. Given H(z)
and G(z), it leads to perfect reconstruction for any P (z).

Let p(z) be the type-I polyphase vector of a filter P (z). Then,
the reconstruction matrix (7) can be demonstrated in Fig. 3. For a
given LP decomposition, (7) only has M degrees of design freedom.
Despite the number of free parameters reduction, (7) covers the same
design space of the synthesis FBs as (5). Specifically, we can directly
obtain the following two special cases from (7):

Case 1: If p(z) = 01×M , the synthesis matrix (7) becomes

R(z) =
[

0M×1 IM

] [
1 −h(z)

01×M IM

] [
1 0M×1

gH(z) IM

]

=
[

gH(z) IM

]
, (8)

which is just the usual LP reconstruction matrix (2).

Case 2: If H(z) and G(z) are biorthogonal filters, then h(z)gH(z)
= 1. Let P (z) = G(z), i.e., p(z) = g(z). (7) can be rewritten as

R(z) =
[

gH(z) IM

] [
1 −h(z)

0M×1 IM

] [
1 01×

gH(z) IM

]

=
[

gH(z) IM − gH(z)h(z)
]
, (9)

which is the frame-based pyramid reconstruction (4) proposed in [4].

4. DUAL FRAME RECONSTRUCTION

For any filters H(z) and G(z), the reconstruction synthesis matrix
(7) can have certain desired properties by optimizing p(z). A com-
mon question is that how we should choose p(z) such that (7) can
minimize the reconstruction errors when white noise is introduced
into LP coefficients. Such optimization problem is to find the dual
frame reconstruction solution. Through error analysis of the LP sys-
tem, we have the general close-form solutions of dual frame recon-
struction as given in Theorem 2. The details derivations and proofs
can be found in [7].

Theorem 2. For the LP with polyphase analysis matrix E(z)
given in (1), its dual frame reconstruction can be expressed as

E†(z) =
[

pH
opt(z) IM

] [
1− h(z)gH(z) −h(z)

gH(z) IM

]
, (10)

where popt(z) = h(z)−d(z)g(z)

d(z)dH(z)+h(z)hH (z)
and d(z) = 1−h(z)gH(z).

Remarks:

1. When H(z) and G(z) are biorthogonal filters, i.e., h(z)gH(z) =
1, we can directly have the dual frame of (1) from Theorem 2 as

E†(z) =
[

gH(z) IM − hH (z)h(z)

h(z)hH (z)

]
. (11)
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Fig. 4. A special lifting-based LP reconstruction scheme. It satisfies
prefect reconstruction condition for any H and G filters. When H
and G are biorthogonal, it becomes the frame-based pyramid recon-
struction.

Note that the same dual frame formulation (11) for biorthogonal LP
filters has been derived in [8] using the backward Greville formula.
Here, (11) is obtained as a special realization of the general dual
frame solution (10).

2. When H(z) is an orthogonal filter and H(z) = G(z), we
have p(z) = g(z). Then, (10) boils down to

E†(z) =
[

hH(z) IM − hH(z)h(z)
]
,

which exactly equals to EH(z) as expected.
3. Given FIR filters H(z) and G(z), the dual frame E†(z) given

by (10) generally corresponds to an IIR FB. If L(z) = d(z)dH(z)+
h(z)hH(z) is a positive constant, E†(z) is an FIR FB. Otherwise,
we can approximate L(z) by one constant to realize an FIR imple-
mentation.

5. A SPECIAL LIFTING-BASED RECONSTRUCTION

5.1. New LP Reconstruction Matrix

Considering the dual frame reconstruction (10) normally involves
IIR filters, which are undesired in real applications, we present an-
other special realization of the general lifting-based LP reconstruc-
tion (7) and let p(z) ≡ g(z). This special LP reconstruction then
has the following synthesis FB

R(z) =
[

gH(z) IM

] [
1− h(z)gH(z) −h(z)

gH(z) IM

]

=
[

gH(z)T (z) IM − gH(z)h(z)
]
, (12)

where T (z) = 2− h(z)gH(z). As shown in Fig. 4, it is interesting
to see that this special reconstruction scheme is actually a cascade
of the usual LP reconstruction (2) followed by the frame-based LP
reconstruction (4). Obviously, when H(z) and G(z) are biorthogo-
nal filters such that h(z)gH(z) = 1, then T (z) = 1 and (12) just
becomes the frame-based pyramid reconstruction (4). That’s, (4) can
be considered as a special case of (12). When H(z) and G(z) are
orthogonal filters, (12) realizes the dual frame reconstruction as well.

Table 1. A 13-tap lowpass filter and its coefficients.

n 0 ±1 ±2 ±3 ±4 ±5 ±6

l[n]/
√

2 26 19 5 -3 -4 0 2

Recall that when H(z) and G(z) are not biorthogonal filters,
the frame-based pyramid reconstruction (4) doesn’t satisfy the PR
condition. Thus, its performance would be suffered. However, the
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Fig. 5. Comparisons of reconstructions from the quantized LP co-
efficients of 512x512 ‘Barbara’ image. The LP is decomposed with
two levels, and H and G filters are the lowpass filter listed in Table 1.

LP reconstruction (12) always satisfies the PR condition, and can
still maintain good performance when H(z) and G(z) are lowpass
filters. For the simplicity, let REC-1 denote the usual reconstruc-
tion (2), REC-2 denote the frame-based pyramid reconstruction (4),
and REC-3 denote the special lifting reconstruction (12). Consider-
ing the same examples in [4], we compare the performance of these
three LP reconstruction schemes when H(z) and G(z) are the same
lowpass filter given in Table 1 and M = 2.

Firstly, we consider an image coding application where uniform
scalar quantizers with equal step sizes for the LP coefficients are
applied (in open-loop mode [4]). Fig. 5 draws the SNR result for
the ‘Barbara’ image of size 512x512. It demonstrates that REC-3
has 0.5dB gain than REC-1, while REC-2 has around 2.5dB worse
than REC-1. Secondly, we consider a typical denoising application
where the LP coefficients are usually thresholded so that only the
m most significant coefficients are retained. Table 2 lists the nu-
merical denoising results for three standard test images. We observe
that REC-3 consistently gives better performance by around 0.4dB in
SNR than REC-1. While REC-2 has worse performance than REC-
1 since the PR property is not satisfied. Note that when the LP fil-
ters are biorthogonal, e.g., 9/7 biorthogonal wavelet filters, REC-3
has exactly the same performance as REC-2, which can provide bet-
ter performance than REC-1 by around 0.5dB in SNR as presented
in [4]. However, the biorthogonal filters could introduce annoying
aliasing components into low-resolution LP subbands, especially in
image texture and/or edges regions. While the lowpass filter can
generate more pleasing visual quality [6].
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 M

 M
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F M-1

X
X̂

d 0

c

d M-1

d

Fig. 6. Laplacian pyramid as an oversampled FB, where
{d0, d2, . . . , dM−1} are the polyphase components of d[n] [4].

2814



Table 2. SNR values of the reconstructed signals from the m most
significant LP coefficients. The image sizes are 512x512, and the LP
is decomposed with six levels.

m 212 214 216

REC-1 9.43 12.60 21.55
Barbara REC-2 8.80 11.38 15.67

REC-3 9.63 12.96 22.22
REC-1 11.28 15.44 23.04

Goldhill REC-2 10.27 12.72 15.20
REC-3 11.69 15.68 23.70
REC-1 13.37 18.80 25.78

Peppers REC-2 11.43 14.03 15.31
REC-3 13.75 19.35 26.29

5.2. Multilevel Laplacian Pyramid

Given the polyphase analysis matrix (1) and reconstruction matrix
(12), the LP can be expressed as an oversampled FB shown in Fig. 6.
The equivalent filters in Fig. 6 can be formulated as

Ki(z) = zi −Gi(z
M )H(z), for i = 0, . . . , M − 1, (13)

Ḡ(z) = T (zM )G(z), (14)

Fi(z) = z−i −G(z)Hi(z
M ), for i = 0, . . . , M − 1.(15)

Given lowpass filters G(z) and H(z), it is easy to see that Ḡ(z) is
still a lowpass filter, and Ki(z), Fi(z) are all high-pass filters.
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Fig. 7. Frequency responses of the equivalent filters for 3-level LP
reconstruction (12).

The multilevel representation can be achieved when the LP scheme
is iterated on the coarse signal c[n]. For the LP reconstruction (12),
the equivalent synthesis filters at the n-level LP reconstruction are

Ḡ
(n)
i (z) =

j=n−1∏
j=0

Ḡ(zMj

), (16)

F
(n)
i (z) = Fi(z

Mn−1
)

j=n−2∏
j=0

Ḡ(zMj

), for i = 0, . . . , M − 1. (17)

Fig. 7 shows an example of frequency responses of the equivalent
filters (17) when the LP filters are the lowpass filter from Table 1.
It depicts that the synthesis filters are bandpass and match with the
frequency response regions of corresponding subbands. Thus, the

REC-3 reconstruction scheme can confine the errors from highpass
subbands of a multilevel LP. This leads to the better performance
than REC-1 in coding applications. It also has the prominent ad-
vantage over REC-1 when the errors in the LP coefficients have non-
zero mean. In such case, with the REC-1 reconstruction, the nonzero
mean propagates through all lowpass synthesis filters and appears in
the reconstructed signal. In the contrast, with REC-3 reconstruction,
the nonzero mean is cancelled by the bandpass filters. We consider
the same example in [4], that’s, the errors in the LP coefficients (6
levels LP decompositions) are uniformly distributed in [0,0.1]. The
SNR values for three reconstruction schemes REC-1, REC-2, and
REC-3 are 6.25dB, 14.17dB and 17.20dB, respectively. Although
synthesis functions of REC-3 have similar frequency responses to
those of REC-2, it has better noise elimination performance because
REC-2 does not satisfy the PR condition for the given lowpass filter.

6. CONCLUSION

In this paper, we present a generic lifting-based LP reconstruction al-
gorithm to characterize all synthesis FBs satisfying the PR property.
For the LP with decimation factor M , our generic representation
only has M free parameters in constat to M 2 +M free entries in the
generic reconstruction FBs presented in [4]. This leads to consider-
able simplifications in optimum FB design. Two typical lifting-based
reconstruction schemes are derived from our general reconstruction
algorithm. The first scheme presents the general solutions of dual
frame reconstruction. It can minimize white noise errors in LP coef-
ficients, while usually invokes IIR filters. The second special scheme
allows to choose lowpass filters to suppress aliasing in low resolution
LP subbands efficiently and at the same time lead to improvements
over the usual LP method in the presence of noise. This new lifting
LP reconstruction can improve H.264 spatially scalable video coding
performance and the results will be presented in our other papers.
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