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ABSTRACT

This paper presents a novel iterative greedy reconstruction algorithm
for practical compressed sensing (CS), called the sparsity adaptive
matching pursuit (SAMP). Compared with other state-of-the-art
greedy algorithms, the most innovative feature of the SAMP is its
capability of signal reconstruction without prior information of the
sparsity. This makes it a promising candidate for many practical
applications when the number of non-zero (significant) coefficients
of a signal is not available. The proposed algorithm adopts a sim-
ilar flavor of the EM algorithm, which alternatively estimates the
sparsity and the true support set of the target signals. In fact, SAMP
provides a generalized greedy reconstruction framework in which
the orthogonal matching pursuit and the subspace pursuit can be
viewed as its special cases. Such a connection also gives us an in-
tuitive justification of trade-offs between computational complexity
and reconstruction performance. While the SAMP offers a compara-
bly theoretical guarantees as the best optimization-based approach,
simulation results show that it outperforms many existing iterative
algorithms, especially for compressible signals.

Index Terms— Sparsity adaptive, greedy pursuit, compressed
sensing, compressive sampling, sparse reconstruction

1. INTRODUCTION

Compressed sensing (CS) [1] has gained increased interests over the
past few years. Suppose that x is a length-N signal. It is said to
be K-sparse (or compressible) if x can be well approximated using
K � N coefficients under some linear transform. According to the
CS theory, such a signal can be acquired through the following linear
random projections:

y = Φx + e, (1)

where y is the sampled vector with M � N data points, Φ rep-
resents an M × N random projection matrix and e is the acquisi-
tion noise. The CS framework is attractive as it implies that x can
be faithfully recovered from only M = O(K log N) samples [1],
suggesting the potential of significant cost reduction in digital data
acquisition.

Although the encoding process is simply linear projection, the
reconstruction requires some non-linear algorithms to find the spars-
est signal from the measurements. One challenging question in the
CS research is the development of fast reconstruction algorithm
with reliable accuracy and (nearly) optimal theoretical performance.

∗This work has been supported in part by the National Science Foundation
under Grant CCF-0728893.

Among existing reconstruction algorithms, the famous basis pur-
suit (BP) [2] aims at the l1 minimization using linear programming
(LP). While it requires a minimal number of measurements, its
high computational complexity may prevent it from practical large-
scale applications. Several fast convex relaxation algorithms have
been proposed to solve or approximate the solution of BP, e.g., the
gradient projection method in [3].

Another popular class of sparse recovery algorithms is based on
the idea of iterative greedy pursuit. The earliest ones include the
matching pursuit and orthogonal matching pursuit (OMP) [4]. Their
successors include the stagewise OMP (StOMP) [5] and the regular-
ized OMP (ROMP) [6]. The reconstruction complexity of these al-
gorithms is around O(KMN), which is significantly lower than the
BP methods. However, they require more measurements for perfect
reconstruction and they lack provable reconstruction quality. More
recently, greedy algorithms such as the subpace pursuit(SP) [7] and
the compressive sampling matching pursuit (CoSaMP) [8] have been
proposed by incorporating the idea of backtracking. They offer com-
parable theoretical reconstruction quality as that of the LP methods
and low reconstruction complexity. However, both the SP and the
CoSAMP assume that the sparsity K is known, whereas K may not
be available in many practical applications.

In this paper, we propose a new greedy algorithm called the
sparsity adaptive matching pursuit (SAMP) for blind signal recovery
when K is unknown. SAMP is a generalization of existing greedy
algorithms as both the OMP and the SP can be viewed as its special
cases. It follows the “divide and conquer” principle through stage by
stage estimation of the sparsity level and the true support set of the
target signals. The SAMP offers a comparably theoretical guaran-
tees as the best optimization-based approach. Its numerical results
are even more attractive as it outperforms all of the above-mentioned
algorithms in extensive simulations, including the l1-minimization.
The rest of this paper is organized as follows. Section 2 depicts
the big picture of above mentioned greedy pursuit algorithms and
presents the main motivation of this work. While detailed descrip-
tions of the proposed SAMP algorithm are provided in Section 3,
Section 4 presents the theoretical analysis of exact recovery and sta-
bility. Finally, simulation results and discussion are shown in Section
5, followed by the conclusion in Section 6.

2. REVIEW

This section presents a summary of existing greedy recovery al-
gorithms. They were grouped into three categories, as show in
Fig. 1(a)-(c). Here, in the k-th iteration, rk and Fk represent the
residue and the estimated signal’s support (called finalist), respec-
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tively. And in Fig. 1(c), Ck corresponds to the candidate set of the
SP/CoSAMP algorithms. Among these algorithms, the OMP, the
STOMP and the ROMP adopt a bottom-up approach by sequentially
adding the support set of x. On the other hand, the SP and the
CoSaMP use a top-down approach to iteratively refine, rather than
expand the finalist.

As can be readily seen, while the OMP and the StOMP in
Fig. 1(a) use only one test, the ROMP in Fig. 1(b) uses two tests to
add one or several coordinates to the finalist. Specifically, the OMP
adopts the maximal correlation test and in each iteration, only one
candidate is added. The test of StOMP follows the matched filtering
and hard thresholding principles to choose a subset of coordinates of
atoms. While for the ROMP, it applies a preliminary test and a final
test to build the finalist. The preliminary test is quite similar to that
of the StOMP, and the final test is designed to keep the largest subset
of those coordinates whose atoms’ correlation differ in magnitude
by at most a factor of two. For these bottom-up methods, the finalist
is updated at the end of iteration by union of the new discovered
coordinates and the finalist in the previous iteration. Then, the ob-
servation residual is also updated by subtracting the observation data
from its projection onto the subspace spanned by the atoms in the
finalist. This step is also termed as orthogonalization to ensure that
the observation residual is always orthogonal to atoms in the finalist.

Top-down approaches such as the SP and the CoSaMP also use
two different tests in each iteration. But, the size of their finalist is
kept fixed (and equal to K - the sparsity of input signal). In partic-
ular, the preliminary test is quite similar to that of the ROMP and
the final test is designed to be more subtle and thus more reliable.
After the preliminary test, a candidate list is created by union of the
short list and the finalist in the previous iteration. The final test first
solves a least square solution and then choose from the candidate list
a subset of K coordinates that are corresponding to largest entries in
magnitude of the least square solution. This subset of coordinates
serves as the finalist. The observation residual is finally updated in a
way similar to that of above-mentioned algorithms. Compared with
the bottom-up greedy algorithms, the remarkable innovation of the
SP and the CoSaMP is the backtracking technique in their final test,
which enables the algorithms to remove wrong coordinates added
in the previous iteration. Among existing greedy approaches, only
the SP and the CoSaMP have a strong theoretical guarantee com-
parable with that of the BP (l1-minimization). Besides, they can
operate when the measurements are inaccurate and/or the signal is
not strictly sparse.

Despite their low complexity, all greedy pursuit algorithms in
Fig. 1 require the sparsity K as a prior for exact recovery. How-
ever, in practical CS, this piece of information is often not avail-
able. For example, most natural image signals are only compressible
(rather than strictly sparse) under a de-correlating transform (e.g.,
the wavelet). The sparsity K (i.e., no. of significant coefficients) for
these signals could not be well-defined, let alone be known. Some
existing algorithms might be modified to handle this case. For ex-
ample, we could change the halting condition in the OMP, i.e., iter-
ating until the energy of residual is smaller than a certain threshold.
However, it is not known if this modified OMP has any theoreti-
cal guarantee of exact recovery or stability yet. In another way, we
might want to guess the value of K for the SP or the CoSaMP. How-
ever, it would either eliminate the ability of exact recovery if we
underestimate K or significantly degrade both accuracy and robust-
ness of the algorithm if we overestimate it. The following experi-
ment demonstrates the performance degradation of the SP algorithm
when K is over-estimated. Here, x is a uniformly Gaussian ran-
dom sparse signals with length of N = 256 and the sparsity of
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Fig. 1. Conceptual diagrams of (a) the OMP and the STOMP; (b)
the ROMP; (c) the SP and the CoSAMP.
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Fig. 2. Probability of exact recovery vs. estimation of sparsity in the
SP algorithm. Here, the original signal has length of N = 256 with
K = 20 non-zero entries.

K = 20. The sensing matrix Φ is the partial Fourier transform
(PFFT) [1]. 500 simulations were conducted for each pair of esti-
mated sparsity K = (20, 30, 40, 50) and the number of measure-
ments M = (50, 60, 70, 80, 90, 100). Fig. 2 shows the curves of the
probability of exact recovery vs. estimation of the sparsity. One can
see clearly that the performance of the SP algorithm drops quickly if
the estimated sparsity K is far from the truth. We also found that the
CoSAMP algorithm shows a similar performance degradation. Tak-
ing this fact into account, we aim to develop a new greedy algorithm
for blind recovery when the sparsity K is not available.

3. SPARSITY ADAPTIVE MATCHING PURSUIT

3.1. Algorithm description

Note that top-down methods such as the SP and the CoSAMP are
likely to identify the true support set more accurately thanks to their
backtracking strategy. On the other hand, bottom-up approaches
such as the OMP suggest a possible solution to estimate the value
of K by moving forward step by step. Following these observa-

582



Prelim Test Final TestCandidate kC Update kF
Update

residual kr

| |kF adaptive| |kC adaptive

Fk-1rk-1

Fig. 3. A Conceptual Diagram of the Proposed SAMP

Input: Sampling matrix Φ, Sampled vector y, step size s;
Output: A K-sparse approximation x̂ of the input signal;

———————————————————————————-
Initialization:

x̂ = 0 { Trivial initialization}
r0 = y { Initial residue}
F0 = ∅ { Empty finalist}
I = s { Size of the finalist in the first stage}
k = 1 { Iteration index}
j = 1 { Stage index}
repeat

Sk = Max(|Φ∗rk−1|, I) { Preliminary Test}
Ck = Fk−1 ∪ Sk { Make Candidate List}
F = Max(|Φ†

Ck
y|, I) { Final Test}

r = y − ΦF Φ†
F y { Compute Residue}

if halting condition true then
quit the iteration;

else if ‖r‖2 ≥ ‖rk−1‖2 then { stage switching}
j = j + 1 { Update the stage index}
I = j × s { Update the size of finalist}

else
Fk = F { Update the finalist}
rk = r { Update the residue}
k = k + 1

end if
until halting condition true;

Output: x̂F = Φ†
F y { Prediction of non-zero coefficients}

Algorithm 1: Sparsity adaptive matching pursuit (SAMP)

tions, our proposed sparsity adaptive matching pursuit (SAMP) is
designed to take advantages of both bottom-up and top-down ap-
proaches.

Fig. 3 shows the conceptual diagram of the SAMP in the k-
th iteration. One can observe that it is quite similar to that of the
SP/CoSaMP algorithms in Fig. 1(c) except that the sizes of candi-
date set |Ck| and finalist |Fk| are adaptive. This key innovation en-
ables the SAMP to conduct blind recovery without priori information
of K. The optimal values for |Ck| and |Fk| in each iteration remain
as open questions. For simplicity, we divide the recovery process
into several stages, each of which contains several iterations. |Fk|
is kept fixed for iterations in the same stage and increased by a step
size s ≤ K between two consecutive stages. Also, just as in the SP,
the candidate set is chosen as |Ck| = 2|Fk|.

Algorithm 1 presents the pseudo code of the SAMP. Here,
I = |Fk| represents the size of finalist and for a vector a, function
Max(a, I) returns I indices corresponding to the largest absolute
values of a. Also, for a set Λ ∈ {1, · · · , N}, ΦΛ is the submatrix
of Φ with indices indices i ∈ Λ. At the k-th iteration, Sk, Ck Fk,
rk represent the short list, the candidate list, the finalist and the
observation residual, respectively. For practical applications, two
immediate questions about Algorithm 1 are: (1) What are the halting
conditions? (2) How to choose the step size s?

Halting conditions: Just as in the SP, for sparse signals, the

SAMP stops when the residual’s norm ‖r‖2 is smaller than a cer-
tain threshold ε. Here, ε = 0 for noiseless measurements and ε can
be chosen as the noise energy for noisy measurements. Halting con-
dition for compressible signals is more complicated. In this case,
there is no known optimal way to stop the algorithm, even with con-
vex relaxation algorithms. One common approach is to halt when a
relative residue improvement between two consecutive iterations is
smaller than a certain threshold. The underlying intuition is that it
would not worth to take more costly iterations if the resulting im-
provement is too small. For example, in the GPSR algorithm of [3],
the program stops when coordinates in the finalist changes by a rela-
tive amount less than a threshold. Based on this principle, we suggest
that the SAMP halts when the relative change of reconstructed sig-
nal’s energy between two consecutive stages is smaller than a certain
threshold.

The step size s: The SAMP algorithm only requires s ≤ K. To
avoid overestimation, the safest choice is certainly s = 1 if K is
unknown. However, there is a trade-off between s and the recovery
speed as smaller s requires more iterations. Also, as we will show
in Section 5, the choice of s also depends on the magnitude distri-
bution of the input signal. Empirical results suggest that small s is
preferable for signal with (exponentially) decayed magnitude, while
large s is advantageous for binary sparse signal. The derivation of
the optimal value for s remains as an open question.

3.2. SAMP vs. existing greedy algorithms

From practical perspective, the most prominent feature of the SAMP
lies in the fact that it does not require K as an input parameter. From
the theoretical point of view, it still offers a strong guarantee for exact
recovery and stability, as we will show in Section 4. Also, just as the
STOMP, the SAMP adopts a stagewise approach to expand the true
support set stage by stage. In the meantime, it takes the advantage
of the backtracking idea in the SP/CoSAMP to refine the estimate of
true support set at each iteration. In this light, it is a combination of
both bottom-up and top-down principles.

We also want to point out that the SAMP provides a genarl-
ized framework for the OMP and the SP. Note that when s = 1,
SAMP can be roughly regarded as the (generalized) OMP associ-
ated with refinement feature that can remove bad coordinates during
iterations. In this case, the SAMP is always more accurate than the
OMP although it may require a few more iterations to achieve that
accuracy. In addition, when s = K, SAMP becomes exactly SP
if the restricted isometry property (RIP) condition of measurement
matrix is satisfied. In this case, it only needs one stage to find the K-
sparse approximation of the signal. Even when s < K, each stage
in the SAMP still uses a similar principle of the SP, i.e. identifying a
portion of coordinates in the true support set and then using several
iterations to refine this estimate. However, in general, SAMP and
SP behave differently. Compared with the SP, SAMP establishes a
different goal: at each stage it attempts to discover a smaller number
of coordinates in the true support but expects a higher accuracy.

4. THEORETICAL PERFORMANCE ANALYSIS

This section describes our theoretical analysis of the behavior of
SAMP for sparse and compressible signals in both noiseless and
noisy cases. Because the proofs are mainly based on the proof
framework of SP, the following theorems are formatted in parallel
with those in [7]
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Theorem 1 (Exact recovery for sparse signals): Assume x ∈ RN

is a K-sparse signal and the corresponding measurement y = Φ x.
Let Ks = s	K/s
. If the sensing matrix Φ satisfies the RIP with
parameter: δ3Ks < 0.06, SAMP algorithm guarantees exact recov-
ery of x from y via a finite number of iterations

Proof Draft: The proof is mainly based on the following lemma:

Lemma 1: If the sensing matrix satisfies the above condition of RIP:

• The stage 	K/s
 is equivalent to SP algorithm with estimated
sparsity Ks, except that they have different initial final lists
and initial observation data vectors

• SAMP recovers the target signal exactly after completing
stage 	K/s


Proof of Lemma 1: At the stage 	K/s
, both finalist and short list
have size of Ks ≥ K. Given the sizes of these lists, preliminary
test and final test of SAMP are similar to those of SP with the cor-
responding value of sparsity. The only difference is that while SP
algorithm has empty initial finalist and full initial observation data,
stage 	K/s
 has the finalist and observation residual of the last iter-
ation as its initialization. This is the first part of Lemma 1.

The second part of Lemma 1 is derived from the fact that the
condition of convergence of SP algorithm in [7] does not depend
on the those initial values but the preliminary test and final test. In
particular, it is based on the following observations :

• Energy of the part of signal x not captured by the current fi-
nalist is a constant times smaller than that of signal x not
captured by the finalist in previous iteration.

• Energy of observation residual of the current iteration is a
constant times smaller than that of previous iteration

When the condition of RIP is satisfied, both above constants are
smaller than one which results in the exact recovery after a finite
number of iterations. This is the main content of Theorem 2 and
Theorem 7 in [7]. Because the last stage is equivalent to SP with
estimated sparsity level Ks, it is obvious that the target signal will be
exactly recovered after this stage if the condition of RIP of parameter
Ks is satisfied . To complete the proof, it is sufficient to show that the
SAMP algorithm never gets stuck at any iteration of any stage, i.e.
it takes a finite number of iterations up to the stage 	K/s
. Because
at each stage, the finalist (whose size is assumed to be p), add and
discard some coordinates and there is a finite number of coordinates,
there are a finite number of combinations, at most

(
N
p

)
, where N is

the length of the signal. Thus, if there were an infinite number of
iterations, final lists would be repeated. But this is contradict with
the stage switching condition that the observation residual is always
monotonic decreasing. Hence, Theorem 1 follows.

Theorem 2 (Stability for sparse signals): With the same assumption
and notation of Theorem 1 and assume the measurement vector is
contaminated with noise: y = Φ x + e. Let energy of noise be σ2.
If the sensing matrix satisfies the RIP with parameter: δ3Ks < 0.06,
the signal approximation x̂ of SAMP algorithm satisfies:

‖x − x̂‖2 ≤ cKsσ (2)

where cKs = (1 + δ3Ks)/(δ3Ks(1 − δ3Ks))

Theorem 3 (Stability for compressible signals): Assume when the
algorithm stops, the number of coordinates in the finalist is Kstp.
With the same assumption of Theorem 2, if the sensing matrix satis-
fies the RIP with parameter: δ6Kstp < 0.03, the signal approxima-
tion x̂ of SAMP algorithm satisfies:

‖x− x̂‖2 ≤ c2Kstp(σ +
√

(1 + δ6Kstp)/Kstp‖x−xKstp‖1) (3)

Similarly, the proof of Theorem 2 and Theorem 3 is based on
Lemma 1 and the independence of corresponding theorems of SP
algorithm with its initialization. We omit the detail proof due to
space limitation.

The above theorems are sufficient conditions of SAMP for exact
recovery and stability. They are slightly more restrictive than corre-
sponding results of SP algorithms because the true sparsity level K
is always smaller than or equals the estimated one Ks. This may be
regarded as an additional cost for not having precise information of
sparsity. On the other hand, the proofs also show that these sufficient
conditions may not optimal or tight enough because they only con-
sider the last stage and ignore the influence of previous stages to the
whole performance. This issue is one of our future works.

5. SIMULATION RESULTS

This section compares the simulation results of the proposed SAMP
with other greedy algorithms and the l1 optimization algorithm. We
also observe some interesting performance behaviors that could not
be justified by our theoretical analysis, especially when measure-
ments are insufficient for exact recovery. These results imply the
limitations of the sufficient conditions presented in Section 4. Some
heuristic arguments are presented to complement the theoretical part
and demystify these observation results.

5.1. Experiment 1

In this experiment, the signals of interests are Gaussian or binary
sparse signals with length of N = 256. The partial FFT sensing
operator is used with a fixed number of measurements M = 128.
Our aim is to investigate the probability of exact reconstruction vs.
the signal sparsity K for a given M . Different sparsitys are chosen
from K = 10 to K = 70 and for each K, 500 simulations were
conducted to calculate the probabilities of exact reconstruction for
different algorithms. Fig. 4(a) and Fig. 4(b) demonstrate the results
for Gaussian sparse and binary sparse signals, respectively.

As can be seen, for Gaussian sparse signals, performance of
the SAMP far exceeds that of all other algorithms, including the l1-
minimization. While all other algorithms start to fail when sparisty
K ≥ 40, the SAMP still can afford until sparsity K ≥ 60—nearly
equal a half of the number of measurements. However, for binary
sparse signals, the SAMP, along with SP, CoSaMP, are worse than
l1-minimization. They start to fail when sparisty K ≥ 30 while
l1-minimization begins to fail at K ≥ 40

5.2. Experiment 2

This experiment investigates the probability of exact recovery vs.
the number of measurements, given a fixed signal sparsity K. We
use the same setups of experiment 1 and choose K = 20, M ∈
(50, 60, 70, 80, 90, 100). For each value of M , we generate a signal
x of sparsity K and its measurements y = Φx. Then we use above
algorithms to recover x. This procedure is repeated 500 times for
each value of M . We then calculate the probabilities of exact recon-
struction. Fig. 5(a) and Fig. 5(b) depict these probability curves of
Gaussian and sparse signals, respectively. The numerical values on
x-axis denote the number of measurements M and those on y-axis
represent probability of exact recovery.

Again, we see that SAMP and l1-minimization are the best algo-
rithms for recovering Gaussian and sparse signals, respectively. It is
also interesting to observe that when the number of measurements is
insufficient for guarantee of exact recovery, the probability of exact
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Fig. 4. Prob. of exact recovery vs. the signal sparsity K. Here, the
test signal is of length N = 256 and the number of measurements
is fixed as M = 128. (a) Gaussian sparse signal. (b) Binary sparse
signal.

recovery of SAMP depends on its step size and signal types. In par-
ticular, for Gaussian sparse signals, SAMP with a smaller step size
gets a higher chance of recovering signals exactly, given the same
number of measurements. On the contrary, for binary sparse signals,
SAMP with a bigger step size (e.g SP) gets a better chance of exact
recovery of signals. Although these observation could not be justi-
fied by theorems of sufficient conditions, they may be heuristically
justified as follows.

When a signal is exponentially decayed, a preliminary test which
is based on the principle of maximal correlation, is not accurate if a
large number of coordinates are admitted into the short list. It means
that many of them might be the wrong coordinates(not in the true
support set). Thus, for this type of signal, select few but with more
caution at each stage is more efficient and accurate. As a result,
SAMP with a smaller step size is more accurate than SP.

On the contrary, when a signal is binary sparse, a preliminary
test is still decently accurate even if we admit more coordinates into
the short list. However, to justify why SAMP with a smaller step size
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Fig. 5. Prob. of exact recovery vs. the number of measurements
M . Here, the test signal is of length N = 256 and the number of
measurements is fixed as M = 128. (a) Gaussian sparse signal. (b)
Binary sparse signal.

works worse in this case, it is necessary to look into the structure of
its final test. At the stage k, we first find the least square signal ap-
proximation in the subspace spanned by columns whose coordinates
are in the candidate set Ck. Then we admit a subset of those co-
ordinates whose entries are largest in magnitude to be the final list.
This process expects to capture the coordinates in T ∩ Ck, where
T denotes the true support set. If T ⊆ Ck, the process is likely to
obtain it expectation. However, when T \ Ck is not empty, it results
in incoherent noise yT\Ck

that in turn, distorts the least square sig-
nal approximation. Our hypothesis is that energy of this incoherent
noise ‖yT\Ck

‖2 would affect the accuracy of the final list Fk specif-
ically and degrade the whole performance in general. SAMP with
smaller step size s is less efficient because size of candidate list Ck

which is proportional to s is small. Thus, even Ck ⊂ T , ‖yT\Ck
‖2 is

still large and that results in very high incoherent noise. On the other
hands, SP is more efficient because its candidate list |Ck| = K is
large and due to the efficiency of the preliminary test, ‖yT∩Ck‖2 is
also large and thus,the incoherent noise energy ‖yT\Ck

‖2 is rela-

585



tively small

Finally, Fig. 6 depicts the stagewise recovery and its incoherent
noise yT\Ck

= ΦT\Ck
xT\Ck

for binary sparse and decayed sparse
signals, respectively. Due to RIP of ΦT\Ck

, ‖yT\Ck
‖2 is propor-

tional to ‖xT\Ck
‖2. These figures demonstrate that energy of inco-

herent noise when signal is binary sparse is larger than when signal
is rapidly decayed. In other words, stagewise recovery of SAMP
is more efficient with rapidly decayed signal and less efficient with
binary sparse signal.
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Fig. 6. Incoherent noise generated by stagewise recovery. (a) Binary
sparse signal. (b) Decayed sparse signal.

5.3. Experiment 3

In this experiment set, we compare the performance of the SAMP,
the StOMP, the SP and the l1-minimization in the practical large-
scale compressed imaging scenario. The software GPSR is used for
l1-minimization because of its fast speed and good performance [3].
In addition, for the SP algorithm, the input parameter K is estimated
by setting it equal to the number of nonzero entries that the SAMP
can detect.

Three 512× 512 test images Lena, Barbara and Boat were cho-
sen and the sparsifying matrix is the popular Daubechies wavelet
9/7 wavelet. Structurally random matrices were used as the sam-
pling operator due to their fast and efficient implementations [9].
Table. 1 summarizes the PSNR results of different algorithms and
Fig. 7 shows the visual reconstructions of the image Lena 512×512
from M = N/5 measurements. The above table and figures imply
that in the practical compressed sensing, performance of the pro-
posed SAMP is comparable to that of Linear Programming and ex-
ceeds several other greedy algorithms.

In general, the SAMP may require more iterations than other
greedy algorithms such as StOMP, SP and CoSaMP, especially when
the step size s is much smaller than the true sparisty K. In the ex-
treme case, when step size s = 1, SAMP becomes the generalized
OMP and it would require at least K iterations. As depicted in the
experiment 1 and experiment 2, with compressible sparse signals,
when we increase step size s, SAMP takes fewer iterations but its

performance is gradually degraded. This is a trade-off between com-
putational complexity and performance. How to define optimal val-
ues of step size s, given some prior model of compressible signals is
our future research question.

6. CONCLUSIONS

In this paper, a novel greedy pursuit algorithm, called the sparsity
adaptive Matching Pursuit, is proposed and analyzed for reconstruc-
tion applications in compressed sensing. As its name suggests, this
reconstruction algorithm is most featured of not requiring informa-
tion of sparsity of target signals as a prior. It not only releases a com-
mon limitation of existing greedy pursuit algorithms but also keeps
performance comparable with that of strongest algorithms such as
SP, CoSaMP or linear programming. The underlying intuition of
SAMP which is similar to that of the EM algorithm is to alterna-
tively estimate the sparsity and the true support set. Extensive ex-
periment results confirm that SAMP is very appropriate for recon-
structing compressible sparse signal where its magnitudes are de-
cayed rapidly.
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Table 1. Comparison of algorithms’ objective performance: PSNR in dB

M/N Lena Boat Barbara
(Sampling rate) GPSR StOMP SP SAMP GPSR StOMP SP SAMP GPSR StOMP SP SAMP

0.1 24.80 21.31 25.88 25.90 22.63 20.04 23.43 23.52 20.27 18.40 20.77 20.91
0.2 28.65 26.29 28.47 28.48 25.73 23.58 25.87 25.86 22.58 21.24 22.63 22.80
0.3 31.58 30.34 31.94 32.07 28.50 26.88 28.68 28.85 25.04 23.07 23.58 24.87

0.4 33.64 33.42 33.60 33.99 31.06 30.24 30.85 31.07 27.45 26.25 25.83 27.80
0.5 35.78 35.59 34.73 35.42 32.37 33.33 32.71 33.05 30.11 30.27 29.33 30.19

(a) (b)

(c) (d)

Fig. 7. Reconstructed 512 × 512 Lena images from M/N = 20% sampling rate. Results of (a) GPSR: 28.65dB; (b) StOMP: 26.29dB; (c)
SP: 28.47dB; (d)SAMP: 28.48dB
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