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Abstract—This paper introduces a new framework to construct
fast and efficient sensing matrices for practical compressive
sensing, called Structurally Random Matrix (SRM). In the
proposed framework, we prerandomize the sensing signal by
scrambling its sample locations or flipping its sample signs and
then fast-transform the randomized samples and finally, sub-
sample the resulting transform coefficients to obtain the final
sensing measurements. SRM is highly relevant for large-scale,
real-time compressive sensing applications as it has fast compu-
tation and supports block-based processing. In addition, we can
show that SRM has theoretical sensing performance comparable
to that of completely random sensing matrices. Numerical sim-
ulation results verify the validity of the theory and illustrate the
promising potentials of the proposed sensing framework.

Index Terms—Compressed sensing, compressive sensing, fast
and efficient algorithm, random projection, sparse reconstruction.

I. INTRODUCTION

C OMPRESSED SENSING (CS) [1], [2] has attracted a
lot of interests over the past few years as a revolutionary

signal sampling paradigm. Suppose that is a length- signal.
It is said to be -sparse (or compressible) if can be well ap-
proximated using only coefficients under some linear
transform

where is the sparsifying basis and is the transform coeffi-
cient vector that has at most (significant) nonzero entries.

According to the CS theory, such a signal can be acquired
through the following random linear projection:

where is the sampled vector with data points, rep-
resents a random matrix and is the acquisition noise.
The CS framework is attractive as it implies that can be faith-
fully recovered from only measurements,
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suggesting the potential of significant cost reduction in digital
data acquisition.

While the sampling process is simply a random linear projec-
tion, the reconstruction process to recover the original from
the received measurements is highly nonlinear. More pre-
cisely, the CS theory suggests the following reconstruction algo-
rithm based on the -minimization of the transform coefficient
vector :

Linear programming [1], [2] and other convex optimization
algorithms [3]–[5] have been proposed to solve the minimiza-
tion. Furthermore, there also exists a family of greedy pursuit al-
gorithms [6]–[10] offering another promising option for sparse
reconstruction. These algorithms all need to compute and

multiple times. Thus, the computational complexity of
the system heavily depends on the structure of sensing matrix
and its transpose .

Preferably, the sensing matrix should be highly incoherent
with sparsifying basis , i.e. rows of do not have any sparse
representation in the basis . The incoherence between the two
matrices is mathematically quantified by the mutual coherence
coefficient [11].

Definition I.1: The mutual coherence of an orthonormal ma-
trix and another orthonormal matrix is defined
as

where are rows of and are columns of , respectively.
If and are two orthonormal matrices,

. Thus, it is easy to see that for two orthonormal
matrices and , . Incoherence implies that
the mutual coherence or the maximum magnitude of entries of
the product matrix is relatively small. Two matrices are
completely incoherent if their mutual coherence coefficient
approaches the lower bound value of .

A popular family of sensing matrices is a random projection
or a matrix of i.i.d. random variables from a sub-Gaussian
distribution such as Gaussian or Bernoulli [12], [13]. This
family of sensing matrices is well known as it is universally
incoherent with all other sparsifying bases. For example, if

is a random matrix of Gaussian i.i.d. entries and is an
arbitrary orthonormal sparsifying basis, the sensing matrix in
the transform domain is also a Gaussian i.i.d. matrix. This
universality property of a sensing matrix is important because
it enables us to sense a signal directly in its original domain
without significant loss of sensing efficiency and without any
other prior knowledge. In addition, it can be shown that random
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projection approaches the optimal sensing performance of
.

However, it is quite costly to realize random matrices in prac-
tical sensing applications as they require very high computa-
tional complexity and huge memory buffering due to their com-
pletely unstructured nature [14]. For example, to process a 512

512 image with 64 K measurements (i.e., 25% of the original
sampling rate), a Bernoulli random matrix requires a gigabyte of
storage and a giga-flop of computation, which makes both the
sampling and recovery processes very expensive and in many
cases, unrealistic.

Another class of sensing matrices is a uniformly random
subset of rows of an orthonormal matrix in which the partial
Fourier matrix (or the partial FFT) is a special case [13],
[14]. While the partial FFT is well known for having fast and
efficient implementation, it only works well in the case that the
sparsifying basis is the identity matrix, i.e., the sensing signal
is spiky at random locations. More specifically, it is shown in
[[14, Theorem 1.1]] that the minimal number of measurements
required for exact recovery depends on the incoherence of
and

(1)

where is the normalized mutual coherence

and . In the case of several popular sparsifying
bases such as wavelets and cosine transforms, this mutual co-
herence coefficient might be large and thus, resulting in perfor-
mance loss. Another approach is to design a sensing matrix that
is incoherent with a given sparsifying basis. For example, Noise-
lets is designed to be incoherent with the Haar wavelet basis in
[15], i.e. when is Noiselets transform and is the
Haar wavelet basis. Noiselets also has low-complexity imple-
mentation but then, it is unknown if noiselets are
also incoherent with other bases.

II. COMPRESSIVE SENSING WITH STRUCTURALLY

RANDOM MATRICES

A. Overview

One of remaining challenges for CS in practice is to design a
sensing framework that has the following features:

• Optimal or near optimal sensing performance: the number
of measurements for exact recovery approaches the min-
imal bound, i.e. on the order of ;

• Universality: sensing performance is equally good with al-
most all sparsifying bases;

• Low complexity, fast computation and block-based pro-
cessing support: these features of the sensing matrix are
desired for large-scale, realtime sensing applications;

• Hardware/Optics implementation friendliness: entries of
the sensing matrix only take values in the set {0, 1, 1}.

In this paper, to satisfy the aforementioned wish-list, we pro-
pose a framework called Structurally Random Matrix (SRM),
defined as a product of three matrices

(2)

where
• is either a uniform random permutation matrix

or a diagonal random matrix whose diagonal entries are
i.i.d. Bernoulli random variables with identical distribution

. A uniformly random permutation ma-
trix scrambles the signal’s sample locations globally while
a diagonal matrix of Bernoulli random variables flips the
signal’s sample signs locally. Hence, we often refer to the
former as the global randomizer and the latter as the local
randomizer.

• is an orthonormal matrix that, in practice, is
selected among popular fast computable transforms such
as the Fast Fourier Transform (FFT), the Discrete Co-
sine Transform (DCT), the Walsh-Hadamard Transform
(WHT), or their block diagonal versions. The purpose of
the matrix is to spread the information (or the energy)
of the signal’s samples over all measurements.

• is a subsampling matrix/operator. The oper-
ator selects a random subset of rows of the matrix . If
the probability of selecting a row is , the number of rows
selected would be on average. In matrix representation,

is simply a random subset of rows of the identity

matrix of size . The scale coefficient is to nor-
malize the transform so that the energy of the measurement
vector is almost similar to that of the input signal vector.

Equivalently, the proposed sensing algorithm SRM contains
three steps:

• Step 1 (Prerandomization): Randomize a target signal by
either flipping its sample signs or uniformly permuting its
sample locations. This step corresponds to multiplying the
signal with the matrix ;

• Step 2 (Transformation): Apply a fast transform to the
randomized signal;

• Step 3 (Subsampling): Randomly pick up measure-
ments out of transform coefficients. This step corre-
sponds to multiplying the transform coefficients with the
matrix .

Conventional CS reconstruction algorithm is employed to
recover the transform coefficient vector by solving the
minimization:

(3)

Finally, the signal is recovered as . The framework can
achieve perfect reconstruction if .

To the best of our knowledge, the proposed sensing algorithm
is distinct from existing methods such as random projection
[16], random filters [17], structured Toeplitz [18], and random
convolution [19] via the first step of prerandomization. Its main
purpose is to scramble the structure of the signal, converting the
sensing signal into a white noise-like one to achieve universally
incoherent sensing.

Depending on specific applications, SRMs can offer compu-
tational benefits either at the sensing process or at the signal
reconstruction process. For applications that allow us to per-
form sensing operation by computing the complete transform

, we can exploit the fast computation of the matrix at the
sensing side. However, if it is required to precompute
(and then store it in the memory for future sensing operation),
there would not be any computational benefit at the sensing
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side. In this case, we can still exploit the structure of SRM to
speed up the signal recovery at the reconstruction side as in
most -minimization algorithms [3], the majority of computa-
tional complexity is spent to compute matrix-vector multipli-
cations and , where . Note that both and

are fast computable if the sparsifying matrix is fast com-
putable, i.e. their computational complexity is typically in the
order of to . In addition, when is selected
to be the Walsh-Hadamard matrix, the SRM’s entries only take
values in the set { 1, 1}, which is friendly for hardware/optics
implementation.

The paper is organized as follows. We first discuss about
incoherence between SRMs and sparsifying transforms in
Section III. More specifically, Section III-A will give us a rough
intuition of why an SRM has sensing performance comparable
to that of a Gaussian random matrix. Detailed quantitative
analysis of the incoherence for SRMs with the local random-
izer and the global randomizer is presented in Section III-B.
Based on these incoherence results, theoretical performance
of the proposed framework is analyzed in Section IV and then
followed by experimental validation in Section V. Finally,
Section VI concludes the paper with detailed discussions on
practical advantages of the proposed framework and relation-
ship between the proposed framework and other related works.

B. Notations

We reserve a bold letter for a vector, a capital and bold letter
for a matrix, a capital and bold letter with one subindex for a row
or a column of a matrix and a capital letter with two subindices
for an entry of a matrix. We often employ for the input
signal, for the measurement vector, for the
sensing matrix, for the sparsifying matrix and

for the sparse transform coefficient vector . We
use the notation to indicate the index set (or coordinate
set) of the nonzero entries of the vector . Occasionally, we also
use to alternatively refer to this index set of nonzero entries
(i.e., ). In this case, denotes the portion of
vector indexed by the set and denotes the submatrix of

whose columns are indexed by the set .
Let and , be the entry at the row and the

column of and , be the entry on the diagonal
of the diagonal matrix , and be the row of and

column of , respectively.
In addition, we also employ the following notations:
• is on the order of , denoted as , if

• is on the order of , denoted as , if

where is some positive constant.
• A random variable is called asymptotically normally

distributed , if

Fig. 1. QQ plots comparing the distribution of entries of ������ and Gaussian
distribution. (a)��� is the local randomizer. (b)��� is the global randomizer. The
plots all appear nearly linear, indicating that entries of ������ are nearly Normal
distributed.

III. INCOHERENCE ANALYSIS

A. Asymptotical Distribution Analysis

If is an i.i.d. Gaussian matrix and is an ar-
bitrary orthonormal matrix, is also an i.i.d. Gaussian ma-
trix , implying that with overwhelming probability, a
Gaussian matrix is highly incoherent with all orthonormal .
In other words, the i.i.d. Gaussian matrix is universally inco-
herent with fixed transforms (with overwhelming probability).
In this section, we will argue that under some mild conditions,
with , where are defined as in the pre-
vious section, entries of are asymptotically normally dis-
tributed , where . This claim is illustrated
in Fig. 1, which depicts the quantile-quantile (QQ) plots of en-
tries of , where , is the 256 256 DCT matrix
and is the Daubechies-8 orthogonal wavelet basis. Fig. 1(a)
and Fig. 1(b) correspond to the case is the local and global
randomizer, respectively. In both cases, the QQ-plots appear
straight, as the Gaussian model demands.

Note that is a submatrix of . Thus, asymptotical
distribution of the entries of is similar to that of entries of

.
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Before presenting the asymptotical theoretical analysis, we
introduce the following assumptions for the local and global
randomization models.

1) Assumptions for the Local Randomization Model:
• is an unit-norm row matrix with absolute mag-

nitude of all entries on the order of .
• is an unit-norm column matrix with the maximal

absolute magnitude of entries on the order of .
2) Assumptions for the Global Randomization Model: The

global randomization model requires similar assumptions
for the local randomization model plus the following extra
assumptions

• The average sum of entries on each column of is on the
order of .

• Sum of entries on each row of is zero.
• Entries on each row of and on each column of are not

all equal.
Theorem III.1: Let , where is the local random-

izer. Given the assumptions for the local randomization model,
entries of are asymptotically normally distributed
with .

Proof: With notations being defined in Section II-B, we
have:

(4)

Denote . Because are i.i.d. Bernoulli
random variables, are i.i.d. zero-mean random variables with

. The assumption that are on the order of

implies that there exist two positive constants and
such that

(5)

The variance of , , can be bounded as follows:

(6)
Because is a sum of i.i.d. zero-mean random variables

, according to the Central Limit Theorem (CLT) (see
Appendix A), . To apply the CLT, we need
to verify its convergence condition: for a given and there
exists that is sufficiently large such that satisfy

(7)

To show that this convergence condition is met, we use the
counterproof method. Assume there exists such that ,
there exists at least

(8)

From (5), (6) and (8), we achieve

(9)

This inequality can not be true if is on the order of .
The underlying intuition of the convergence condition is to guar-
antee that there is no random variable with dominant variance
in the sum . In this case, it simply requires that there is no
dominant entry on each column of .

Similarly, we can obtain the following result when is a
uniformly random permutation matrix.

Theorem III.2: Let , where is the global random-
izer. Given the assumptions for the global randomization model,
entries of are asymptotically normally distributed ,
where .

Proof: Let be a uniform random permu-
tation of . Note that can be viewed as a
sequence of random variables with identical distribution. In par-
ticular, for a fixed

Denote (we omit the dependence of on and
to simplify the notation), we have

Using the assumption that the vector has zero sum of entries
and unit norm, we can arrive at

and also

In addition, note that although have the identical
distribution, they are correlated random variables because of the
uniformly random permutation without replacement. Thus, with
a pair of and such that , we have



DO et al.: FAST AND EFFICIENT COMPRESSIVE SENSING 143

The last equation holds because the vector has zero sum
of entries and unit-norm. Then, we derive the expectation and
the variance of as follows:

The forth equations holds because the column has unit-
norm. The theorem is then a simple corollary of the Combina-
torial Central Limit Theorem [20] (see Appendix A), provided
that its convergence condition can be verified as follows:

(10)
where

Because , and ,
the (10) holds if the following equation holds:

(11)

As are on the order of , we have

(12)

Also, due to and are on the
order of :

(13)

Combination of (12) and (13) implies (11) and thus the conver-
gence condition of the Combinatorial Central Limit Theorem is
verified.

The condition that each row of has zero sum of entries is to
guarantee that entries of have zero mean while the condition
that entries on each row of and on each column of are not all
equal is to prevent the degenerate case that entries of might
become a deterministic quantity. For example, when entries of

a row are all equal , , which is a
deterministic quantity, not a random variable. Note that these
conditions are not needed when is the local randomizer.

If is a DCT matrix, a (normalized) WHT matrix or a (nor-
malized) DFT matrix, all the rows (except for the first one) have
zero sum of entries due to the symmetry in these matrices. The
first row, whose entries are all equal , can be considered
as the averaging row, or a lowpass filtering operation. When
the input signal is zero-mean, this row might be chosen or not
without affecting quality of the reconstructed signal. Otherwise,
it should be included in the chosen row set to encode the signal’s
mean. Last, the condition that absolute average sum of every
column of the sparsifying basis are on the order of
is also close to the reality because the majority of columns of
the sparsifying basis can be roughly viewed as bandpass and
highpass filters whose sum of the coefficients are always zero.
For example, if is a wavelet basis (with at least one vanishing
moment), then all columns of (except one at DC) has column
sum of zero.

The aforementioned theorems show that under certain con-
ditions, the majority of entries of (also ) behave like
Gaussian random variables , where .
Roughly speaking, this behavior constitutes to a good sensing
performance for the proposed framework. However, these
asymptotic results are not sufficient for establishing sensing
performance analysis because in general, entries of are not
stochastically independent, violating a condition of a sensing
Gaussian i.i.d. matrix. In fact, the sensing performance might
be quantitatively analyzed by employing a powerful analysis
framework of a random subset of rows of an orthonormal
matrix [14]. Note that is also an orthonormal matrix when
is the local or the global randomizer.

Based on the Gaussian tail probability and a union bound
for the maximum absolute value of a random sequence, the
maximum absolute magnitude of can be asymptotically
bounded as follows:

where and is some positive constant and stands for
“asymptotically smaller or equal,” i.e., when goes to infinity,

becomes .

If we choose , the above inequality is
equivalent to:

which implies that with probability at least , the mutual

coherence of and is upper bounded by ,

which is close to the optimal bound, except the factor.
In the following section, we will employ a more powerful

tool from the theory of concentration inequalities to analyze the
coherence between and when is finite. We also
consider a more general case that is a sparse matrix (e.g., a
block-diagonal matrix).
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B. Incoherence Analysis

Before presenting theoretical results for incoherence analysis,
we introduce assumptions for block-based local and global ran-
domization models.

1) Assumptions for the Block-Based Local Randomization
Model:

• is an unit-norm row matrix with the maximal
absolute magnitude of entries on the order of ,

where , i.e., , where
is some positive constant.

• is an unit-norm column matrix.
2) Assumptions for the Block-Based Global Randomization

Model: The block-based global randomization model requires
similar assumptions for the block-based local randomization
model plus the following assumption:

• All rows of have zero sum of entries.
Theorem III.3: Let , where is the local random-

izer. Given the assumptions for the block-based local random-
ization model, then

• With probability at least , the mutual coherence of

and is upper bounded by .

• In addition, if the maximal absolute magnitude of entries
of is on the order of , the mutual coherence is

upper bounded by , which is independent

of .
Proof: A common proof strategy for this theorem as well

as for other theorems in this paper is to establish a large devi-
ation inequality that implies the quantity of our interest is con-
centrated around its expected value with high probability. Proof
steps include:

• Showing that the quantity of our interest is a sum of inde-
pendent random variables;

• Bounding the expectation and variance of the quantity;
• Applying a relevant concentration inequality of a sum of

random variables;
• Applying a union bound for the maximum absolute value

of a random sequence.
In this case, the quantity of interest is

Denote , for (in the support
set of the row ). Because are i.i.d. Bernoulli random
variables, are also i.i.d. random variables with .

are also bounded because .
is a sum of independent, bounded random variables. Ap-

plying the Hoeffding’s inequality (see Appendix B) yields:

The next step is to evaluate . Here,
can be roughly viewed as the approximation of the variance

of .

(14)

If the maximal absolute magnitude of entries of is on the
order of

where is some positive constant, then

(15)
Finally, we derive an upper bound of the mutual coherence

by taking a union bound for the max-
imum absolute value of a random sequence:

Substituting into the above inequality
yields

Thus, with an arbitrarily , (14) holds and we achieve the
first claim of the Theorem

In the case that (15) holds, we achieve the second claim of
the Theorem

Remark III.1: When is chosen as the DCT or the normal-
ized WHT, the maximal absolute magnitude of entries is on
the order of . As a result, the mutual coherence of

and an arbitrary is upper bounded by , which

is also consistent with our asymptotic analysis above. In other
words, when at least or is a dense and uniform matrix, i.e.,
the maximal absolute magnitude of their entries is on the order
of , their mutual coherence approaches the minimal
bound, except for the factor. In general, the mutual coher-
ence between an arbitrary and a sparse matrix (e.g. block

diagonal matrix of block size ) might be times larger.
Cumulative coherence is another way to quantify incoherence

between two matrices [21].
Definition III.1: The cumulative coherence of an ma-

trix and an matrix is defined as

where and are rows of and columns of , respectively.
The cumulative coherence measures the average

incoherence between two matrices and while mutual co-
herence measures the entry-wise incoherence. As a re-
sult, the cumulative coherence seems to be a better indicator of
average sensing performance. In many cases, we are only inter-
ested in cumulative coherence between and , where is



DO et al.: FAST AND EFFICIENT COMPRESSIVE SENSING 145

the support of the transform coefficient vector. As will be shown
in the following section, the cumulative coherence provides a
more powerful tool to obtain a tighter bound for the number of
measurements required for exact recovery.

From the definition of cumulative coherence, it is easy to
verify that . If we directly apply the result of the
Theorem III.3, we obtain a trivial bound of the cumulative co-

herence: for an arbitrary basis and

for a dense and uniform . In fact, we

can get rid of the factor by directly measuring the cumu-
lative coherence from its definition.

Theorem III.4: Let , where is the local random-
izer. Given the assumptions for the block-based local random-
ization model, with probability at least , the cumulative
coherence of and , where , is upper bounded by

.

Proof: Denote and are columns of . Let
and be rows of and columns of , respectively.

Denote and is the matrix of columns ,
. First, we derive the upper bound for the Frobenius

norm of

The last equation holds because . Also, the bound
for the spectral norm is

The last equation holds because . Now, we have

Denote . Note that is a
Rademacher sum of vectors and is a random vari-
able. To show that is concentrated around its expectation,
we first derive bound of . It is easy to verify that for a

random variable , . Thus, we will derive
the upper bound for the simpler quantity

The third equality holds because are i.i.d. Bernoulli
random variables and thus, . As a result

Applying Ledoux’s concentration inequality of the norm of a
Rademacher sum of vectors [22] (see Appendix B) and noting
that can be viewed as the variance of yield

Finally, applying a union bound for the maximum absolute
value of a random process, we obtain

Substituting into the above inequality, we
get

which leads to

Remark III.2: When , the cumula-

tive coherence is upper bounded by . When

, the upper bound of the cumulative co-

herence is , which is similar to that of the

mutual coherence in Theorem III.3.
Remark III.3: When is the DCT or the normalized WHT,

the maximum absolute magnitude of entries is on the order of
. As a result, the cumulative coherence of and any

arbitrary ,where , is upper bounded by

if .
Remark III.4: The above theorem represents the worst-case

analysis because can be an arbitrary matrix (the worst case
corresponds to the case when is the identity matrix). When

is known to be dense and uniform, the upper bound of cumu-
lative coherence, according to Theorem III.3 and the fact that

, is , which is, in general, better than

.
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The asymptotical distribution analysis in Section III-A
reveals a significant technical difference required for two ran-
domization models. With the local randomizer, entries of
are sums of independent random variables while with the global
randomizer, they are sums of dependent random variables. Sto-
chastic dependence among random variables makes it much
harder to set up similar arguments of their sum’s concentration.
In this case, we will show that the incoherence of and
might depend on an extra quantity, the heterogeneity coefficient
of the matrix .

Definition III.2: Assume is an matrix. Let be
the support of the column . Define:

(16)

The column-wise heterogeneity coefficient of the matrix is
defined as

(17)

Obviously, . Also, illustrates the dif-
ference between the largest entry’s magnitude and the average
energy of nonzero entries. Roughly speaking, it indicates hetero-
geneity of nonzero entries of the vector . If nonzero entries of
a column are homogeneous, i.e. they are on the same order
of magnitude, is on the order of a constant. If all nonzero en-
tries of a matrix are homogeneous, the heterogeneity coefficient
is also on the order of a constant, and is referred
as a uniform matrix. Note that a uniform matrix is not neces-
sarily dense, for example, a block-diagonal matrix of DCT or
WHT blocks.

The following theorem indicates that when the global ran-
domizer is employed, the mutual coherence between and

is upper-bounded by , where is the block

size of and is an arbitrarily matrix with the heterogeneity
coefficient .

Theorem III.5: Let , where is the global ran-
domizer. Assume that ,
where is defined as in (16). Given the assumptions for the
block-based global randomization model, then

• With probability at least , the mutual coherence of

and is upper-bounded by , where

is defined as in (17)
• In addition, if is dense and uniform, i.e., the max-

imum absolute magnitude of its entries is on the order of
and , the mutual coherence is

upper-bounded by , which is independent

of .
Proof: Let be a uniformly random per-

mutation of and

As in the proof of the Theorem III.2, can be viewed
as a sequence of dependent random variables with identical dis-
tribution, i.e. for a fixed :

The condition of is equivalent to ,

where is some positive constant. Define as follows:

if
if .

It is easy to verify that . Define as the sum
of dependent random variables

Note that are zero-mean random variables be-
cause has zero sum of entries. Thus, and

. Then, applying the Sourav’s theorem of con-
centration inequality for a sum of dependent random variables
[23] (see Appendix B) results in

Denote . The above inequality is equivalent to

By choosing , we achieve

If , the denominator inside the exponent

is smaller than . Thus

Finally, after taking the union bound for the maximum abso-
lute value of a random sequence and simplifying the inequality,
we obtain the first claim of the Theorem:

If is known to be dense and uniform, i.e.,
, where is some positive

constant. We then define as the following:

if
if .
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Note that and . Repeat the same
arguments above, we have

Substituting produces

If , the denominator inside the exponent is
smaller than . Thus,

After taking the union bound of the maximum absolute value
of a random sequence, we achieve the second claim of the
Theorem.

Remark III.5: The first part of theorem implies that when is
a dense and uniform matrix (e.g., DCT or normalized WHT) and

is a uniform matrix (not necessarily dense), the mutual coher-

ence closely approaches the minimum bound .

Although in this theorem, the mutual coherence depends on
the heterogeneity coefficient, one will see in the experimental
Section V that this dependence is almost negligible in practice.

As a consequence of this theorem, when at least or is
dense and uniform, the mutual coherence of and is roughly

in the order of , which is quite close to the minimal

bound , except for the factor. Otherwise, the coher-
ence linearly depends on the block size of and is in the

order of . As a matter of fact, this bound is almost

optimal because when is the identity matrix, the mutual co-
herence is actually equal to the maximum absolute magnitude
of entries of , which is in the order of .

Remark III.6: Although the theoretical results of the global
randomizer seem to be weaker than those of the local random-
izer, there are a few practical motivations to study the global ran-
domizer. Note that speech scrambling has been used for a long
time for secure voice communication. Also, analog image/video
scrambling have been implemented for commercial security re-
lated applications such as CCTV surveillance system. In ad-
dition, permutation does not change the dynamic range of the
sensing signal, i.e. no bit expansion in actual implementation.
The computation cost of random permutation is only ,
which is very easy to implement in software. From a security
perspective, the operation of random permutation offers a larger
key space than random sign flipping as the former offers
configurations while the latter provides only configurations.
Moreover, as shown in the numerical experiment section, one
can employ highly sparse measurement matrix with random per-
mutation without substantial performance degradation.

IV. COMPRESSIVE SAMPLING PERFORMANCE ANALYSIS

Section III demonstrates that under some mild conditions, the
matrix and are highly incoherent, implying that the ma-

trix is almost dense. When is dense, energy of nonzero
transform coefficients is distributed over all measurements.
Commonly speaking, this is good for signal recovery from a
small subset of measurements because if energy of some trans-
form coefficients were concentrated in few measurements that
happens to be bypassed in the sampling process, there is no
hope for exact signal recovery even when the most sophisticated
reconstruction method is employed. This section shows that a
random subset of rows of the matrix yields almost op-
timal measurement matrix for compressive sensing.

A. Assumptions for Performance Analysis

A signal is assumed to be sparse in some sparsifying basis
, where the vector of transform coefficients has

no more than nonzero entries. The sign sequence of nonzero
transform coefficients which is denoted as , is assumed to
be a random vector of i.i.d. Bernoulli random variables (i.e.,

). Let be the measurement vector,

where is a Structurally Random Matrix. As-
sumptions of the block-based local randomization and of the
block-based global randomization models hold.

B. Theoretical Results

Theorem IV.1: With probability at least , the proposed
sensing framework can recover -sparse signals exactly if the
number of measurements . If is a
dense and uniform rather than block-diagonal (e.g., DCT or nor-
malized WHT matrix), the number of measurements needed is
on the order of .

Proof: This is a simple corollary of the theorem of Candès
et al. [[14] Theorem 1.1] (1) because (i) is an or-
thonormal matrix, and (ii) our incoherence results between
and in Theorem III.3 and Theorem III.5.

Remark IV.1: If is dense and uniform, the number of mea-
surements for exact recovery is always regard-
less of the block size . This implies that we can use the iden-
tity matrix for the transform . For example, when
the input signal is known to be spectrally sparse, compressively
sampling it in the time domain is as efficient as in any other
transform domain.

Compared with the framework that uses random projection,
there is an extra scale factor of for the number of mea-
surements for exact recovery. In fact, by employing the bound
of cumulative coherence, we can eliminate this upscale factor
and thus, successfully showing optimal performance guarantee.

Theorem IV.2: With probability at least , the proposed
framework employing the local randomizer can reconstruct

-sparse signals exactly if the number of measurements
and . If is

a dense and uniform matrix (e.g., DCT or normalized WHT),
the sufficient condition becomes and

.
Proof: The proof is based on the result of cumulative co-

herence in the Theorem III.4 and a modification of the proof of
the compressed sensing framework in [14].

Denote , ,

, and , where the
support . Let

, , be columns of . Denote
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, where is the cumu-

lative coherence of and . According to the

above incoherence analysis, . Also, denote

as the mutual coherence of and , .

As indicated in [12] and [14], to show exact recovery via
minimization, it is sufficient to verify the Exact Recovery Prin-
ciple.

Exact Recovery Principle: With high probability,
for all , where is the complementary set of the set
and , where is the sign vector of
nonzero transform coefficients .

Note that , where is the
row of , for some . To establish the Exact Re-
covery Principle, we will first derive the following lemmas. The
first lemma is to bound the norm of .

Lemma IV.1: (Bound the norm of ) With high probability,
is on the order of

where , , and are some certain numbers.
Proof: Let be columns of . For

where the second equality holds because
that results from the orthogonality of columns of

. Let . Since are i.i.d. binary random
variables with , are zero mean i.i.d.
random variables and . Let be the
matrix of columns , . Then,
can be viewed as a random weighted sum of column vectors

and is a random variable. We have

where the last equality holds due to if . Thus

where the last inequality holds due to . This implies
that . To show that is concentrated around

its mean, we use the Talagrand’s theorem of concentration in-
equality [24]. First, let us establish

where the last equation holds because . Hence, we
then can derive the upper bound of the variance

In addition, it is obvious that and thus

The Talagrand’s theorem [24] (see Appendix B) shows that

where is some positive constant. Replacing , , and
by their upper bounds in the right-hand side (RHS), we obtain

The next step is to simplify the RHS of the above inequality
by replacing the denominator inside the log by two times the
dominant term and note that when . In
particular, there are two cases to consider:

• Case 1: or equivalently, , denote
and . If or equivalently,

• Case 2: , denote and . If
or equivalently,

where is some positive constant.
In conclusion, let . Then, for any

(18)

where is some positive constant.
The second lemma is to bound the spectral norm of

.
Lemma IV.2: (Bound the spectral norm of ) With

high probability, .
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Proof: In [14, Theorem 1.2] it shows that with probability
, if ,

where and are some known positive constants.
And the third lemma is to bound the norm of

Lemma IV.3: (Bound the norm of )
With high probability, is on the order of

(19)

where , and are defined as in the proof of the Lemma IV.1.
Proof: Let be the event that or

equivalently, and be the event that
. Note that

Thus

Note that implies (19) holds.
To establish the Exact Recovery Principle, we will show that

with high probability. Note that because
is assumed to be a vector of i.i.d. Bernoulli random variables,

is concentrated around its zero mean. In particular, ac-
cording to the Hoeffding’s inequality

Note that with two arbitrary probabilistic events and

Now, let be the event and be the
event , we derive

(20)

Let . According to (19) and (20), the probability
of our interest is upper bounded by

To show that with probability
, it is sufficient to show that the above upper bound is not

greater than . In particular, when , the first
term is equal to .

To make the second term less than , it is required that

(21)

• Case 1: . The condition that (18) holds is

which is equivalent to:

It is easy to see that , where . In this
case, . Thus, (21) holds if

(22)

• Case 2: . The condition that (18) holds is
or equivalently

If , where , and the condition
is again the same as in (22). Otherwise, . In this
case, (21) holds if

In conclusion, the Exact Recovery Principle is verified if
these two conditions are satisfied: (i)
and (ii) ), where and are known
positive constants. From Theorem III.3, with probability ,

. Thus, the first condition is met if
. For the second condition, we consider

two cases:
• : From Remark III.2, with probability

, , implying that the second condition
is met if .

• : Also from Remark III.2, with proba-
bility , . Hence, the second
condition is met if .

In conclusion, and
are the sufficient conditions for exact re-

covery. When is dense and uniform, these conditions become
and .

V. NUMERICAL EXPERIMENTS

A. Simulation With Sparse Signals

In this section, we evaluate the sensing performance of sev-
eral structurally random matrices and compare it with that of
the completely random projection. We also explore the connec-
tion among sensing performance (probability of exact recovery),
streaming capacity (block size of ) and structure of the spar-
sifying basis (e.g., sparsity and heterogeneity).

In the first simulation, the input signal of length
is sparse in the DCT domain, i.e., , where the spar-
sifying basis is the 256 256 IDCT matrix. Its transform
coefficient vector has nonzero entries whose magnitudes
are Gaussian distributed and locations are at uniformly random,
where . With the signal , we gen-
erate a measurement vector of length : ,
where is either a structurally random matrix or a completely
Gaussian random matrix. SRMs under consideration are sum-
marized in Table I.
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TABLE I
SRMS EMPLOYED IN THE EXPERIMENT WITH SPARSE SIGNALS

The software -magic [1] is employed to recover the
signal from its measurements . For each value of sparsity

, we repeat the experiment 500
times and count the probability of exact recovery. The per-
formance curve is plotted in Fig. 2(a). Numerical values on
the axis denote signal sparsity while those on the axis
denote the probability of exact recovery. We then repeat similar
experiments when the input signal is sparse in some sparse
and nonuniform basis . Fig. 2(b) and Fig. 2(c) illustrate the
performance curves when is the Daubechies-8 wavelet basis
and the identity matrix, respectively.

There are a few notable observations from these experimental
results. First, the SRM performance with the dense transform
matrix (all of its entries are nonzero) is on average compa-
rable to that of the completely random matrix. Second, the SRM
performance with the sparse transform matrix , however, de-
pends on the sparsifying basis of the signal. In particular, if
is dense, the SRM with sparse also has average performance
comparable with that of the fully random matrix. On the other
hand, if is sparse, the SRM with sparse often has worse per-
formance the SRM with dense , revealing a trade-off between
sensing performance and streaming capacity. These numerical
results are consistent with the theoretical analysis above. In ad-
dition, Fig. 2(b) shows that for SRMs, the global randomizer
seems to work much better than the local randomizer when the
sparsifying basis of the signal is sparse itself.

B. Simulation With Compressible Signals

In this simulation, signals of interest are natural images of size
512 512, including Lena, Barbara and Boat images. The spar-
sifying basis used for these natural images is the well-known
Daubechies 9/7 wavelet transform. All images are implicitly re-
garded as 1-D signals of length . The GPSR software in [3]
is used for signal reconstruction.

For such a large scale simulation, it takes a huge amount of
system resources to implement the sensing method of a com-
pletely random matrix. Thus, for the purpose of benchmarking,
we adopt a more practical scheme of partial FFT in the wavelet
domain (WPFFT). The WPFFT is to sense wavelet coefficients
in the wavelet domain using the method of partial FFT. Theoret-
ically, WPFFT has optimal performance as the Fourier matrix is
completely incoherent with the identity matrix. The WPFFT is
a method of sensing a signal in the transform domain that also
requires substantial amount of system resources. SRMs under
consideration are summarized in Table II.

For the purpose of comparison, we also implement two pop-
ular sensing methods: partial FFT in the time domain (PFFT)[1]
and the Scrambled/Permutted FFT (SFFT) in [25], [26] that is
equivalent to the dense SRM using the combination of FFT and
the global randomizer.

Fig. 2. Performance curves: probability of exact recovery versus Sparsity �:
(a) when��� is IDCT basis; (b) when��� is Daubechies-8 wavlet basis; (c) when
��� is the identity basis.

The performance curves of these sensing ensembles are
plotted in Fig. 3(a), (b), and (c), which correspond to the input
signal Lena, Barbara, and Boat images, respectively. Numerical
value on the axis represents sampling rate, which is the
number of measurements over the total number of samples.
Values on the axis depicts the quality of reconstruction (PSNR
in dB). Lastly, Fig. 4 shows the visually reconstructed 512
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TABLE II
SRMS EMPLOYED IN THE EXPERIMENT WITH COMPRESSIBLE SIGNALS

512 Boat image from 35% of measurements using WPFFT,
WHT32-G, and WHT512-L ensembles.

As clearly seen in Fig. 3, the PFFT is not an efficient sensing
matrix for smooth signals like images because the Fourier ma-
trix and wavelet basis are highly coherent. On the other hand,
the SRM method, which can roughly be viewed as the PFFT
preceded by the prerandomization process, is very efficient.
In particular, with a dense SRM like the SFFT, the perfor-
mance difference between the SRM method and the benchmark
one, WPFFT, is less than 1 dB. In addition, performance of
DCT512-L and WHT512-L that are fully streaming capable
SRM, degrades about 1.5 dB, which is a reasonable sacrifice
as the buffer size required is less than 0.2% of the total length
of the original signal. Less degradation is obtainable when the
buffer size is increased. Also, in all cases, there is no observ-
able difference of performance between DCT and normalized
WHT transforms. It implies that orthonormal matrices whose
entries have the same order of absolute magnitude generate
comparable performance. In addition, highly sparse SRM using
the global randomizer such as DCT32-G and WHT32-G has
experimental performance comparable to that of the dense
SRMs. Note that these SRMs are highly sparse because their
density is only . This observation again verifies that SRM
with the global randomizer outperforms SRM with the local
randomizer. This might indicate that our theoretical analysis for
the global randomizer is inadequate. In practice, we believe that
the global randomizer always works as well as or even better
than the local randomizer. We leave the theoretical justification
of this observation to our future research.

VI. DISCUSSION AND CONCLUSION

A. Complexity Discussions

We compare the computation and memory complexity be-
tween the proposed SRM and other random sensing matrices
such as Gaussian or Bernoulli i.i.d. matrices. In implemen-
tation, the i.i.d. Bernoulli matrix is obviously preferred than
i.i.d. Gaussian one as the former has integer entries {1, 1}
and requires only 1 bit to represent each entry. An
i.i.d. Bernoulli sensing matrix requires bits for storing
the matrix and additions and multiplications for sensing
operation. An SRM only requires bits
for storage and additions and multiplications for
sensing operation. With the SRM method, the computational
complexity and memory space required is independent of the
number of measurements . Note that with SRM, we do not
need to store matrices explicitly. We only need to store
the diagonals of and of and the fast transform , resulting

Fig. 3. Performance curves: Quality of signal reconstruction versus sampling
rate : (a) the 512� 512 Lena image; (b) the 512� 512 Barbara image; (c) the
512 � 512 Boat image.

in significant saving of both memory space and computational
complexity.

Computational complexity and running time of -minimiza-
tion based reconstruction algorithms often depend critically on
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TABLE III
PRACTICAL FEATURE COMPARISON

Fig. 4. Reconstructed 512� 512 Boat images from � ��� sampling rate.
(a) The original Boat image; (b) using the WPFFT ensemble: 28.5 dB; (c) using
the WHT32-G ensemble: 28 dB; (d) using the WHT512-L ensemble: 27.7 dB.

whether matrix-vector multiplications and can be com-
puted quickly and efficiently (where ) [3]. For sim-
plicity, assuming that is an identity matrix. re-
quires additions and multiplications for
a random sensing matrix and additions and mul-
tiplications for the SRM method. This implies that at each itera-
tion, SRMs can speed up the reconstruction algorithm by at least

folds.
Table III summarizes computational complexity and practical

advantages between SRM and random sensing.

B. Relationship With Other Related Works

When is the local randomizer, SRM is a little reminiscent
of the so-called Fast Johnson-Lindenstrauss Transform (FJLT)
[27]. However, SRM employs a simpler matrix . In FJLT, this
matrix is a completely random matrix with sparse distribu-
tion. It is unknown if there exists an efficient implementation of
such a sparse random matrix. SRM is relevant for practical ap-
plications because of its high performance and fast computation.

In [25], [26], the Scrambled/Permuted FFT is experimentally
proposed as a heuristic low-complexity sensing method that is
efficient for sensing a large signal. To the best of our knowl-
edge, however, there has not been any theoretical analysis of

the Scrambled FFT. SRM is a generalized framework in which
the Scrambled FFT is just a specific case, and thus verifying the
theoretical validity of the Scrambled FFT.

Random Convolution convolving the input signal with a
random pulse followed by randomly subsampling measure-
ments is proposed in [19] as a promising sensing method
for practical applications. Although there are a few other
methods that exploit the same idea of convolving a signal
with a random pulse, for examples: Random Filter in [17] and
Toeplitz structured sensing matrix in [18], only the Random
Convolution method can be shown to approach optimal sensing
performance. While sensing methods such as Random Filter
and Toeplitz-based CS methods subsample measurements
structurally, the Random Convolution method subsamples
measurements in a random fashion, a technique that is also em-
ployed in SRM. In addition, the Random Convolution method
introduces randomness into the Fourier domain by randomizing
phases of Fourier coefficients. These two techniques decouple
stochastic dependence among measurements and thus, giving
the Random Convolution method a higher performance.

SRM is distinct from all aforementioned methods, including
Random Convolution. A key difference is that SRM preran-
domizes a sensing signal directly in its original domain (via the
global randomizer or the local randomizer) while the Random
Convolution method prerandomizes a sensing signal in the
Fourier domain. SRM also extends the Random Convolution
method by showing that not only Fourier transform but also
other popular fast transforms, such as DCT or WHT, can
be employed to achieve similarly high sensing performance.
In conclusion, among existing sensing methods, the SRM
framework presents an alternative approach to design high
performance, low-complexity sensing matrices with practical
and flexible features.

APPENDIX A

Central Limit Theorem: Let be mutually in-
dependent random variables. Assume and denote

. If for a given and sufficiently
large, the following inequalities hold:

then distribution of the normalized sum con-
verges to

Combinatorial Central Limit Theorem: Given two sequences
and . Assume the are not all equal and

are also not all equal. Let be a uniform random
permutation of . Denote and
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is asymptotically normally distributed if

where

APPENDIX B

Hoeffding’s Concentration Inequality: Suppose
are independent random variables and

. Define a new random
variable . Then for any

Ledoux’s Concentration Inequality: Let be a se-
quence of independent random variables such that al-
most surely and be vectors in Banach space. De-
fine a new random variable: . Then for any

where denote the variance of and
.

Talagrand’s Concentration Inequality: Let be zero-mean
i.i.d. random variables and bounded and be column
vectors of a matrix . Define a new random variable:

. Then for any

where is some constant, variance and
.

Sourav’s Concentration Inequality: Let be a
collection of numbers from [0, 1]. Let be a
uniformly random permutation of . Define a new
random variable: . Then for any
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