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Stepwise Optimal Subspace Pursuit
for Improving Sparse Recovery

Balakrishnan Varadarajan, Sanjeev Khudanpur, and Trac D. Tran

Abstract—We propose a new iterative algorithm to reconstruct
an unknown sparse signal x from a set of projected measure-
ments y = ®x . Unlike existing methods, which rely crucially on
the near orthogonality of the sampling matrix & , our approach
makes stepwise optimal updates even when the columns of ® are
not orthogonal. We invoke a block-wise matrix inversion formula
to obtain a closed-form expression for the increase (reduction) in
the L -norm of the residue obtained by removing (adding) a single
element from (to) the presumed support of x . We then use this ex-
pression to design a computationally tractable algorithm to search
for the nonzero components of x . We show that compared to cur-
rently popular sparsity seeking matching pursuit algorithms, each
step of the proposed algorithm is locally optimal with respect to
the actual objective function. We demonstrate experimentally that
the algorithm significantly outperforms conventional techniques in
recovering sparse signals whose nonzero values have exponentially
decaying magnitudes or are distributed A(0,1) .

Index Terms—Compressed sensing, greedy algorithms, least
squares, signal reconstruction.

I. SPARSE SIGNAL RECOVERY

ET x € RY be a sparse signal with ||x][p = K < N,

and let y € RM be an observation of x via M linear
measurements represented by a matrix @ . In other words, let
y = ®x . It is known that if M is sufficiently larger than K
(we assume M > 2K ), and ® satisfies some rank conditions,
then

x = arg min ||w||o. @)

y=®w

It was established by Tropp et al. [1], for instance, that
O(Klog N) probabilistic measurements are sufficient in
practice to recover a K -sparse signal in R . Solutions to (1)
therefore lead to algorithms for recovering K -sparse signals
from M linear measurements. In general, the minimization
of (1) is NP-hard, since it requires searching through ()

possible column-subsets of @ . Is has been shown, however,
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that if the sampling matrix ® further satisfies certain proper-
ties relating to near orthogonality, then the following tractable
minimization also recovers x exactly ([2]-[5]):

x = arg min ||w||;. 2)
y=%w

Unfortunately, the complexity of the linear programming al-
gorithms for solving (2), also known as basis pursuit (BP), is
O(N?) , making them infeasible for practical, large-scale ap-
plications. Some fast convex relaxation algorithms have been
proposed to solve or approximate BP, a popular example being
the gradient projection method of [6].

An alternative approach to sparse signal recovery is based
on the idea of iterative greedy pursuit, and tries to approxi-
mate the solution to (1) directly. The earliest examples include
matching pursuit, orthogonal matching pursuit (OMP) [7], and
their variants such as stagewise OMP (StOMP) [8] and reg-
ularized OMP (ROMP) [9]. The reconstruction complexity of
these approximate algorithms is around O(K M N) , which is
significantly lower than the complexity of BP. However, they
require more measurements M for accurate reconstruction,
and they lack provable reconstruction quality. More recently,
greedy algorithms with a backtracking mechanism, such as sub-
pace pursuit (SP) [10] and compressive sampling matching pur-
suit (CoSaMP) [11], have offered comparable theoretical recon-
struction quality to the linear programming methods along with
low reconstruction complexity. Our proposed algorithm belongs
to this latter class of recovery algorithms: it iteratively refines an
estimate of the support set of x , denoted by (x) , in a manner
similar to SP [10].

The SP algorithm relies on the fact that high correlation of a
column of @ with the observed y corresponds to a desirable
index in the support set of x . SP iterates over two key steps.

S1. Expansion: At iteration [ , if the current estimate of
supp(x) is a set of K indices denoted by 7?1, then
A more indices corresponding to the largest magnitude
entries of the residue (a measure of error between the ob-
served y and the inferred ¥ based on 7'~ ') are added
to T'=1 to create a new index set T" of size K + A .
S2. Contraction: Projecting the observation y onto the
set T" gives a new vector X, . Indices of the K largest
elements of x,, yield a revised estimate T' of supp(x) .
An obvious drawback of SP is that there is no quantification of
the overall reconstruction quality of the support sets T" or T* .
In particular, there is no guarantee that the residual error due to
T'! is lower than that due to 7'~ . We propose to improve the
SP algorithm [10] by modifying these two steps, as described
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below, while still ensuring that the overall computational (big
O ) complexity remains competitive with SP.

Given! an interim estimate Z C {1,..., N} of the support
setof x,let S7 = mingegr ||y — ¢I>1x||2 denote the residual
errorin 'y , where I = |Z| and ®7 is the submatrix of the
columns of @ indexed by 7 .

We note? that if 7 = Z U {i} for some 7 ¢ 7 , then the
exact reduction in residual error is

2
(¢ — Folwiz.i)
Wi, i] — O[Z,i]T®LW[T, 4]

Sr— Sy = 3)

where &7 = @7y , <I>§ = (®I®;)  and W[Z,i] is, in

MATLAB-like notation, the submatrix of ¥ = ®'® com-

prised of the rows indexed by Z and the *" column.
Similarly, note thatif Z = 7 \ {j} forsome j € J , then

Sr— Sy =~ @

where Q‘%[:,j] is the j** column of <I>‘¢7 .
Using these two identities, we propose the following replace-
ments for the Expansion and Contraction steps of SP.
S’ 1. GREEDY-ADD: Given the current estimate 7'~ of
the support set, set J = T'~! and add to it the index i
that maximizes (3) to obtain a new set Z; ;set J = 1,
and repeat, adding one index at a time according to (3), to
obtain Z5,73,...,Za ; set Tl = In .
S’ 2. GREEDY-REMOVE: Given T',set T = T' and
remove from it the index ¢ that minimizes (4) to obtain
J1;set Z = Jp and repeat, removing one index at a time
according to (4), to obtain Jo, J3, ..., Ia ;set T! = Ja.
The identities (3) and (4) guide SP by providing the exact
residual error at each expansion/contraction step. More impor-
tantly, they take into account any lack of orthogonality among
the columns of ® when adding/removing an index.

II. STEPWISE OPTIMAL SUBSPACE PURSUIT

Algorithm 1 describes in detail our GREEDY PURSUIT pro-
cedure for sparse signal recovery. It requires as input the sam-
pling matrix @ , the measurements y and the sparsity K of
x ; the expansion/contraction step size A is an optional input
that is set to K by default. The algorithm returns its estimate
of supp(x) , from which x may be easily computed.

Algorithm 2 (GREEDY ADD) describes stepwise optimal ex-
pansion using (3). It requires as input y , ®, a support set J
and expansion size A and returns a supportset Z O J of size
|7 + A . Algorithm 3 (GREEDY REMOVE) describes step-
wise optimal contraction using (4). It requires as input y , @,
a support set Z and contraction size A and returns a support
set J C I ofsize |Z]|—

I Assume that @7 has full column rank; this makes ®2® invertible.
2(3) & (4) are obtained via block-wise matrix inversion formulae (cf. [12]).
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Algorithm: GREEDY-PURSUIT (y, ®, K, A := K)
T° .= GREEDY-ADD(y, &, 0, K);

Sro i =yTy —yT®ro (@%o@TO)71 ®1Loy:
[:=0;
while A > 0 do

l =1+1;

= GREEDY-ADD(y, ®, 71, A);
= GREEDY- REM()VE(y, o, T, A);
5’1‘1 =yTy —yT®p (@, @n) " @Ly:
if Spi > Spi—1then
T =T
Spi = Spi—1;
A:=A—-1;
end

end
return 7;

Algorithm 1: GREEDY-PURSUIT for sparse recovery.

Algorithm: GREEDY-ADD (y, @, J, A)
=2y
U= oTP;
VT = (838)
I:=J,
while |Z| < |J|+ A do

argmax —(6“} Sz ])2. :
e NNT Wi, —W[L,i]Tx[T.i]>
wi= (L. @1

w®—T[i,;] .

V-2 [T AT
X[Z:] = x[Z, o]+ x [T alvs
xle, 1] = AL
Z:=Tu{i};
end
return Z

1
1o,

ii=

vV =

Algorithm 2: GREEDY-ADD adds A indicesto 7 .

Algorithm: GREEDY-REMOVE (y, ®, Z, A)
¢ =o'y,

&t = (oT®;)
J =1

while | 7| > |Z| — A do ,

ji= aldmmi@] i)
jeT F13.4]

J = J\{J}
P, =3, @ (7. 51915, T

2% 5.5
end

return J

Algorithm 3: GREEDY-REMOVE removes A indices from Z .

GREEDY PURSUIT starts by calling GREEDY ADD with
an empty support set to obtain an initial estimate3 T° of size
K . GREEDY ADD and GREEDY REMOVE then alternately
expand this set by A, then shrink it back, to iteratively produce
T, T?,... solong as residual error is reducing. Note that when
A = 1, the expansion and contraction steps are both provably
optimal by construction, and S7i — Spi-1 < 0. When A > 1
, however, there is no such guarantee. Therefore, when no error
reduction results at an iteration with A > 1, we discard the
update from 7'~!' to T', and try again with a smaller value
of A . This is another difference between GREEDY PURSUIT
and SP. As an aside, smaller A s are also computationally more
efficient, as will be shown later; this is useful when speed is of

3We note that in practice this estimate is already of very high quality.
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Fig. 1. The fraction of times a 256-dimensional, K -sparse signal (K <
64) is correctly recovered from 128 (Gaussian) random projections by different
reconstruction algorithms. (a) Nonzero entries of x are distributed A(0,1) .
(b) Magnitudes of nonzero entries of x decay exponentially.

the essence. GREEDY PURSUIT terminates when there is no
improvement even with A = 1.

A. Empirical Comparison of Reconstruction Accuracy

‘We compare the empirical performance of the linear program-
ming (LP), OMP, SP and GREEDY PURSUIT solutions to the
sparse recovery problem using the setup described in [10].

1) We generate a Gaussian N'(0, 1) random matrix ® of size

M x N .Weuse M =128 and N = 256 respectively
to be able to compare directly with [10].
2) We choose a K -subset of {1,...,N} , K =
1,...,(M/2).
3) We set the value of x atthe K chosen indices to
(a) random nonzero values drawn from AN(0,1) ; or
(b) arandom permutation of K exponentially decaying
values from 1.0 to 0.1;
we set the value of x at the remaining indices to 0.
4) We estimate supp(x) using each method, and check if it
matches the subset of K chosen indices exactly.
We repeat the simulation 1000 times for each value of K and
note the frequency of exact reconstruction for each method.

Fig. 1(a) shows that GREEDY PURSUIT performs better
than LP, OMP and SP when the nonzero entries of the sparse
signal are drawn according to A(0,1) . As depicted in

Fig. 1(b), GREEDY PURSUIT significantly outperforms ex-
isting methods for the exponential case.

Additional simulations show that GREEDY PURSUIT also
outperforms SP and LP when the y are noisy (10 dB SNR). In
reconstructing a compressible signal with supp(x) = N from
K < N measurements, it yields 1-to-3 dB higher SNR than
SP and OMP. (Details are omitted due to space limitations.)

The results for recovering a 0—1 sparse signal,*, however, are
negative: LP > SP > GREEDY PURSUIT . This is con-
sistent with the finding in [10] that LP outperforms SP for 0-1
sparse signals, and merits further study.

III. COMPLEXITY ANALYSIS OF GREEDY PURSUIT

The following complexity analysis of GREEDY PURSUIT
shows that for each iteration it requires essentially the same
computation as SP, namely O(KMN) .

A. Computational Complexity of GREEDY REMOVE

Computing @iI in line 2 of Algorithm 3 requires inverting a
|Z| x |Z| matrix which is O(|Z|®) . The minimum over j in
line 5 requires computing |J| dot-products of | 7| -dimensions
each, whichis O(|7?|) . Updating @, isalso O(|.7]?). Since
|7| < |Z|, the entire while-loop takes O(|Z|?) time. Therefore
GREEDY REMOVE is O(|Z]?) = O(|K + A]?) .

1) A Generalized GREEDY REMOVE Operation: In (4) and
on line 7 of Algorithm 3, we compute the increase in residual
error upon removing a single index j € J . We next provide
a general expression for the increase in error upon removing a
setof indices J C J .Let T =7 \ J denote the retained
indices, A = ®%[7,7], B=®"[7,7] and D = @' 7, J]
. Then it is easy to establish that

Sy — S5 = (s%s + 5§D) D1 (5%8 + 5§D)T T

A generalized GREEDY REMOVE procedure may therefore be
formulated with an additional parameter § > 1. Each time we
enter the while-loop in Algorithm 3, we use (5) to compute the
increase in squared error for every size- § subset J of T,
and remove the minimizer. There are O(|J|°) size- § subsets
of J .Foreach J , the quantity in (5) requires computing the
vector £7B + &7 D and the matrix D", whichis O(8|Z] +
&3) . Finally, the while-loop is executed [A/§] times. Thus
the overall complexity of this generalized GREEDY REMOVE
procedure is O(|K + A|°(K + A + §%)A) .

B. Computational Complexity of GREEDY ADD

Since ¥ may be pre-computed outsidle GREEDY ADD,
initializations up to line 4 of Algorithm 2 are O(|J|*) . x is
initiallyisa |J|x N matrix and & isa M x 1 vector. Therefore
iy — &€ x[Z.14] is a scalar that requires O(|Z]) time to com-
pute. Similarly computing ¥[i,i] — ¥[Z,i]T x[Z,i] requires
O(|Z|) time. Hence maximizing over all ¢ € {1,...,N}\Z
requires O(N|Z|) time. Computing x[Z,2]7®F requires
O(N|Z|) time. The computational bottleneck is the vector
v which requires computing w® . This takes O(MN)
time. Hence the complexity of each iteration of the while-loop
is O(MN) and the net complexity of the algorithm is

4The value of x at the indices chosen in Step 2 is set to 1.0 in Step 3.
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O(|T]?) + MNA) . Since |J| < M, A = O(K) and
N > M , the complexity is essentially O(MNK) .

It is possible to generalize (3) for adding more than one new
index i , just as (5) generalizes (4). One could then use it
to replace line 6 of Algorithm 2, maximizing the reduction in
residual error over all size- § subsets Z C {1,.. ., N}I\TZ.We

omit this generalization due to space limitations.

IV. DI1scUSSION AND CONCLUSION

We have presented a new technique for recovering sparse sig-
nals from linear measurements. Although the original problem
(1) is NP-hard, the technique performs an accurate, locally op-
timal update to a working solution, amounting to “gradient as-
cent” in a discrete search space. In particular, the one-step up-
date accounts for any lack of orthogonality in the linear mea-
surements. Hence the final solution is locally optimal. We also
have outlined ways to generalize the technique to optimally add
or remove ¢ > 1 indices at a time. Finally, we have shown
that our technique performs well for Gaussian and exponentially
sparse signals (cf. Fig. 1).

REFERENCES

[1] J. A. Tropp and A. C Gilbert, “Signal recovery from random measure-
ments via orthogonal matching pursuit,” /EEE Trans. Inf. Theory, vol.
53, pp. 4655-4666, 2007.

IEEE SIGNAL PROCESSING LETTERS, VOL. 18, NO. 1, JANUARY 2011

[2] Y. Tsaig and D. L. Donoho, “Compressed sensing,” IEEE Trans. Inf.
Theory, vol. 52, pp. 1289-1306, 2006.

[3] R. Venkataramani and Y. Bresler, “Perfect reconstruction formulas
and bounds on aliasing error in sub-nyquist nonuniform sampling of
multiband signals,” IEEE Trans. Inf. Theory, vol. 46, pp. 2173-2183,
2000.

[4] E. J. Candes and T. Tao, “Decoding by linear programming,” /IEEE
Trans. Inf. Theory, vol. 51, no. 12, pp. 4203—4215, 2005.

[5] E. J. Candes and T. Tao, “Robust uncertainty principles: Exact signal
reconstruction from highly incomplete frequency information,” /EEE
Trans. Inf. Theory, vol. 52, no. 2, pp. 489-509, 2006.

[6] M. A.T. Figueiredo, R. D. Nowak, and S. J. Wright, “Gradient projec-

tion for sparse reconstruction: Application to compressed sensing and

other inverse problems,” IEEE J. Sel. Topics Signal Process., vol. 1, no.

4, pp. 586-597, 2008.

D. Needell and R. Vershynin, “Uniform uncertainty principle and

signal recovery viaregularized orthogonal matching pursuit,” Found.

Comput. Math., vol. 9, no. 3, pp. 317-334, 2009.

[8] D. L. Donoho, I. Drori, Y. Tsaig, and J. L. Starck, Sparse Solution
of Underdetermined Linear Equations by Stagewise Orthogonal
Matching Pursuit Citeseer, 2006.

[9] D. Needell and R. Vershynin, Signal Recovery From Incomplete and
Inaccurate Measurements via Regularized Orthogonal Matching Pur-
suit ArXiv e-prints, Dec. 2007.

[10] W.Dai and O. Milenkovic, “Subspace pursuit for compressive sensing:
Closing the gap between performance and complexity,” CoRR, vol. abs/
0803.0811, 2008.

[11] D. Needell and J. A. Tropp, “CoSaMP: Iterative signal recovery from
incomplete and inaccurate samples,” Appl. Comput. Harmon. Anal.,
vol. 26, no. 3, pp. 301-321, 2009.

[12] Wikipedia, Invertible Matrix 2004.

[7

—



