
IEEE SIGNAL PROCESSING LETTERS, VOL. 7, NO. 6, JUNE 2000 141

The BinDCT: Fast Multiplierless Approximation of
the DCT

Trac D. Tran, Member, IEEE

Abstract—This paper presents a family of fast biorthogonal
block transforms called binDCT that can be implemented
using only shift and add operations. The transform is based on
a VLSI-friendly lattice structure that robustly enforces both
linear phase and perfect reconstruction properties. The lattice
coefficients are parameterized as a series of dyadic lifting steps
providing fast, efficient, in-place computation of the transform
coefficients as well as the ability to map integers to integers. The
new 8 8 transforms all approximate the popular 8 8 DCT
closely, attaining a coding gain range of 8.77–8.82 dB, despite
requiring as low as 14 shifts and 31 additions per eight input
samples. Application of the binDCT in both lossy and lossless
image coding yields very competitive results compared to the
performance of the original floating-point DCT.

Index Terms—BinDCT, DCT, fast multiplierless transforms,
JPEG, MPEG.

I. INTRODUCTION

B LOCK transforms have long found application in image
and video coding. The current image compression stan-

dard JPEG [1] as well as many high-performance video coding
standards such as MPEG and H.263 all employ the 88 dis-
crete cosine transform (DCT) at its transformation stage. From
an energy compaction standpoint, the DCT is a robust approxi-
mation to the optimal discrete-timeKarhunen–Loève transform
(KLT) of a first-order Gauss–Markov process with a positive
correlation coefficient when [2]. Since the KLT is
signal-dependent, and therefore, computationally complex and
expensive, the DCT has proven to be a much better alternative
in practice. It is signal independent and has linear phase, real
coefficients, and fast algorithms.

Exploiting the symmetry of the basis functions, the DCT
transform matrix can be factored into a series of1
butterflies and rotation angles as illustrated in Fig. 1. This
factorization results in one of the fastest DCT implementation
known up to date [2]: eight coefficients can be computed
using 13 multiplications and 29 additions. However, the DCT
is a floating-point transform. It cannot map integers to integers
losslessly. More importantly, floating-point implementations
in hardware are slow, require more space, and consume more
power. Several integer-friendly approximations of the DCT
have been proposed in the past [3]. In this paper, we present a
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Fig. 1. Forward fast floating-point DCT.

Fig. 2. General solution for perfect reconstruction block transform with
symmetric/antisymmetric basis functions.

Fig. 3. Parameterization of an invertible matrix via the lifting steps and scaling
factors.

novel invertible ladder-based block transform that is almost as
efficient as the DCT in energy compaction. Moreover, the new
transform not only possesses the integer mapping capability
but also has dyadic-rational coefficients that lead to an elegant
implementation utilizing only shift-and-add operations.

II. GENERAL SOLUTION

From a filter bank standpoint, the DCT is the
most basic -channel linear phase paraunitary filter bank
(LPPUFB). All filters have the same length . Its
polyphasematrix has order zero (independent of) and can be
written in the following form:

(1)
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Fig. 4. BinDCT, version A.

Fig. 5. BinDCT, version B.

It is clear that is orthogonal if and only if and are
orthogonal. For to represent the DCT, we need two special
orthogonal matrices. However, any choice of orthogonaland

does result in an -channel -tap LPPUFB. In the more
general biorthogonal case, must be invertible. From the fac-
torization above, it is clear that is invertible if and only if

and are invertible. In other words, the factorization in (1)
covers the complete class of all-channel -tap biorthogonal
LPFB’s as long as the matricesand are invertible. The gen-
eral structure is depicted in Fig. 2.

The challenge now is how to characterize these invertible
and matrices using the fewest number of independent

parameters. It is well known that every N N orthogonal
matrix can be factored into rotations. We can
establish a similar result for invertible matrices: any NN
invertible matrix can be completely characterized by
shears(also known aslifting stepsor ladder structures),
diagonal scaling factors, and possibly apermutation matrix.
It is not too difficult to see how one can systematically factor
any invertible matrix using permutation, diagonal scaling,
and shearing. This is simply the Gauss–Jordan elimination
process or the LU factorization.

The parameterization of an arbitrary invertible matrix is
illustrated in Fig. 3 (drawn for 4). Back to our general

-channel biorthogonal block transform with linear phase
basis functions, the transform can be proven to consist of

( ) lifting steps, , and diagonal scaling factors
. Typically, these scaling factors can be folded into the

quantization stepsizes of the encoder.

III. M ULTIPLIERLESSSOLUTIONS

The lifting scheme offers versatility in constructing fast trans-
forms that can map integers to integers by placing afloor (or
round, orceiling) in each lifting step. If the lifting step is chosen
to be dyadic [i.e., a rational that can be written in the form
of ( ), the nonlinear operation can be in-
corporated into the division using binary bit shift. Division by

, followed by a truncation, is equivalent to a binary shift
by places. Thus, multiplierless filter banks can be easily con-
structed using this method.

From the fast DCT implementation in Fig. 1, it is clear that the
integer-unfriendly components of the DCT are its rotation an-
gles . To construct integer
transforms, we approximate the DCT’s rotation angles by ap-
propriate dyadic lifting steps, as discussed in the previous sec-
tion. Unconstrained optimization can be used to search for the
optimal lifting parameters from which dyadic ones are approxi-
mated. Three different fast versions of such multiplierless block
transforms are presented in Figs. 4–6. The forward and inverse
transform coefficients of the simplest version (C) are tabulated
in Table I. All three transforms approximate the DCT closely,
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Fig. 6. BinDCT, version C.

TABLE I
FORWARD TRANSFORM MATRIX PPP AND

THE INVERSETRANSFORMMATRIX GGG OF THE binDCT-C

yet they can be implemented using simple binary arithmetic.
Hence, they are named the binDCT. The energy compaction
of the new transforms ranges from 8.77–8.82 dB coding gain
for image model with 0.95 (the DCT achieves
8.83 dB). Eight transform coefficients can be computed using
as low as 13 shifts and 30 additions (version C). Table II com-
pares the complexity and performance of the binDCT’s. The
Walsh–Hadamard transform and the DCT serve as comparison
benchmarks.

IV. A PPLICATION IN IMAGE CODING

The two novel transforms are evaluated in an image coding
experiment where the floating-point implementation of the
DCT provides the benchmark. To encode the transform coeffi-
cients, we use a progressive transmission zerotree coder, where
each block of transform coefficients is treated analogously to
a wavelet tree, as described in [4]. The DC subband can be
further decomposed using several wavelet iterations. Integer
wavelets can be employed to keep the transform stage entirely
integer-based.

The objective coding results are presented in Table III. The
binDCT is only around 0.1–0.5 dB below the DCT in the peak

TABLE II
COMPARISON OFTRANSFORMCOMPLEXITY (OPERATIONSNEEDED PER

EIGHT TRANSFORM COEFFICIENTS) AND CODING GAIN [WITH AR(1)
IMAGE MODEL � = 0.95]

TABLE III
OBJECTIVE CODING RESULT COMPARISON(PSNRIN dB)

SNR’s of the reconstructed images. In terms of visual image
quality, the binDCT offers similar performances to that of the
DCT.

V. CONCLUSIONS

Compared to the DCT, the novel block transform described
in this paper offers numerous advantages.

1) The binDCT has a fast, elegant implementation utilizing
only shift-and-add operations. No multiplication is
needed. Eight transform coefficients can be computed
using as low as 13 bit shifts and 30 additions.

2) The binDCT can map integers to integers with exact re-
construction. This property is pivotal in transform-based
lossless coding and allows a unifying lossy/lossless
coding framework.

3) In our software implementation, the binDCT is already
three times faster than the floating-point DCT. Much
higher speed is expected in hardware implementations.

4) The multiplierless property of the binDCT allows effi-
cient VLSI implementations in terms of both chip area
and power consumption.
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5) The binDCT approximates the DCT very closely. Percep-
tual quantization matrices and coding strategies designed
specifically for the DCT can be applied to the binDCT
immediately without any modification.

6) The binDCT has reasonably high coding performances.
Generalizing the concept to longer filter lengths (resulting
in lapped transforms) is also relatively straightforward
[5].
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