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Fast Multiplierless Approximations of the DCT
with the Lifting Scheme

Jie Liang and Trac D. Tran*

Abstract—In this paper, we present the design, implementation
and application of several families of fast multiplierless approx-
imations of the discrete cosine transform (DCT) with the lift-
ing scheme, named the binDCT. These binDCT families are de-
rived from Chen’s and Loeffler’s plane rotation-based factoriza-
tions of the DCT matrix, respectively, and the design approach
can also be applied to DCT of arbitrary size. Two design ap-
proaches are presented. In the first method, an optimization
program is defined, and the multiplierless transform is obtained
by approximating its solution with dyadic values.
ond method, a general lifting-based scaled DCT structure is ob-
tained, and the analytical values of all lifting parameters are de-
rived, enabling dyadic approximations with different accuracies.

In the sec-

Therefore the binDCT can be tuned to cover the gap between
the Walsh-Hadamard transform and the DCT. The correspond-
ing 2-D binDCT allows a 16-bit implementation, enables lossless
compression, and maintains satisfactory compatibility with the
floating-point DCT. The performance of the binDCT in JPEG,
H.263+4, and lossless compression is also demonstrated.

Keywords— DCT, integer DCT, scaled DCT, binDCT, lossless
compression, lifting scheme.

I. INTRODUCTION

HE Discrete Cosine Transform (DCT) [1], [2] is a robust

approximation of the optimal Karhunen-Loéve transform
(KLT) for a first-order Markov source with large correlation
coefficient. It has satisfactory performance in term of energy
compaction capability, and many fast DCT algorithms with ef-
ficient hardware and software implementations have been pro-
posed. The DCT has found wide applications in image/video
processing and other fields. It has become the heart of many
international standards such as JPEG, H.26x and MPEG family
131, [4], [5]

There are mainly four types of DCT, labelled I - IV [2].
Among them the DCT II is the most useful. Many different
fast algorithms for it have been developed for image and video
applications. Some of them take advantage of the relationships
between the DCT and various existing fast transforms, includ-
ing the FFT [1], [6], [7], [8], the Walsh-Hadamard transform
(WHT) [9], [10], and the discrete Hartley transform (DHT)
[11]. Some algorithms are based on the sparse factorizations
of the DCT matrix [12], [13], [14], [15], [16], [17], and many of
them are recursive [12], [14], [16], [17]. Besides one-dimensional
algorithms, two-dimensional DCT algorithms have also been in-
vestigated extensively [6], [18], [19], [20], [21], generally leading
to less computational complexity than the row-column applica-
tion of the 1-D methods. However, the implementation of the
direct 2-D DCT requires much more efforts than that of the
separable 2-D DCT.

The theoretical lower bound on the number of multiplications
required for the 1-D 8-point DCT has been proven to be 11 [22],
[23]. In this sense, the method proposed by Loeffler et al. [15],
with 11 multiplications and 29 additions, is the most efficient
solution. However, in image and video processing, quantization
is often required to compress the data. In these circumstances,
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significant algorithmic savings can be achieved if some oper-
ations of the DCT are incorporated in the quantization step.
This leads to a class of fast 1-D and 2-D DCT’s that are gen-
erally referred to as the scaled DCT [5], [8], [21], [23], [24], [25].
For example, the Arai’s method needs only 5 multiplications [3],
[8].

All of the aforementioned fast algorithms still need floating-
point multiplications, which are slow in both hardware and soft-
ware implementations. To achieve faster implementation, coeffi-
cients in many algorithms such as [7], [8], [16], [17] can be scaled
and approximated by integers such that floating-point multipli-
cations can be replaced by integer multiplications [3], [26], [27],
[28]. The resulted algorithms are much faster than the original
versions, and therefore have wide practical applications.

Another approach for integer DCT is presented in [29], by
searching integer orthogonal transforms with the same symme-
try and similar energy compaction capability to the DCT. The
new transform can be implemented with integer multiplications
and additions. However, the overall complexity of this integer
DCT is not satisfactory, compared with other fast integer algo-
rithms, such as [8].

The fixed-point multiplications required by these fast algo-
rithms generally need 32-bit data bus, which is costly in VLSI
implementation and hand-held devices where the CPU capabil-
ity, bus width, and battery power are limited. Therefore, design-
ing good approximations of the DCT that can be implemented
with narrower bus width and simpler arithmetic operations such
as shift and addition is a challenging topic.

Another disadvantage associated with most algorithms that
employ floating or fixed-point multiplications is the difficulty in
applying them to lossless compression, due to the finite-length
representations and the corresponding roundoff errors. Several
efficient structures have been proposed that have the property
of perfect reconstruction with minimum bit expansion. For ex-
ample, a ladder network was introduced in [30]. More system-
atic results were summarized in [31], [32] with the name lifting
scheme. The lifting structure enables flexible and fast biorthog-
onal transform, and it also allows lossless transform, making it
a powerful building tool for wavelet transforms.

It has been proven that any orthogonal filter bank can be
decomposed into delay elements and plane rotations by lattice
factorizations [33]. It is easy to see that any plane rotation can
be represented by lifting steps. Therefore, it follows that the
DCT - asimple orthogonal filter bank — can be constructed from
the lifting scheme, if we start from any plane rotation-based
factorization of the DCT, such as those in [12], [13], [14], [15],
and represent each plane rotation by its lifting implementation.
The new transform will enjoy the properties of both the DCT
and the lifting scheme.

The earliest application of this idea appeared in [30], where
a 4-point DCT was implemented in term of the ladder network.
In this method, floating-point multiplications were used in the
ladder (lifting) steps, and floor operations were applied subse-
quently to obtain integer transform coefficients. The inputs can
be perfectly reconstructed in this way. The idea was extended
in [34] to obtain a 8-point lossless DCT, by examining the re-



lationship between the DCT matrix and the general reversible
(lossless) transform. Integer results were still obtained through
the combination of floating-point multiplications and floor oper-
ations. Recently, a lossless lapped orthogonal transform (LOT)
was obtained with the same idea [35]. However, since fast im-
plementation was not the main concern in [30], [34], [35], the
resulted structures were not optimal in term of simplicity.

In this paper, we propose and describe the design of fast in-
vertible block transforms that can replace the DCT in future
wireless and portable computing applications. The new trans-
form, named the binDCT, has the following properties: (i) Both
the forward and the inverse transform can be implemented us-
ing only binary shift and addition operations; (ii) The idea of
the scaled DCT is employed to reduce the complexity of the
binDCT; (iii) The binDCT inherits all desirable DCT charac-
teristics such as high coding gain, no DC leakage, symmetric ba-
sis functions, and recursive construction; (iv) The binDCT also
inherits all lifting properties such as fast implementations, in-
vertible integer-to-integer mapping, in-place computation, and
low dynamic range.

This lifting scheme-based fast multiplierless approximation of
the DCT was first proposed in [36] and was generalized in [37].
Several preliminary results were also reported in [38] and [39].
A similar method was later obtained in [40], in which the WHT-
based DCT factorization [2], [10] is used, which is not as elegant
as that of [12], [15]. Besides, the result in [40] is not a scaled
DCT. Hence the performance of this method is not as good as
that of the binDCT, given the same level of complexity.

The paper is organized as follows. Section II will briefly in-
troduce the plane rotation-based DCT factorizations and their
relationships with the lifting scheme. In Section III, we define
some criteria for measuring the transform performance. Section
IV presents the general solution and the design of the binDCT
via the optimization approach. The systematic, analytical de-
sign of the binDCT, and design examples will be presented in
Section V and VI. Important design and implementation is-
sues are discussed in Section VII, whereas the applications of
the binDCT in JPEG, H.263+, and lossless compression are
demonstrated in Section VIII. Finally, Section IX contains the
conclusion.

II. PLANE ROTATION-BASED DCT FACTORIZATIONS AND THE
LIFTING SCHEME

A. Plane Rotation-based DCT Factorizations

Chen et al. proposed a recursive algorithm to factor any IN-
point DCT-II with N = 2™ m > 2 into plane rotations and but-
terflies [12], [13]. The factorization has a very regular structure,
and is 6 times as fast as the DFT-based fast DCT algorithm.
The method was generalized by Wang to all versions of DCT,
DST, discrete W transform, and even the DFT with the size of
power of 2 [14]. Similar results were also reported in [41].

In this paper, we will concentrate on the 4-point, 8-point
and 16-point transforms, since they are the most useful ones in
practical applications. Block transforms of other sizes can be
easily designed in a similar fashion. The factorization of the
8-point DCT in [12], [13], [14] is given in Fig. 1(a), where the
result in the dashed box is the scaled 4-point DCT. It contains
series of butterflies and five plane rotation angles, which can be
implemented with a total of 13 multiplications and 29 additions
[14], [15]. Note that a scaling factor of 1/2 should be applied at
the end to obtain the true DCT coefficients.

A more elegant factorization for 8-point and 16-point DCT
was proposed by LoefHler et al. [15] as shown in Fig. 1(b). It
also contains the scaled 4-point DCT. This method only needs
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11 multiplications and 29 additions, achieving the multiplica-
tion lower bound as proven in [22], [23]. One of its variations
is adopted by the Independent JPEG Group in the JPEG stan-
dard [42]. Note that this factorization requires a uniform scal-
ing factor of 1/4/8 at the end of the flow graph to obtain the
true DCT coefficients. In the 2-D transform, this scaling fac-
tor becomes 1/8, which can be easily implemented by a shift
operation.

B. The Lifting Scheme and the Plane Rotation

Fig. 2(a) illustrates the decomposition of a plane rotation by
three lifting steps [30], [32]. This can be written in matrix form

as [=[o2]ls tl[e 5] o

where p = (cosa — 1)/sina and u = sina.

It can be shown that any M x M orthogonal matrix can be
expressed as the product of M x (M — 1)/2 plane rotations
[43]. Similarly, any real invertible matrix can be completely
characterized by M x (M — 1) plane rotations and M scaling
factors, according to the singular value decomposition (SVD)
of the matrix. From these it can be proven that any invertible
FIR filter bank can be decomposed into lifting steps [32].

Each lifting step is a biorthogonal transform, and its inverse
also has a simple lifting structure, i.e.,

R @

As a result, the inverse of the plane rotation can be represented
by lifting steps as

—sina
cosa

cosa
sina

[ cosx

—sina |
sina

cosx

as shown in Fig. 2(b). This means that to inverse a lifting step,
we simply need to subtract out what was added in at the for-
ward transform. Hence the original signal can still be perfectly
reconstructed even if the floating-point multiplication results in
the lifting steps are rounded to integers, as long as the same
procedure is applied to both the forward and inverse transform.
This is the basis for many lifting-based lossless transforms [34].
Another advantage of the lifting step over the butterfly is that it
enables in-place computation, i.e., no buffer is required, which
is a desired property in the VLSI implementations.

However, floating-point multiplications are still needed in the
above approach. To obtain fast implementation, we can approx-
imate the floating-point lifting coefficients by hardware-friendly
dyadic values (i.e., rationals in the format of k/2™; k, m are
integers), which can be implemented by only shift and addition
operations. In doing so, we can achieve various fast approxi-
mations of the original transform, which we name the binDCT.
The multiplication elimination also enables the binDCT to be
implemented with narrower data bus than other algorithms.
Since perfect reconstruction is guaranteed by the lifting struc-
ture itself, the remaining problem is to select the dyadic lifting
parameters such that the binDCT can achieve similar coding
performance as the DCT.

III. PERFORMANCE MEASURES

This section defines some criteria used in measuring and eval-
uating the performance of our proposed fast transforms.
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Fig. 2. Representation of a plane rotation by three lifting steps. (a)

Forward rotation. (b) Inverse rotation.

TABLE I
CODING GAINS OF SOME COMMONLY USED TRANSFORMS (DB)
Type 4-pt 8-pt 8-pt 8-pt 16-pt 16-pt
DCT WHT DCT KLT DCT KLT
Cy 7.5701 7.9461 8.8259 8.8462 9.4555 9.4781

A. Coding Gain

Coding gain is one of the most important factors to be con-
sidered for a transform to be used in compression applications.
A transform with higher coding gain compacts more energy into
a fewer number of coefficients. As a result, higher objective per-
formances such as PSNR would be achieved after quantization.
Since the coding gain of the DCT approximates the optimal
KLT closely, it is desired that the binDCT have similar coding
gain to that of the original DCT. The biorthogonal coding gain
Cy is defined as [44], [45]

s

Cy £ 10log,, -,
M—-1 ™
(Hazw)
=0

where M is the number of subbands, o2 the variance of the
input, o7, the variance of the i-th subband, and ||f;]|” is the
norm of the ¢-th synthesis basis functions.

The coding gains of some commonly used transforms are tab-
ulated in Table I, with the assumption that the input signal
is a first-order Gaussian Markov process with zero-mean, unit
variance and correlation coefficient p = 0.95 ( a good approx-
imation for natural images). Note that the coding gain of the
DCT is very close to that of the optimal KLT.

(4)

B. Mean square error (MSE)

To maintain the compatibility between the binDCT and the
true DCT outputs, the MSE between the DCT and the binDCT
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coefficients should be minimized. With reasonable assumptions
of the input signal, the MSE can be explicitly calculated as
follows [46].

Assume that Uy is the true M-point DCT matrix, and U’y
is its approximation, then for a given input column vector x,
the error between the 1-D M-point DCT coefficients and the
approximated transform coefficients is:

e=Uyx—Uyx=Uy-Uny)x2Dx. (5)

From the above equation, the MSE of each transform coefficient
can be given by:

(1>

1 T 1 T T
—FEle" el = — E[x D Dx
—Ele” ¢ = - F ] o

1 1
i E[Trace{Dxx"D*}] = i Trace{DRxxD"},

where Rax = E[xx "] is the autocorrelation matrix of the input
signal. Hence, if we model the input signal as a Markov process,
the matrix Rxx can be easily calculated, and the MSE can be
derived deterministically.

C. DC Leakage

Another desired property of an image transform is that the
bandpass and highpass subbands should have no DC leakage,
i.e., the constant input should be completely captured by the
DC subband. In wavelet theory, this means that these high
frequency subbands should have at least one vanishing moment
[45]. The zero DC leakage not only improves the coding ef-
ficiency, but also prevents the annoying checkerboard artifact
that can occur if high frequency bands are severely quantized
[45]. The DCT is a good example of image transforms with zero
DC leakage.

IV. GENERAL SOLUTION AND THE OPTIMIZATION APPROACH

The hardware-unfriendly components of the DCT factoriza-
tion are the plane rotations. A trivial way to obtain a multi-
plierless approximation of the DCT is to replace each rotation
angle by 3 lifting steps as shown in Fig. 2(a), and then ap-
proximate the lifting coefficients by hardware-friendly dyadic
rationals. However, in image and video processing, simplicity is
always desired to make the transform as fast as possible. This
section presents the general solution of approximating the DCT
with more efficient lifting scheme.
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From a filter bank standpoint, the M-point DCT is the
most basic M-channel linear phase paraunitary filter bank (LP-
PUFB): all M linear-phase filters having the same length M. If
M is even, and if the symmetric filters are permuted to the top,
the DCT matrix can be written as

iE | o

where I M is the % X % identity matrix, and J M is the counter-

=

ESEES

Unm 0
2

1 [ J%
\/i 0 V%

—Ium
2

Uy =

identity matrix or reversal matrix. If M is a power of 2, the
matrix U% in Eq. 7 can be factorized recursively, i.e.,
Unm 0
4

1 I% J
o v |[|aw 1| ®

Barring an input reversal, the matrix V,,’s in Eq. 7 and Eq.
8 are m-point DCT-IV, and their closed-form factorization is
available in [12], [14], leading to a recursive factorization of the
DCT-IL

The result in Eq. 7 actually covers all M-channel M-tap
linear phase filter banks if UM and VM are chosen to be any

Uu =
2

SR =R

invertible matrices. In this paper we con51der the general struc-
ture for the 8-point binDCT as given in Fig. 3(a), where U,
is fixed to be the unnormalized Haar to guarantee the zero DC
leakage property.

An optimization program is constructed, in which we repre-
sent the matrices V4 and V2 by suitable number of lifting steps
and butterflies, and search for the optimal lifting coefficients
that maximize its coding gain. We start from the factorizations
given in Fig. 1 and replace each rotation by 3 lifting steps, then
reduce the number of lifting steps gradually to obtain more ef-
ficient binDCT’s.

The searched optimal results are approximated by dyadic val-
ues, since they can be implemented by only shifts and additions.
For example, Sx can be implemented by 2 shifts and 1 addition,
as it can be written as z/4 + z /8, where the divisions by 4 and
8 can be performed by right shifts. Similarly, 7z/16 should be
implemented as /2 — x/16. One such result is shown in Fig.
3(b), whose coding gain is quite close to that of the DCT.

It should be noted that the binDCT is also a kind of scaled
DCT. This is not a major problem in direct application of
these transforms. However, when the compatibility between
the binDCT transform and the true DCT transform is de-
sired, it is necessary to consider the scaling relationship between

(a) General structure of the recursive DCT. (b) A binDCT Example: 30 additions, 12 shifts, 8.77dB coding gain.

the binDCT and the DCT. In this case, the systematic design
method given in the next section becomes necessary since it can
provide the analytical values of the scaling factors. Besides, dif-
ferent tradeoff between the complexity and the performance of
the binDCT can be easily achieved.

V. SYSTEMATIC DESIGN OF THE BINDCT
A. The Scaled Lifting Structure

A plane rotation can be represented by 3 lifting steps as shown
in Fig. 2 if pure lifting structure is desired. However, the ex-
ample in the last section reveals that we can also construct a
scaled DCT with only 2 lifting steps for the rotation angles at
the end of the signal flow.

This simplified lifting structure can be generalized as in Fig.
4(a) and (b), where a general butterfly (not necessarily an or-
thogonal plane rotation) is represented by 2 lifting steps and
2 scaling factors. The two scaling factors can be absorbed in
the quantization stage, thus only 2 lifting steps are left in the
transform, making it more efficient than the conventional rep-
resentation. Due to the analogy between this idea and that of
the scaled DCT [3], [5], [8], we refer to this as the Scaled Lifting
Structure.

The solutions for the lifting parameters in the scaled lifting
structure can be derived as follows. From the flow graphs in
Fig. 4(a), we can obtain the following relationship:

Y1 =ruXs +r12Xo,

_ 9)
Ys = ra1 X1 + 122 Xo.

Similarly, the outputs of the scaled lifting structure as given in
Fig. 4(b) can be rewritten as:

Y1 =K1 (X1 +pX2) =r1 X1 +Kk1pXo,
Yo = ko (U (Xl —|—pX2) + X2) = kKkou X1+ Ko (1 +pu) Xo.
(10)

By equalizing the coefficients of X; and X5 in Eq. 9 and Eq.
10, the four unknowns can be uniquely determined as

_T12
- b
T11
711721
U= —
T11T22 — T21T12 (11)
K1 =T11,
T11T22 — T21T12
K= ——

r11
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A plane rotation; (d) The scaled lifting structure for (c); (e) The
permuted plane rotation; (d) The scaled lifting structure for (e).

where we need T11 75 0 and T117T22 —T21T12 75 0
This analytical solution is the starting point for obtaining
binDCT’s with different complexities and performances.

B. Sensitivity Analysis and the Permuted Scaled Lifting Struc-
ture

This section analyzes the effect of truncating the lifting pa-
rameters on the performance of the binDCT. A permuted ver-
sion of the scaled lifting structure will be proposed to improve
coding performance in certain circumstances.

In Fig. 4(c), we redraw the familiar rotation angle depicted in
Fig. 1. The solution of the corresponding scaled lifting structure
can be obtained by Eq. 11, as shown in Fig. 4(d).

The signal at the point V in Fig. 4(d) can be expressed as:

V =uzx1 + (1 +pu)x
1 ( p)2 (12)

. 2
= —sina cosa Xy + cos“a Xs.

Eq. 12 shows that for plane rotations as shown in Fig. 4(c), the
values of 1+ pu, i.e., cos’a, would be very small if the rotation
angle is close to kw + 7/2, where k is any integer. For exam-
ple, cos®(7m/16) = 0.03806. Therefore a large relative error for
1 + pu could be resulted when the lifting parameters p and u
are truncated or rounded, leading to a drastic change in the fre-
quency response of the result. Another problem in this case is
that the lifting parameter tan(a) would be much greater than 1.
This increases the dynamic range of the intermediate result, and
is not desired in both software and hardware implementations.

Analyzing the example given in the last section reveals that
the output sequence of some rotation angles are permuted. This
implies that a permutation of the output as shown in Fig. 4(e)
might lead to a much more robust scaled lifting structure. Since
the coefficients are permuted accordingly, the new transform is
equivalent to the previous one. The general expression in Eq.
11 is still valid for this case, and the corresponding scaled lifting
parameters are given in Fig. 4(f). The signal at V in Fig. 4(f)

is now given by:

V = sina cosa X1 + sin’a Xo. (13)
Note that the coefficient of X» at V changes from cos’a to
sinoa, which is more robust to truncation errors than Eq. 12 for
rotation angles close to kmr+m/2. This explains the optimization
results given in the last section. Besides, the augment of the
dynamic range in Fig. 4(d) is also avoided now, as the first
lifting parameter becomes 1/tan(c), instead of tan(a).

In general, when the scaled lifting structure is used to ob-
tain robust approximation of the transform with high coding
gain and minimal dynamic range, the original structure in Fig.
4(d) should be used if cos’a > sin’a, and the permuted ver-
sion in Fig. 4(f) should be adopted if cos’a < sin’a. When
cos’a = sin’a, both formats reduce to the unnormalized Haar
transform.

VI. 8-poOINT BINDCT FAMILIES
A. 8-point binDCT Type C

The above analysis leads to the general structure of the for-
ward and inverse binDCT from Chen’s factorization, denoted
as the binDCT type C, shown in Fig. 5. Note that some sign
manipulations are involved here to make all the scaling factors
positive. The intermediate rotation angle of 7/4 in V4 is im-
plemented by 3 lifting steps, and the permuted version of the
scaled lifting structure is used for the angles of 37/8 and 77/16.

The rotation of m/4 between X[0] and X[4] is also imple-
mented by the scaled lifting structure, instead of a butterfly.
The purpose is to achieve one vanishing moment and to make
all subbands experience the same number of butterflies during
the forward and inverse transforms. Since the multiplication of
two butterflies introduces a scaling factor of 2, the combination
of the forward and inverse transforms thus generates a uniform
scaling factor of 4 for all subbands, which becomes 16 for the
2-D transform. This can be compensated by a simple shift op-
eration. The scaling factors in the dash boxes will be absorbed
in the quantization stage. They are bypassed in lossless com-
pression or when the compatibility with the true DCT is not
required.

The property of the lifting structure allows us to adjust the
lifting parameters without losing perfect reconstruction of the
signals. Therefore, from the analytical expressions given in Eq.
1 and 11, we can obtain their proper dyadic approximations.
This is more flexible than the previous optimization-based de-
sign method.

Table II lists the analytical values of all the lifting parame-
ters and some configurations of this binDCT family, where the
dyadic values are obtained by truncating or rounding the corre-
sponding analytical values with different accuracies. Cy(8) and
Cy(4) are the coding gains of these 8-point binDCT’s and the 4-
point DCT’s embedded in them. Fig. 6 compares the frequency
responses of the true DCT and several binDCT configurations.

The configurations in Table II have different tradeoffs between
the complexity and the performance. The configuration with 23
shifts has a coding gain of 8.8251 dB, which almost equals the
original DCT’s 8.8259 dB. Even the 9-shift version has a sat-
isfactory coding gain of 8.7686 dB. In binDCT-C9, where all
lifting parameters are set to 0, the coding gain is still 7.9204dB,
very close to that of the WHT. Note that in measuring the
MSE according to Eq. 6, we use the floating-point values of the
scaling factors, which are always combined with the quantiza-
tion steps and rounded to integers in practical implementations.
Therefore the actual MSE might be slightly different from the
ones in Table II.
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Fig. 5. General structure of the binDCT family from Chen’s factorization. (a) Forward transform; (b) Inverse transform.

TABLE II

SEVERAL CONFIGURATIONS OF BINDCT FROM CHEN’S FACTORIZATION.

|| Floating-point | binDCT-C1 C2 C3 C4 C5 C6 C7 C8 C9
p1 0.4142135623 13/32 7/16 13/32 7/16 3/8 1/2 1/2 1 0
u1 0.3535533905 11/32 3/8 11/32 3/8 3/8 3/8 1/2 1/2 0
P2 0.6681786379 11/16 5/8 11/16 5/8 7/8 7/8 1 1 0
ug 0.4619397662 15/32 7/16 15/32 7/16 1/2 1/2 1/2 1/2 0
p3 0.1989123673 3/16 3/16 3/16 3/16 3/16 3/16 1/4 0 0
u3 0.1913417161 3/16 3/16 3/16 3/16 3/16 1/4 1/4 0 0
pa 0.4142135623 13/32 13/32 7/16 7/16 7/16 7/16 1/2 0 0
U4 0.7071067811 11/16 11/16  11/16  11/16  11/16 3/4 3/4 1/2 0
D5 0.4142135623 13/32 13/32 3/8 3/8 3/8 3/8 1/2 1/2 0
Shifts - 23 21 21 19 17 14 9 5 1
Adds - 42 39 40 37 36 33 28 24 18
MSE - l.le—5 5.7e —5 34e—5 85e—5 42e—4 58e—4 23e—3 4.0e—2 2.9e—2
C4(8) (dB) - 8.8251 8.8240 8.8233 8.8220 8.8159 8.8033 8.7686 8.4083 7.9204
Cq4(4) (dB) - 7.5697 7.5697 7.5697 7.5697 7.5566 7.5493 7.5485 7.1744 7.1503
TABLE III
BINDCT-C7 COEFFICIENTS
binDCT-C7 Forward Transform Matrix binDCT-C7 Inverse Transform Matrix
1 1 1 1 1 1 1 1 1/2 1 1 1 1 1/2  1/2 1/4
15/16 101/128 35/64 1/4 -1/4 -35/64 -101/128 -15/16 || 1/2 13/16 1/2 1/8 -1 -11/16 -3/4 -35/64
3/4 1/2 -1/2 -3/4 -3/4  -1/2 1/2 3/4 1/2 21/32 -1/2 -23/16 -1 -3/32 3/4 101/128
1/2 3/32  -11/16 -1/2 1/2 11/16  -3/32 -1/2 /2 1/4 -1 -1 1 1/2 -1/2 -15/16
1/2 -1/2 -1/20 12 172 -1/2 -1/2 1/2 /2 -1/4 -1 1 1 -1/2 -1/2  15/16
1 -23/16 -1/8 1 -1 1/8 23/16 -1 1/2 -21/32 -1/2 23/16 -1 3/32 3/4 -101/128
1/2 -1 1 -1/2 -1/2 1 -1 1/2 1/2 -13/16 1/2 -1/8 -1 11/16 -3/4 35/64
1/4  -21/32 13/16 -1 1 -13/16  21/32 -1/4 1/2 -1 1 -1 1 -1/2 12 -1/4

DC AL >=3106215d8 Mir Atl >= 3201639 dB _Stopband At >=9.9559d3_Cod. Gain = 8.8259 d8. DC AL >=409.0309d8 Mi AU >= 3201639 d3 _Stopband At >= 8282308 Cod. Gain = 8.7686 6B DC AL >= 409,030 0B Mir All >= 3201639 0B Stopband All >= 8.1849 0B Cod. Gain = 8:8150 0B

(a)

(b) (c)

Fig. 6. Frequency responses of (a) The true DCT; (b) The binDCT-C7: 9 Shifts and 28 Adds; (c¢) The binDCT-C5: 17 shifts and 36 Adds.
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TABLE IV
THE 4-POINT BINDCT EMBEDDED IN THE BINDCT-C7

Forward Transform Matrix Inverse Transform Matrix
1 1 1 1 1/2 1 1 1/2

3/4  1/2  -1/2 -3/4 || 1/2 1/2 -1  -3/4
/2 -1/2 -1/2 1/2 /2 -1/2 -1 3/4
/2 -1 1 172 || 172 A 1 -1/2

As an example, Table III tabulates the forward and inverse
transform matrices of the binDCT-C7, without including the
final scaling factors. The embedded 4-point DCT are given in
Table IV.

B. 8-point binDCT Type L

The aforementioned design method can also be applied to the
Loeffler’s factorization of the 8-point DCT [15]. We denote this
type of binDCT as the binDCT type L. The general structure is
given in Fig. 7(a). The top four subbands are exactly the same
as the binDCT type C. Since the other two rotation angles are
not at the end of the flow graph, we represent them with the
standard 3 lifting steps. The final butterfly to obtain X[7] and
X[1] is also implemented as 2 liftings to maintain the same
number of butterflies for each subband, leading to a uniform
scaling factor after the inverse binDCT transform.

The analytical values of the lifting parameters in Fig. 7(a)
can be easily calculated, and the results are summarized in Ta-
ble V, together with some binDCT configurations. The coding
gain Cy(4) of the embedded 4-point DCT’s are also listed. The
frequency response of the binDCT-L3 is presented in Fig. 7(b).
The relationship between the performance and the complexity
of this type of the binDCT is very similar to that of the binDCT
type C. However, its scaling matrix is more integer-friendly than
the binDCT type C.

VII. DI1SCUSSIONS

A. Performance Comparison of the Two Types of Scaled Lifting
Structures

In this section, we use the highpass subband of the binDCT-
C5 in Table IT to demonstrate the necessity of the permuted
scaled lifting structure discussed earlier. In Fig. 8(a), the
frequency response of the binDCT is obtained when the an-
gle 7w /16 is implemented with the normal scaled lifting struc-
ture. The analytical values of the lifting parameters are p =
5.027339492 and v = —0.19134172, and they can be approxi-
mated as 5%8 = 5.0234375 and —3/16 = —0.1875. The result
in Fig. 8(b) is obtained when the output X[7] and X[1] are per-
muted, and both p3 and us are chosen as 3/16, which require
fewer number of arithmetic operations. As shown in Fig. 8, for
this type of rotation angle, the frequency response of the out-
put is distorted dramatically if the outputs are not permuted,
even though each lifting parameter approximates its analytical
value with very high accuracy. On the contrary, the frequency
response of the permuted version agrees very well with the true
DCT, and therefore leads to higher coding gain and smaller
MSE.

B. Relationship with the WHT

It is interesting to note that in the Chen’s factorization of
the 8-point DCT, if we remove the intermediate rotation angle
of 7, replace all the other rotation angles by butterflies, and
insert a permutation as shown by the dashed box in Fig. 9(a),
the factorization would reduce to the Walsh-Hadamard trans-

form, which can be turned into a special binDCT. Hence the

proposed binDCT family can bridge the gap between the WHT
and the DCT by increasing the resolution of the approximation.
The Loeffler’s factorization can also be reduced to the WHT by
deleting two of its rotation angles and adding one more butter-
fly, as shown in Fig. 9(b).

For comparison, the lifting-based approximation of the DCT
in [40] requires 45 additions and 18 shifts. Its coding gain is only
8.692dB, even lower than that of the binDCT-C7 and binDCT-
L6, which need only 28 additions, 9 shifts, and 25 additions, 7
shifts, respectively. The reason is that in the WHT-based DCT
factorization, the WHT is totally separated from the rotation
angles, whereas it is embedded in Chen’s and LoefHler’s methods.
Besides, the scaled DCT is not taken advantage of in [40].

C. Dynamic Range Analysis

The elimination of the floating-point and fixed-point multipli-
cations enables the binDCT to be implemented with narrower
data bus than other fast algorithms. The dynamic range of the
binDCT is analyzed in this section using the method as shown
in [47].

Assume the original input data are 8-bit signed integers, rang-
ing from —128 to 127, as processed in the JPEG standard [3].
To check the dynamic range of the binDCT, we examine the
signs of the binDCT coefficients and find out the set of in-
put data which would generate the maximum or minimum out-
puts in different binDCT subbands. For example, the signs
of the second subband in Table III are {+ + + + — — — —},
therefore the input {127, 127,127,127, —128, —128, —128, —128}
would give the maximum output of this subband, and
{—128, —128, —128, —128,127, 127, 127, 127} would lead to its
minimum output. The maximum or minimum output of each
subband can then be calculated by feeding in those worst-case
inputs.

As all lifting parameters in the binDCT are less than 1, they
can be implemented with addition and right-shift operations,
which can minimize the intermediate dynamic range. In this
case, it can be verified that the absolute value of the worst
intermediate result in each subband is less than that of its final
output. Besides, since the absolute sum of the first row of the
binDCT matrix is much greater than that of other rows, the
dynamic range of the binDCT is thus determined by the DC
subband. With the input range of [—128,127], the binDCT
DC outputs would be within [-1024,1016]. Feeding this into
the second pass of the binDCT, the DC outputs of the 2-D
binDCT would be within —8192 and 8128, which only need 14
bits to represent. Thus the binDCT can be well fitted into
a 16-bit architecture. This also allows 16-bit implementations
of the DCT in video coding applications such as MPEG and
H.26x, where the inputs are between —256 and 255 after motion
estimation, which only requires 1 more bit than the JPEG case.
Note that we can further reduce the dynamic range to 13 bits if
we distribute half of the final down-scaling factor of the inverse
transform to the forward side.

It can be verified that the binDCT type L has the same dy-
namic range as the binDCT type C. That is, it only needs at
most 14 bits to perform the 2-D binDCT, if the inputs are within
-128 and 127. The capability of high-performance implementa-
tion of the binDCT with 16-bit simple arithmetic operations
makes it very promising for low-cost hand-held devices.

D. binDCT of Other Sizes

The same analytical design approach can be applied to gen-
erate binDCT of arbitrary size. Any rotation-based fast factor-
ization of the DCT can be employed to reduce the complexity
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TABLE V
FAMILY OF 8-POINT BINDCTS FROM LOEFFLER'S FACTORIZATION.
|| Floating-point | binDCT-L1 L2 L3 L4 L5 L6 L7 L8 L9
P1 0.4142135623 13/32 13/32 7/16 3/8 1/2 1/2 1/2 1 0
u1 0.3535533905 11/32 11/32 3/8 1/4 1/2 1/2 1/2 1/2 0
P2 0.3033466836 19/64 5/16 1/4 1/4 1/4 0 0 0 0
us 0.5555702330 9/16 9/16 9/16 1/2 1/2 1/2 1/2 1/2 0
ps3 0.3033466836 19/64 5/16 5/16 1/4 1/4 1/4 0 0 0
P4 0.0984914033 3/32 3/32 1/8 1/8 1/8 0 0 0 0
us 0.1950903220 3/16 3/16 3/16 3/16 1/4 1/4 0 0 0
ps 0.0984914033 3/32 3/32 3/32 3/32 1/8 0 0 0 0
Shifts - 22 20 16 13 10 7 5 4 2
Adds - 40 38 34 31 28 25 23 23 20
MSE - 8.2e — 6 l.le—5 40e—5 3.6e—4 6.9e—4 22¢e—3 6.3e—3 1.3e—2 3.2¢e —2
C,4(8) (dB) - 8.8257 8.8242 8.8225 8.8027 8.7716 8.7132 8.5464 8.3416 7.8219
C4(4) (dB) - 7.5697 7.5697 7.5697 7.5600 7.5485 7.5485 7.5485 7.1744 7.1503
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Fig. 8. Frequency response of the 7-th subband in the binDCT-C5. (a) X[1] and X[7] are not permuted; (b) X[1] and X[7] are permuted as in Fig.

5.

of the binDCT. In this section, a 16-point binDCT will be pre-

sented.

An elegant factorization of the 16-point DCT was proposed

by Loeffler et al. [15], which needs 31 multiplications and 81
additions. Although the lower bound for the number of mul-
tiplications of 16-point DCT is 26 [22], the Loefler’s 16-point
factorization is so far one of the most efficient solutions. Un-
fortunately, this factorization can not be generalized to larger
sizes.

With our proposed design method, a family of 16-point
binDCT can be easily obtained from this factorization. The gen-
eral structure and an example is given in Fig. 10. As shown,

the even part of the 16-point binDCT is exactly the same as
the 8point binDCT type L. The example in Fig. 10 requires
51 shifts and 106 additions. Its coding gain is 9.4499 dB, which
is very close to the 9.4555 dB coding gain of the true 16-point
DCT. The MSE of this approximation is 8.4952F — 5. Its fre-
quency response is depicted in Fig. 11, together with that of
the true 16-point DCT.

VIII. EXPERIMENTAL RESULTS

In this section, practical applications of the proposed binDCT
will be demonstrated in JPEG, H.263+, and lossless compres-
sion.
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A. Performance of the binDCT in JPEG

The proposed 8-point binDCT families have been imple-
mented according to the framework of the JPEG standard,
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based on the source code from the Independent JPEG Group
(IJG) [42]. Three versions of DCT’s are provided in IJG’s code.
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of the 16-point binDCT as shown in Fig. 10: coding gain: 9.4499 dB.
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— 1JG's Floating DCT
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Fig. 12. Comparison of IJG’s Floating DCT, 1JG’s fast integer DCT and
binDCT-C4.

The floating version is based on the Arai’s scaled DCT algo-
rithm with 5 floating multiplications and 29 additions [8], [3].
The slow integer version is a variation of the LoefHer’s algo-
rithm with 12 fixed-point multiplications and 32 additions, and
the fast integer version is the Arai’s algorithm with 5 fixed-point
multiplications. To apply the binDCT, we replace the DCT part
by the proposed binDCT, and the JPEG quantization matrix is
modified to incorporate the 2-D binDCT scaling factors.

Fig. 12 compares the PSNR results of the reconstructed Lena
image with IJG’s floating DCT, IJG’s fast integer DCT and the
binDCT-C4. It is observed that the performance of the binDCT
is very close to that of the floating DCT in most cases. In partic-
ular, when the quality factor is below 95, the difference between
the binDCT-C4 and the floating DCT is less than 0.1d B. Exper-
iments also show that even the degradation of the binDCT-C7
is less than 0.5dB. When the quality factor is above 90, the
degradations of both fast DCT’s become obvious, due to the
roundoff errors introduced by the scaling factors. However, the
result of the binDCT is still reasonable. For example, when
quality factor is 100, the binDCT result is 10.3dB better than
that of the IJG’s fastest integer DCT.

Table VI compares the compatibility of different fast DCT al-
gorithms with respect to the floating DCT, for which the image
Lena is compressed with the floating DCT and decompressed
with different fast inverses. It can be seen that the differences
among the binDCT-C4, binDCT-L3 and the IJG’s fast integer
DCT are negligible in most cases. However, the binDCT-L3 has
better performance when the quantization step is very small, as
the scaling factors of the binDCT-L has smaller roundoff er-
rors than the binDCT-C. In term of the compression ratio, the
compressed file size with binDCT-C7 is about 1 — 3% smaller
than that with the floating DCT, while the compressed size with
binDCT-C4 is slightly larger than the latter, but the difference
is less than 0.5% in most cases.

The average executing times of different DCT algorithms
for an 8 x 8 image block are summarized in Table VII, which
amounts to repeating the 1-D inverse transform 16 times. These
results were measured on a PC with Linux operation system
and Pentium-III 550 MHz CPU. It can be seen from the table
that the floating DCT is much slower than the other methods.
Among the fast algorithms, the binDCT-C4 and the binDCT-
C7 are 13— 14% faster than the integer Arai’s algorithm, one of
the fastest DCT implementations. However, the binDCT would
lose its speed advantage gradually as the complexity increases.
For example, the binDCT-C1 is slightly slower than the integer
Arai’s algorithm.

IEEE TRANSACTIONS ON SIGNAL PROCESSING. SUBMITTED: FEB. 2001.

TABLE VI
PSNR(DB) OF THE RECONSTRUCTED IMAGE WITH DIFFERENT INVERSE DCT
ALGORITHMS
Quality G 1JG Fast BinDCT | BinDCT
Factor Int. DCT | Int. DCT C4 L3
100 58.85 45.02 44.38 50.12
90 40.79 40.53 40.52 40.66
80 38.51 38.39 38.39 38.44
60 36.43 36.36 36.38 36.38
40 35.11 35.06 35.06 35.06
20 32.95 32.92 32.92 33.31
10 30.40 30.39 30.38 30.37
5 27.33 27.32 27.30 27.30
TABLE VII

EXECUTING TIMES OF DIFFERENT DCT’S FOR A 8 X 8 IMAGE BLOCK

| Algorithms | Time ( x10~%Sec.) |
1JG Floating DCT 119.05
1JG Int. DCT 4.10
1JG Fast Int. DCT 2.39
binDCT-C1 2.45
binDCT-C4 2.09
binDCT-C7 2.06

More significant improvement can be expected if the algo-
rithm is run on low-end CPU’s where the fixed-point multipli-
cation may take many more instruction cycles to process than
shift and addition operations. The binDCT can be expected to
have tremendous advantage in custom-designed low-cost hard-
ware implementation in term of size, speed and power consump-
tion - all are critical considerations for many hand-held devices.

B. Performance of the binDCT in H.263+

The binDCT has also been implemented in the video coding
standard H.263+, based on a public domain H.263+ software
[48]. The DCT in the encoder of the selected H.263+ implemen-
tation is based on Chen’s factorization with floating-point mul-
tiplications, and the DCT in the decoder is the scaled version of
this method with fixed-point multiplications. In H.263+, a uni-
form quantization step is applied to all the DCT coefficients of
a block. In the binDCT-based version, the quantization step is
modified by the 2-D binDCT scaling matrix to maintain com-
patibility with the standard. In this part, the binDCT-based
H.263+ is compared with the original H.263+ software, and
some luminance PSNR, results of the reconstructed sequence are
shown in Fig. 13 for the 400-frame QCIF test video sequence
Foreman.

Four scenarios of the configuration of the encoder and the de-
coder are compared in Fig. 13(a) and (b), with the default quan-
tization steps (40 for I frames and 26 for P frames). The average
PSNRs of the reference H.263+ implementation is 30.55 dB. If
the binDCT-C4 is used in both the encoder and the decoder,
the average PSNR drops to 30.46 dB. However, the compression
ratio is improved to 102.67 : 1 from 101.03 : 1. If the floating
DCT is used by the encoder and the binDCT-C4 is used in the
decoder, the average PSNR is 30.43 dB. On the contrary, when
the sequence is encoded by the binDCT-C4 and decoded by
the default DCT, the average PSNR is 30.39 dB. These results
show that the compatibility of the binDCT with other DCT
implementations is satisfactory.

In Fig. 13(c), a quantization step of 4 is used for all frames,
the PSNR'’s given by the binDCT-C4 and binDCT-C7 are
0.79dB and 0.61 dB higher than that of the reference H.263+,
with about 2.5% increase in the file size. In summary, the over-
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TABLE VIII
LOSSLESS CODING RESULTS (BITS/PIXEL)
Image binDCT-C4 binDCT-C4 HP CALIC
+ Huffman + SPIHT LOCO-I
Balloon 3.78 3.58 2.90 2.78
Zelda 4.44 4.33 3.89 3.69
Hotel 5.20 5.07 4.38 4.18
Barbara 5.22 5.11 4.69 4.31
Board 4.34 4.24 3.68 3.51
Girl 4.60 4.50 3.93 3.72
Gold 5.20 5.04 4.48 4.35
Boats 4.67 4.56 3.93 3.78
Average 4.68 4.55 3.99 3.79

all performance of the binDCT-C4-based H.263+ is very similar

to the reference H.263+.

C. Performance of the binDCT in Lossless Compression

As previously mentioned, lossless compression can be easily
achieved with the lifting-based binDCT by bypassing the scal-
ing factors. To improve the compression ratio, we replace all
butterflies in the binDCT by lifting steps as shown in Fig. 14,
which can further reduce the dynamic range of the transform.
For instance, the DC coefficient in the modified structure is the
average of all inputs, while in the original structure, it is the
summation of the inputs.

The lossless binDCT has been implemented with two cod-

ing methods: Huffman and SPIHT [49]. To use Huffman cod-
ing, a new Huffman table is obtained by modifying the one
in the JPEG standard, since the statistic distribution of the
binDCT coefficients is different from that of the original DCT
coefficients. In the SPIHT method, we rearrange the binDCT
coefficients according to the pattern of the wavelet transform
coefficients before applying zerotree processing [50].

The binDCT-based lossless transforms are compared with
two advanced context model-based prediction methods: the HP
LOCO-I [51] and CALIC [52]. The results are summarized in
Table VIII, showing that the overall compression ratio of the
binDCT-based method is not as good as these methods. How-
ever, the proposed binDCT is much simpler, and it provides a
unified framework for both lossy and lossless compression.

IX. CONCLUSION

We present the design and application of the binDCT, a
fast multiplierless approximation of the DCT with the lifting
scheme. All the lifting parameters in our design are chosen to be
dyadic rationals, enabling fast implementations with only shift
and addition operations. Several binDCT families are derived
from Chen’s and Loefler’s plane rotation-based factorizations
of the DCT matrix, respectively, and the design method can be
applied to DCT of arbitrary size. Different tradeoffs between
the complexity and the performance can be easily achieved
by the binDCT. The new transform has been implemented in
JPEG, H.263+, and lossless compression with satisfactory per-
formance. Moreover, the binDCT can be implemented with
16-bit data bus, making it very suitable for fast, low-cost, low-
power, yet high-performance multimedia computing and com-
munication applications.
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