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Abstract—This paper discusses a method of regularity impo-
sition onto biorthogonal linear-phase -band filterbanks using
the lattice structure. A lifting structure is proposed for lattice ma-
trix parameterization where regularity constraints can be imposed.
The paper focuses on cases with analysis and synthesis filterbanks
having up to two degrees of regularity. Necessary and sufficient
conditions for regular filterbanks in terms of the filter impulse re-
sponse, frequency response, scaling function, and wavelets are re-
visited and are derived in terms of the lattice matrices. This also
leads to a constraint on the minimum filter length. Presented de-
sign examples are optimized for the purpose of image coding, i.e.,
the main objectives are coding gain and frequency selectivity. Sim-
ulation results from an image coding application also show that
these transforms yield improvement in the perceptual quality in
the reconstruction images. The approach has also been extended
to the case of integer/rational lifting coefficients, which are desir-
able in many practical applications.

Index Terms—Biorthogonal filterbanks, GenLOT, integer trans-
forms, lattice structure, regularity, vanishing moment.

I. INTRODUCTION

WAVELETS and filterbanks have established themselves
as powerful tools in transform-based signal compression

applications [1]. They are used to remove spatial signal redun-
dancy in many video, image, and audio coding standards such
as MPEG video, JPEG, and MPEG audio [2]. Fig. 1 shows the
general block diagram of a transform-based signal coding algo-
rithm. The input signal is represented as a linear combination
of the transform basis functions, and their corresponding coeffi-
cients (the so-called transform coefficients) are obtained at the
output of the transform block. These coefficients are then effi-
ciently quantized and entropy coded to the coder output. In this
paper, we focus on still image coding as an application of trans-
form-based signal compression, whereas other applications can
also be naturally applied.

There has been considerable interest in designing the trans-
form that yields high perceptual reconstructed quality while
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keeping the computational cost low. At the earlier stage, the
discrete cosine transform (DCT) was first employed as an ef-
ficient transform for the JPEG image coding standard, where
the bases are truncated cosine functions, having equal length,
linear phase, orthogonality, and uniform localization in the
frequency domain. However, at low bit rates, the reconstruc-
tion usually suffers from blocking artifacts due to the dis-
continuity at the borders of the basis functions. The discrete
wavelet transform is a more recent technique employed in
transform-based image coder in order to reduce or eliminate
blocking artifacts. Constructed by iterating on the lowpass
branch of a two-channel perfect reconstruction (PR) filter-
bank, the entire frequency domain is octavely divided, ren-
dering a multiscale image representation. Perhaps the most
popular wavelet filter pair used in practical image coders is
the (9/7)-tap linear phase biorthogonal wavelet, which has also
been used in the FBI’s fingerprint compression standard [3]
and now in JPEG2000 [4]. Combining the advantages of ef-
ficient implementation of the DCT and the overlapping basis
functions of wavelets, lapped transforms (LTs) have been re-
cently studied and found to often outperform the previous two
conventional techniques [5]–[7].

The transforms for image coding can be categorized into two
major classes: block-based and wavelet-based. Block trans-
forms can be constructed by uniform -channel filterbanks
such as DCT [8], LOT [5], and GenLOT [6], and wavelet trans-
forms can be generated by iterating two-channel filterbanks
on the lowpass channel [1]. In transforms of both families,
all filter impulse responses have real values with linear-phase
(LP) responses (symmetric or anti-symmetric). The linearity of
the phase responses is to eliminate the phase distortion and to
allow symmetric extension at the border of the image.

Fig. 2(a) shows a uniform maximally decimated-channel
filterbank that consists of the analysis filters and synthesis
filters . The -fold downsampling at the analysis side in-
dicates that the total sampling rate at the input of the processing
block is equal to that of the original input signal. Fig. 2(b) illus-
trates the equivalent polyphase structure where and
are the type-I and -II polyphase matrices of the analysis filters

and synthesis filters , respectively [9]. It is obvious
that the filterbank is PR if and are inverse of each
other.

A fundamental concept in wavelet theory is regularity. It
should be made clear that the termregularity has been used to
define the degree of smoothness of the basis functions and the
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Fig. 1. Block diagram of image coder.

Fig. 2. M -channel filterbank. (a) Regular and (b) Polyphase structures.

number of zeros at aliasing frequencies of the lowpass filter, as
pointed out in [1]. They are different but closely related to each
other. Indeed, it has been shown that the later is always greater
[1]. It is also equivalent to the vanishing moments (number
of zeros at dc frequency) of the bandpass filters [10]–[12].
Moreover, when the analysis and synthesis lowpass filters have
different numbers of zeros at aliasing frequencies, that of the
analysis (synthesis) one will be equal to the vanishing moment
of the synthesis (analysis) bank. For the rest of the paper, the
term regularity of a transform will be referred to as the number
of multiple zeros at the aliasing frequencies and will be used
interchangeably with the vanishing moment.

Definition 1: An -band filterbank is said to be
-regular if the analysis and synthesis lowpass

filters and have, respectively, at least and
zeros at for .

In the paraunitary (PU) case, the degrees of regularity of the
analysis and synthesis filterbanks are equal since their impulse
responses are time-reversed, and hence, the regularity degree of
the filterbank can be identified by using one number instead of
an order pair. To be consistent with [13], we will use-regular
for the case of -regular PU filterbanks. In the biorthog-
onal (BO) case, the analysis and synthesis lowpass filters can
be different, and thus, their degrees of regularity may not be
the same. In particular, for a -regular PU filterbank, the band-
pass filters of the analysis and synthesis filters havevanishing
moments, i.e., for and

. For a -regular BO filterbank, the
analysis and synthesis bandpass filters, respectively, have
and vanishing moments. (See Proposition 1.)

In image coding application, the analysis filters should be op-
timized to obtain maximum coding gain, i.e., the magnitude re-
sponse must match the signal spectrum with high stopband at-
tenuation for maximum decorrelation [14]. On the other hand,
the synthesis filters should be optimized to yield smooth basis
functions. This can be accomplished by imposing a number
of zeros at mirror frequencies into the synthesis lowpass filter.
Therefore, the cost functions for the optimization of and

should be different. In the PU case, since are simply
the time-reversed versions of , they cannot be optimized
for different purposes. In the BO case, the frequency responses
of and can be different, and they can have dif-
ferent numbers of zeros at mirror frequencies. In practice,
should have more zeros in order to obtain smooth synthesis basis
functions. At the same time, the analysis bandpass and highpass
filters should have a high number of vanishing moments in order
to obtain superior energy compaction at a low frequency band.
This paper presents a method to impose one and two degrees
of regularity into and using lattice structures of
BOLP filterbanks.

There are two major conventional approaches in imposing
regularity into a filtebank. The first method is to first design
the lowpass filters with desired degrees of regularity and then
try to optimize the others [11], [15]. It is well known that when

, once the lowpass filters are obtained, the other (high-
pass) filters can be uniquely identified. However, if , the
solutions are not obvious. In [11] and [16], a Gram–Schmidt
process is employed in order to orthogonaly construct the other
filters. This approach, however, does not guarantee linear phase
of the filter impulse responses, which is important to many ap-
plications. In addition, it is difficult to jointly optimize all the
filters simultaneously. The second approach is to impose con-
straints on the filters’ impulse responses [17]. Though straight-
forward, this approach does not guarantee perfect reconstruction
of the resulting filterbank and cause the optimization routine to
converge very slowly, and the optimization process can easily
get trapped in local minima. Moreover, regularity can only be
approximately imposed.

A. Organization

In this paper, we introduce a novel approach of imposing
up to two vanishing moments directly onto the lattice structure
of -channel BOLP filterbanks. Section II reviews the lattice
structure of BOLP filterbanks. Their relations to the transform’s
regularity are presented in Section III. In Section IV, a method
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Fig. 3. Lattice structure for linear-phase lapped transform.

for imposing these conditions onto the lattice components is dis-
cussed with numerous design examples. Image coding examples
are presented in Section V, and Section VI concludes the paper.

B. Notations

Bold-faced lower-case characters are used to denote vectors,
whereas bold-faced upper-case characters are used to denote
matrices. , and denote, respectively, the transpose,
the inverse, and the determinant of the matrix. The symbols

, and stand for the th filter’s impulse re-
sponse, its associated-transform, and its Fourier transform.

Several special matrices with reserved symbols are the
polyphase matrix of the analysis bank , the polyphase
matrix of the synthesis bank , the identity matrix , the
reversal matrix , the null matrix , a permutation matrix ,
and the diagonal matrix with entries being either or .
Likewise, the special vectors are the column vector with all
entries being unity and the column vector with all entries
being zero, except the first entry being unity. When the size
of a matrix or vector is not clear from context, subscripts will
be included. and are usually reserved for the number of
channels and the degrees of regularity. An-channel -tap
FB is sometimes denoted as an lapped transform,
where is the overlapping factor. For abbreviations, we
often use LP, PR, PU, and FB to denotelinear phase, perfect
reconstruction, paraunitary, andfilterbank.

II. L ATTICE STRUCTURE FORBOLP FILTERBANKS

The lattice structure is an efficient implementation of filter-
banks or lapped transforms with linear-phase basis functions
[6], [7]. In this paper, it is assumed that the number of channels

is even, and all the filters have equal length , where
is an integer. It has been proven that when the number of

channels is even, there are symmetric and anti-sym-
metric filters [18]. The polyphase matrix is an
polynomial matrix in of order . Under the assump-
tions on and the filter symmetry, the lattice elements can
be defined as follows:

and

where , and is the reversal matrix. and are
nonsingular matrices of size . For PU filterbanks, these
matrices are orthonormal, and each of them can be parameter-

ized using rotation angles [9]. For BO filterbanks, these

and matrices are nonsingular, and there arefree pa-
rameters in each matrix. The polyphase matrix of an LP
filterbank with degree can be factored as a product of
nonsingular polynomial matrices with degree one [6], [7], i.e.,

(1)

where , and . Hence, a
causal synthesis polyphase matrix can be given by

(2)

Fig. 3 shows the lattice structure of BOLP filterbanks. Although
this structure is minimal in terms of the number of delays, it
does not minimize the number of free parameters. In [12] and
[19], the authors show that the matrices for can be
set to without any completeness violation. This more-efficient
structure with for will be used throughout the
analysis of this paper.

III. RELATIONSHIP BETWEEN THELATTICE STRUCTURE AND

FILTERBANK’S REGULARITY

The theory of regular -band wavelets and filterbanks has
been well established. Here, we only summarize their important
properties. Let us denote and
as the synthesis scaling function and wavelets, and letand

be the analysis scaling function
and wavelets. These functions satisfy the dilation and wavelet
equations [1] as follows:

and

and
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Since the filterbank is PR, it is straightforward to show that

From Definition 1, the regularity of filterbanks was defined
the analysis and synthesis lowpass filters in the frequency do-
main. The conditions can also be expressed in other forms, as
summarized below.

Proposition 1: For a -regular filterbank, the fol-
lowing statements are true.

1) The analysis (synthesis) bandpass and highpass filter
have

multiple zeros at the dc frequency .
2) Polynomial sequences up to degree are

rejected by the analysis (synthesis) bandpass and high-
pass filters and are captured by the analysis (synthesis)
lowpass filter. In other words, we have the following.

a) for
.

b) for
.

3) The first moments of are zero for
all .

4) If has derivatives, then

where suggests order of its argument [20].
5) .
6) The downsampling matrix

...
...

...
...

has eigenvalues .

Conditions 1 and 2 express the regularity of the filterbank in
terms of the vanishing moments of the bandpass filters in fre-
quency domain and time domain, respectively. These conditions
have been translated to the wavelet domain in condition 3. Con-
ditions 4 and 5 relate the regularity to smoothness of these basis
functions. The wavelet coefficients decay exponentially propor-
tional to for a sufficiently smooth function , which
therefore will be well approximated by the synthesis scaling
function with high degree of regularity. Finally, they are ex-
pressed in the eigenvalue domain in condition 6. These condi-

tions are useful and can be used to test the regularity of a filter-
bank in different situations. The proofs of Proposition 1 can be
found in the Appendix.

Next, in order to impose the regularity into the lattice struc-
ture, equivalent relations in terms of the polyphase matrices
need to be established.

Theorem 1: A filterbank is -regular if and only if its
polyphase matrices and satisfy the following condi-
tions:

(3)

(4)

where , and
are some nonzero constants [12], [21].

Equations (3) and (4) can be expressed in terms of the lattice
elements and . Since the calculation is straightforward
but the expressions are very cumbersome, we will present the
results only for the cases of -regular BOLP filterbanks
with . Substituting (1) and (2) into (3) and (4) for
the cases of yields the following conditions:

where . The proof of these
conditions can be done directly by substituting the factorization
of the polyphase matrices into (3) and (4). Similar derivation for
orthogonal case can be found in [13, Appendix], and thus, the
proof will be omitted here.

In a -regular filterbank, a combination of the above
conditions must be satisfied as shown in the following:

Filterbank Necessary and sufficient conditions

-regular
-regular
-regular
-regular
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Fig. 4. Lifting parameterization of a nonsingular matrixA and its inverse.

IV. L ATTICE PARAMETERIZATION

In this section, a lifting structure is used to parameterize non-
singular matrices and . This structure has several advan-
tages over the direct and the SVD structures as discussed later
in this section.

Lemma 1: Any nonsingular matrix can be decom-
posed as , where

...

...

are upper and lower triangular matrices with, respectively, only

the first row and column being nonzero, and is

nonsingular, i.e., is nonsingular, and . Fig. 4 illustrates
the parameterization of this matrix. The matrix is a permu-
tation matrix that switches between the first row and a certain
th row .

Counting the number of free parameters of, we can see that
and have up to nonzero lifting coefficients. The

matrix has one nonzero multiplication and a
matrix , which can be parameterized by another
parameters. Hence, the total number of the free parameters of
is , which is equal to that obtained
from the direct parameterization or the SVD factorization. Thus,
this factorization is minimal in the sense that the number of free
parameters is minimized.

The proposed lifting structure provides many advantages over
the direct and SVD structures. First, let us compare this with the

direct structure. The new lifting structure offers a robust imple-
mentation of the matrix with integer coefficients, i.e., the co-
efficients and can be quantized in both and , and
the quantized versions still preserve invertibility between them.
The entire matrix and its inverse can also be obtained with all
integer coefficients if the same structure is repeated in, and
so on. On the other hand, in the direct structure, if the elements
of and are quantized directly, invertibility is no longer
guaranteed.

Now, let us explore the above with the SVD structure, which
is a product of two orthogonal matrices and a diagonal matrix
in between. Each orthogonal matrix can be implemented using

rotation angles. Each angle can be implemented using

a butterfly with four floating-point multiplications ( and
). The integer implementation is also possible by con-

verting each butterfly into three lifting steps, and these lifting
coefficients can be quantized with invertibility preserved. Each
lifting is equivalent to one multiplication, and therefore, for an

matrix, there are multi-

plications. On the other hand, in the new lifting structure, each
lifting is equivalent to one multiplication, and thus, the number
of multiplications is only . Hence, this new structure is also
more efficient from a computational complexity standpoint.

In the remaining of this section, a new method for imposing
regularities into a BOLP filterbank is discussed, where each in-
vertible matrix is parameterized using the above lifting struc-
ture. In particular, we will demonstrate that one and two van-
ishing moments can be imposed directly onto the parameters

, and of the free-parameter matrices and .

A. (1, 1)-Regular Systems

For BOLP systems, the degree of regularity or the number
of vanishing moments of the analysis and synthesis lowpass fil-
ters are not equal in general, and thus, imposing a number of
zeros at dc of the bandpass and highpass analysis filters does
not imply that the synthesis bandpass and highpass filters will
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Fig. 5. Design example of (1, 1)-regular eight-channel BOLP filterbank with length 16. (Top left) Frequency responses of the analysis and (top right)synthesis
filters and (bottom left) scaling function and wavelets of the analysis and (bottom right) synthesis banks.

have the same number of zeros at dc. In fact, this is equivalent
to imposing the same number of zeros at mirror frequencies of
the synthesis lowpass filter.

Condition requires the analysis bandpass and highpass
filters to have zero response at dc, i.e., has regularity of
degree one. This condition can be satisfied by constraining the
sum of the elements in each row of , except for the first one,
to be zero. Similarly, condition is equivalent to the fact that
the synthesis bandpass and highpass filters have zero responses
at dc, i.e., is 1-regular. It is easy to show that conditions

and together imply that . Therefore, in order
to satisfy both conditions, all elements of the first row of
must be . This is consistent with the result in the PU case,
where ; hence, , implying that .
In the case of BOLP filterbanks, if the first row of the matrix is a
constant vector, the sum of the elements in each other row is zero
as it is orthogonal to the first row. Therefore, only one of the two
conditions is required to enforce the first degree of regularity in
both analysis and synthesis bank, provided that .

Let be parameterized as the matrixin Fig. 4, i.e.,
, where now, denotes the submatrix in Fig. 4.

Since , it is easy to see that the first vanishing
moment of the analysis and synthesis bandpass/highpass filters
does not depend on the choice of.

Theorem 2: The conditions and can be simultane-
ously satisfied by choosing

and

where .
Note that the above conditions can be realized by any choice

of as long as it is nonsingular, and .
Proof: When all analysis bandpass and highpass

filters have zero magnitude response at dc, we have
. Hence,
, which implies

that and . Now, let us assume that the
synthesis bandpass and highpass filters also have zero magni-
tude response at dc, i.e.,

. Therefore

leading to , and
.



3226 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 51, NO. 12, DECEMBER 2003

Fig. 6. Design example of (1, 2)-regular four-channel BOLP filterbank with length 8. (Top-left) Frequency and time responses of the analysis filters. (Top right)
Frequency and time responses of the synthesis filters. (Bottom left) scaling function and wavelets of the analysis. (Bottom-right) Synthesis banks.

Example 1: In this paper, the filters in all design examples
are optimized in order to maximize the stopband attenuation and
coding gain, which can be given by

where is the AR(1) correlation factor. In this paper,is set
to 0.95. In this design example, a (1, 1)-regular 16-tap eight-
channel BOLP filterbank is designed using the proposed theory.
The frequency responses, the zeros of the lowpass filters, and the
corresponding scaling and wavelet functions of both analysis
and synthesis bank are shown in Fig. 5.

B. (1, 2)-Regular Systems

We can follow the method in the previous case, assuming
that both and have at least one regularity, i.e., the
conditions and are satisfied. To obtain a (1, 2)-reg-
ular system, we have to impose another degree of regularity into

. This is equivalent to the analysis bandpass and highpass
filters having two zeros at dc (second vanishing moment). In
terms of the lattice components, this is condition . Note that
this condition is exactly the same as that in the PU case [13],
except that here, the matrices and are nonsingular, and
the condition does not imply a second vanishing moment
for the synthesis bank.

For convenience, let

Hence, the condition can be simplified to

(5)

Assuming that for are known, is also known.
Let us parameterize as matrix in Fig. 4. Condition (5)
can be satisfied by choosing the lifting parametersand in
Fig. 4, as in the following theorem.

Theorem 3: Let . satisfies (5) if and only if

and for

where .
Proof: Assume that (5) holds; therefore, we have

. Hence

which completes the proof.
Example 2: In this design example, a (1, 2)-regular 16-tap,

eight-channel BOLP filterbank is designed using the proposed
theory.

C. (2, 2)-Regular Systems

In this section, we impose the second vanishing moment into
both analysis and synthesis filterbanks. To begin, recall that the
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Fig. 7. Lattice structure of the (1, 2)-regular four-channel eight-tap rational-coefficient design example shown in Fig. 6. (Left) Analysis bank. (Right) Synthesis
bank.

Fig. 8. Design example of (1, 2)-regular eight-channel BOLP filterbank with length 16. (Top left) Frequency responses of the analysis and (top right)synthesis
filters. (Bottom left) Scaling function and wavelets of the analysis and (bottom right) synthesis banks.

filterbank is (2, 2)-regular; then, the condition must be sat-
isfied. Let

(6)

(7)

The above conditions can be imposed into one of the ma-
trices if the other matrices are known.
Without loss of generality, let us assume that the matrices

are chosen in the increasing order. The above conditions can be
rewritten as

(8)

(9)

It is easy to show that both (8) and (9) hold only if

(10)

Clearly, this condition is independent of the choice of for
. When and, hence,
, which proves that the filter length of a (2, 2)-regular

filterbank is at least —a similar result to that of the PU case
[22]. When , the above scalar algebraic equation can be
imposed into one of the matrices with . Since the
matrices are determined in increasing order, this condition



3228 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 51, NO. 12, DECEMBER 2003

Fig. 9. Design example of (2, 2)-regular eight-channel BOLP filterbank with length 24. (Top left) Frequency responses of the analysis and (top right)synthesis
filters. (Bottom left) Scaling function and wavelets of the analysis and (bottom right) synthesis banks.

can be imposed onto after for are known.
Let

and

Then, (10) becomes

(11)

Let be parameterized as matrix in Fig. 4. After some
manipulation, one can show that (11) implies

(12)

It is easy to show that both (11) and (12) can be easily imposed
onto one of the liftings and of as it forms a linear

equation of each of these parameters. One can also impose this
into ; however, the equation becomes quadratic, and it is pos-
sible for to be complex for some choices ofand .

Theorem 4: If satisfies the conditions and and
satisfies (11), for any choices of , the

resulting filterbank is (2, 2)-regular if and only if the following
conditions hold:

1) ;
2) for ;
3) ;

where , and .
In the design process, the matrix can be parameterized

as follows. The vectors and are obtained from (6) and (7).
The only constraint before obtainingand is that must
satisfy (11), which can easily be done by enforcing one of its
parameter to satisfy (12). The vectorsand are obtained after
the permutation matrix has been identified, and finally, ,
and are defined.

Proof: Conditions 1 and 2 are exactly the same as that in
Theorem 3. From (9), we have
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TABLE I
OBJECTIVE PROPERTIES OF THEPULP FILTERBANKS USED IN IMAGE COMPRESSIONEXPERIMENTS

TABLE II
OBJECTIVE CODING RESULTS(PSNRIN DECIBELS) USING DIFFERENTTRANSFORMSWITH ONE LEVEL DECOMPOSITION IN THELOWPASSSUBBAND ON

TEST IMAGES LENA AND BARBARA

Hence

for some . It is easy to show that with the choice of in
(12), , and thus, the proof is complete.

Since the construction of (2, 2)-regular filterbanks is quite
complicated, we summarize all the parameterizing steps here.

1) Parameterize to satisfy the conditions and .
1.1) Choose any .
1.2) Choose , and of , as in Theorem 4, where

is a permutation matrix, as described in Section IV.
2) Choose for arbitrarily if .
3) Parameterize to satisfy (11) by choosing and

of that satisfy (12).
4) Choose , and of , as in Theorem 4, where

is a permutation matrix, as described in Section IV.
5) Choose arbitrarily.

Example 3: In this design example, a (2, 2)-regular 24-tap
eight-channel BOLP filterbank is designed using the proposed
theory.

It should be noted that in Examples 1 and 3, even though
the degree of regularity of the analysis and synthesis filters are

equal, optimization of coding gain can still automatically force
unsymmetrical smoothness of the resulting analysis and syn-
thesis scaling functions. This is consistent with one of our objec-
tives that the synthesis basis function should be smooth, whereas
the analysis one should decorrelate the input signal, and thus,
smoothness is not critically important.

D. Regular Filterbanks With Rational Coefficients

One advantage of the proposed parameterization is that the
lifting scheme is used, and thus, rational coefficients can be ob-
tained while perfect reconstruction is preserved. See [23] for a
detailed discussion on how to design such a class of filterbank.

Example 4: In this design example, a (1, 2)-regular eight-tap
four-channel BOLP filterbank is designed using the proposed
theory. The frequency responses, the time responses, and the
corresponding scaling and wavelet functions of both analysis
and synthesis banks are shown in Fig. 6, where the enhanced
smoothness in the synthesis bank is evident. Note that we
purposely choose rational parameters in this design. The
detailed rational-coefficient lattice is depicted in Fig. 7. The
frequency responses, the zeros of the lowpass filters, and the
corresponding scaling and wavelet functions of the analysis
and synthesis banks of Example 2 are shown in Fig. 8. The
frequency responses, the zeros of the lowpass filters, and the
corresponding scaling and wavelet functions of the analysis
and synthesis banks of Example 3 are shown in Fig. 9.
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Fig. 10. Enlarged portions of the Lena image compressed at 1:64 using various linear phase filterbanks. (Top left) 9/7 wavelet. (Top right) 8� 16 LOT (top-right).
(Middle left) 8� 24 1-regular PULP filterbank. (Middle right) 8� 24 2-regular PULP filterbank. (Bottom left) 8� 16 (1, 1)-regular BOLP filterbank. (Bottom
right) 8� 16 (1, 2)-regular BOLP filterbank.
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Fig. 11. Enlarged portions of the Barbara image compressed at 1:64 using various linear-phase filterbanks. (Top left) 9/7 wavelet. (Top right) 8� 16 LOT. (Middle
left) 8� 24 1-regular PULP filterbank. (Middle right) 8� 24 2-regular PULP filterbank. (Bottom left) 8� 16 (1, 1)-regular BOLP filterbank. (Bottom right) 8� 16
(1, 2)-regular BOLP filterbank.
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TABLE III
OBJECTIVE CODING RESULTS(PSNRIN DECIBELS) USING DIFFERENTTRANSFORMSWITH TWO LEVEL DECOMPOSITION IN THELOWPASSSUBBAND ON

TEST IMAGES LENA AND BARBARA

V. CODING EXAMPLES

In this section, the regular filterbanks obtained from several
design examples presented in previous sections are evaluated in
an image compression application. The test images in the exper-
iment are popular 512 512 8-bit gray-scale imagesLenaand
Barbara, representing images with smooth regions and textures
respectively. The set partitioning in hierarchical trees (SPIHT)
progressive image transmission algorithm is chosen to compare
the performances of the transforms, i.e., the encoding algorithm
is fixed and only the decomposition stage in the encoder, and
the reconstruction stage in the decoder is modified with different
transformations. The eight transforms chosen for the experiment
are the following:

• two-band 9/7 Daubechies symmetric wavelets [24], four
degrees of regularity, six levels of iteration;

• eight-band eight-tap DCT [8], one degree of regularity,
two levels of iteration;

• eight-band 16-tap LOT [5], one degree of regularity, two
levels of iteration;

• eight-band 24-tap PULP regular FB labeled PULPv1 [13],
one degree of regularity, two levels of iteration;

• eight-band 24-tap PULP regular FB labeled PULPv2 [13],
two degrees of regularity, two levels of iteration;

• eight-band 16-tap BOLP regular FB labeled BOLPv11, (1,
1)-degree of regularity, two levels of iteration;

• eight-band 16-tap BOLP regular FB labeled BOLPv12, (1,
2)-degree of regularity, two levels of iteration;

• eight-band 24-tap BOLP regular FB labeled BOLPv22, (2,
2)-degree of regularity, two levels of iteration.

Table I summarizes the coding gains, degrees of regularity, and
stopband attenuation of the-band transforms used in the com-
parison. To avoid modification of the encoding algorithm, the
transform coefficients are rearranged and grouped into the pop-
ular quad-tree structure [25], [26]. Thus, an eight-band filter-
bank is equivalent to a three-level dyadic wavelet iteration.

Table II summarizes the PSNR of the reconstruction images.
According to Table II, for Lena, the (9/7)-wavelet yields highest
PSNRs for most of the compression ratios except for 1:16 and
1:32, where the BOLPv11 is better. Comparing among the eight-
channel filterbanks, both the BOLPv11 and BOLPv12 yield ap-
proximately equal PSNRs to that of the PULPv1 and PULPv2,
despite their shorter filter length. However, the reconstructions
have different perceptual quality. Fig. 10 shows an enlarged por-
tion of the Lena image coded using different filterbanks at a
1:64 compression ratio. It is clear that the blocking artifact ap-
pearing in the case of the LOT is improved by the PULPv1
and PULPv2 and completely eliminated by the BOLPv11 and
BOLPv12. In addition, the biorthogonal transforms seem to pre-
serve the fine details better than the orthogonal ones. In this case,
since the Lena image has a lot of smooth regions, as expected,
the 9/7 wavelet yields highest PSNR and perceptually similar
reconstruction to that of the BOLPv12. A similar case but with
richer textures is found in the second test image. Fig. 11 de-
picts the enlarged portion of the Barbara image coded at 1:64
compression ratio. It is clear that in the orthogonal cases (LOT,
PULPv1, and PULPv2), not only is there residual blocking ar-
tifact in the reconstruction but also, some of the texture details
are lost. These textures are better preserved by the biorthogonal
transforms (BOLPv11 and BOLPv12). In this case, since the
Barbara image has a lot of textures, the 9/7 wavelet smoothes
out many high-frequency details.

In order to obtain a fair comparison to the coding results in
[13], the lowpass subband of the eight-channel filterbank is fed
to another stage of transformation. This two-level decomposi-
tion of the eight-channel filterbank is equivalent to a six-level
dyadic wavelet transform after the coefficients are rearranged.
Table III presents the resulting coding PSNRs. Compared with
Table II, the new PSNRs are similar to that when the filterbanks
are not reiterated but slightly lower. The differences are uniform
across the transforms, i.e., at each compression ratio, the degra-
dations in PSNRs are approximately the same for different eight-
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channel filterbanks. This suggests that when an-channel fil-
terbank with sufficiently large is used, there is no need for re-
iteration in the lowpass branch as that used in the dyadic case.

VI. CONCLUSION

In this paper, we have presented a method for imposing reg-
ularity properties onto BOLP filterbanks. A new lattice struc-
ture for parameterizing a nonsingular matrix via lifting steps
is presented. This new structure has several advantages over
the conventional direct and SVD parameterizations in terms of
number of free parameters and robustness to the quantization of
the lifting coefficients. Regarding regular filterbanks, we con-
sider three cases of (1, 1), (1, 2), and (2, 2)-regular systems,
where the corresponding permissible minimal filter lengths are

, and , respectively. By using the proposed parame-
terization of nonsingular matrices, the conditions for regularity
of the filterbanks can be imposed with ease into the lifting steps.
Finally, these transforms are tested in an image coding applica-
tion and shown to simultaneously eliminate the blocking artifact
and preserve texture details better than the conventional trans-
forms.

APPENDIX

PROOF OFPROPOSITION1

1) We will prove, by using the modulation matrices
and , whose elements are and

, where . First, let us prove the
first statement by induction on . Recall that the PR
property of the filterbank yields

a diagonal matrix (13)

a) . Assume that for all
. Substituting into (13) yields

for all . Hence, .
b) . Assume that the first statement of the the-

orem is true for . It is now sufficient to
show that if has multiple zeros at aliasing
frequencies for all , then have
multiple zeros at dc frequency. Suppose that
has zeros at for all in order to show that
the bandpass/highpass filters have zeros at
dc for all , and it suffices to show that
are of the form , where

are some polynomials (since all the filters
are FIR) in . Equivalently, the th derivative of

with respect to and evaluated at
is zero for all . Repeatedly ap-
plying the derivative operator times to (13)
with respect to implies that

diagonal matrix (14)

After substituting , we can rewrite (14) as

diagonal matrix (15)

Consider the off-diagonal elements of the first
column of . Since

has zeros at all aliasing frequencies,
the off-diagonal elements of the first row in

are zero for .
By the assumption of induction, the off-diagonal
elements of the first row in
are zero for , which imply
that the off-diagonal elements of the first row in

must be zero, i.e.,

(16)

for . Hence,
for all , which completes the proof. The

second statement can be proven in the same manner
by noting that

diagonal matrix (17)

and will be left as a simple exercise for the reader.
2) We will show only for the case of (a) since the two con-

ditions are analogous. The proof is straightforward from
the fact that has zeros at dc. Let us write
as

(18)

where is some function of such that .
Hence, . Now, letting us differ-
entiate (18) with respect to, we get

Letting ,
then

(19)

It is clear that if , substituting into (19) im-
plies (a) for . For , successively dif-
ferentiating and substituting , as above, completes
the proof.
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3) We will only prove for . From the definition of
for , we have

From 2, if , the th moment of in the
last equation is zero because , and hence,

, as desired.
4) We will integrate by part the quantity in the absolute

value. Let ; hence,
. From 3, it is clear that

. In fact, has the same compact support
as . Therefore

(20)

Again, let
. Integrating by parts, the above equation yields

Hence, , and (20) becomes

(21)

Repeating the same procedure yields

(22)

5) The proof is directly from the orthogonality between
and .

6) We will prove by induction on , similar to the case of
in [1]. Let be the submatrix of . Hence,

the eigenvalues of are also eigenvalues of. When
has a factor ,

which implies that for all .
Hence, we have the equation at the bottom of the page.
Therefore, 1 is an eigenvalue of and with the cor-
responding left eigenvector . Now, assuming
that ,
with having zeros at every aliasing fre-
quency , let , where the
equivalent relation can be expressed in the-domain as

Hence,
, where ,

and thus, are new eigenvalues of.
The extra eigenvalue 1 of follows from the fact that

for all .

...
...

...
...

...
...
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