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Linear-Phase Perfect Reconstruction Filter
Bank: Lattice Structure, Design, and Application

in Image Coding
Trac D. Tran, Ricardo L. de Queiroz, Senior Member, IEEE, and Truong Q. Nguyen, Senior Member, IEEE

Abstract—A lattice structure for an -channel linear-phase
perfect reconstruction filter bank (LPPRFB) based on the sin-
gular value decomposition (SVD) is introduced. The lattice can
be proven to use a minimal number of delay elements and to
completely span a large class of LPPRFB’s: All analysis and
synthesis filters have the same FIR length, sharing the same
center of symmetry. The lattice also structurally enforces both
linear-phase and perfect reconstruction properties, is capable of
providing fast and efficient implementation, and avoids the costly
matrix inversion problem in the optimization process. From a
block transform perspective, the new lattice can be viewed as rep-
resenting a family of generalized lapped biorthogonal transform
(GLBT) with an arbitrary number of channels and arbitrarily
large overlap. The relaxation of the orthogonal constraint allows
the GLBT to have significantly different analysis and synthesis
basis functions, which can then be tailored appropriately to fit
a particular application. Several design examples are presented
along with a high-performance GLBT-based progressive image
coder to demonstrate the potential of the new transforms.

I. INTRODUCTION

T HERE HAS been a tremendous growth in the field of
filter banks (FB’s) and multirate systems in the last 15

years. These systems provide new and effective ways to rep-
resent signals for processing, understanding, and compression
purposes. Filter banks find applications in virtually every signal
processing field [1]–[3]. Obviously, of extreme importance
is the ability to design a filter bank that can fully exploit
the properties and nature of a particular class of signals or
applications.

In this paper, we consider the discrete-time maximally deci-
mated -channel uniform filter bank as depicted in Fig. 1(a).
At the analysis stage, the input signal is passed through a
bank of analysis filters , each of which preserves a fre-
quency band of uniform bandwidth . These filtered sig-
nals are then decimated by to preserve the system’s overall
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sampling rate. The resulting subband signals can be coded, pro-
cessed, and/or transmitted independently or jointly. At the syn-
thesis stage, the subbands are combined by a set of upsamplers
and synthesis filters to form the reconstructed signal

. Assuming that there is no information loss at the pro-
cessing stage, filter banks that yield the output as a purely
delayed version of the input , i.e., , are
called perfect reconstruction (PR) filter banks. The PR property
is highly desirable since it provides a lossless signal representa-
tion, and it simplifies the error analysis significantly.

In numerous applications, especially image processing, it is
also crucial that all analysis and synthesis filters have linear
phase (LP). Besides the elimination of the phase distortion, LP
systems allow us to use simple symmetric extension methods to
accurately handle the boundaries of finite-length signals. Fur-
thermore, the LP property can be exploited, leading to faster and
more efficient FB implementation. From this point on, all of the
FB in discussion are LP perfect reconstruction filter bank (LP-
PRFB). For various other practical purposes, only causal, FIR,
and real-coefficient systems are under consideration.

The -channel filter bank in Fig. 1(a) can also be repre-
sented in terms of its polyphase matrices as shown in Fig. 1(b),
where is the analysis bank’s polyphase matrix, and
is the synthesis bank’s polyphase matrix. Note that both
and are matrices whose elements are polynomials
in [1]. Now, if is invertible with minimum-phase deter-
minant (stable inverse), we can obtain PR by simply choosing

. In other words, any choice of and
that satisfies

(1)

yields PR. Since we are only interested in FIR FB, the determi-
nants of both polyphase matrices need to be monomials [1] as
well:

and integers (2)

A popular choice of in several previous works [4]–[7] is

(3)

where is the order of a properly designed . This leads
to paraunitaryor orthogonalsystems. In the case where

1053–587X/00$10.00 © 2000 IEEE
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(a) (b)

Fig. 1. M -channel uniform-band maximally decimated filter bank. (a) Conventional representation. (b) Polyphase representation.

may not be paraunitary but (1) still holds, the FB is said to be
biorthogonal.

A. Previous Works

There have been numerous works on the theory, design, and
implementation of FIR LPPRFB [1]–[3]. Most deals with two-
channel biorthogonal systems [8]–[10] for which all solutions
have been found. A Type A system has even-length filters with
different symmetry polarity (where one is symmetric and the
other antisymmetric). A Type B system has odd-length filters
with the same symmetry polarity (both symmetric) [11]. On the
other hand, there are still many open problems in-channel
cases. First of all, when , there is no simple spectral
factorization method that has worked well in practice for two-
channel FB design [2]. We have to rely on other approaches
such as lattice structure parameterization [4]–[7], time-domain
optimization [12]–[14], and cosine modulation [15]. The most
attractive amongst these is the lattice structure approach based
on the factorization of the polyphase matrices and .
The lattice structure offers fast implementation with a minimal
number of delay elements, retains both LP and PR properties
regardless of lattice coefficient quantization, and, if it is general
enough, covers a complete class of FB with certain desired prop-
erties. Complete and minimal two-channel LP PR lattice struc-
tures have been reported in [8]. -channel lattices have been
found for the more restricted paraunitary case [4], resulting in
the generalized lapped orthogonal transform (GenLOT) [5], [6].
No general lattice has been reported for the biorthogonal case.
Only several particular solutions were proposed thus far. Chan
replaced some orthogonal matrices in [5] by cascades of invert-
ible block diagonal matrices [16]. Malvar suggested the lapped
biorthogonal transform (LBT) by introducing a scaling of
the first antisymmetric basis function of the DCT, which serves
as the initial block of the original LOT structure [17], [18]. Al-
though this elegant solution leads to fast-computable transforms
that are highly desirable in practice, it is certainly not the gen-
eral solution. This paper is indeed a direct inspirational product
of Malvar’s work in [18].

As previously mentioned, an -channel LPPRFB can be im-
plemented as a lapped transform (LT), as demonstrated in Fig. 2
[19]. In the one-dimensional (1-D) direct implementation, the
input signal can be blocked into sequences of length
and overlapped by samples with adjacent sequences.
The columns of the transform coefficient matrixhold the

impulse responses of the analysis filters . The resulting
subbands can then be quantized, coded, and transmitted
to the decoder, where the inverse transform is performed to re-
construct the original signal . The LT provides an elegant
solution to the elimination of annoying blocking artifacts in tra-
ditional block-transform image coders at a reasonable cost—in
both system memory requirement and transform speed. The LT
outperforms the popular nonoverlapped discrete cosine trans-
form (DCT) [20] on two counts: i) From the analysis viewpoint,
it takes into account interblock correlation, hence, providing
better energy compaction, and ii) from the synthesis viewpoint,
its basis functions decay asymptotically to zero at the ends, re-
ducing blocking discontinuities drastically. The original LOT
and its generalized version are LPPUFB’s and, as a result, have
identical analysis and synthesis banks [1], [19]. The relaxation
of the orthogonal constraint gives the new class of LT’s much
more flexibility, especially in image coding application. In the
analysis bank, a lot of emphasis can be placed on energy com-
paction, whereas in the synthesis bank, the smoothness property
of the filters can be concentrated on to improve the visual quality
of the reconstructed images.

B. Outline

The outline of the paper is as follows. Taking a step toward
unifying the field of -channel LPPRFB design, we first in-
troduce in Section II a general and unique structure that prop-
agates the LP and PR properties. Section III discusses the par-
ticular solution for the even-channel case where the resulting
lattice is proven to be complete and minimal. In the LT lan-
guage, the structure can be interpreted as a robust and efficient
characterization of the generalized lapped biorthogonal trans-
form (GLBT). The odd-channel solution is presented in Section
IV. Next, Section V introduces the novel parameterization of
invertible coefficient matrices by the singular value decompo-
sition (SVD) that allows robust characterization of biorthogo-
nality and avoids the costly matrix inversion in the optimization
process. In Section VI, several design examples based on un-
constrained nonlinear optimization of the lattice coefficients are
presented along with an image coding example illustrating the
new LT family’s potential. The GLBT-based embedded coder
consistently outperforms the wavelet-based SPIHT coder [21]
by a large margin. The improvement in PSNR can be up to an
astounding 2.6 dB. Finally, Section VII draws up the final con-
clusions.
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C. Notation

Notation-wise, vectors are denoted by boldfaced lowercase
characters, whereas matrices are denoted by boldfaced upper-
case characters. If their sizes are not clear from context, sub-
scripts are provided. , , , , and denote, re-
spectively, the transpose, the inverse, the trace, the determinant,
and the rank of the matrix . If has an inverse and its de-
terminant is a pure delay as defined in (2), is called FIR
invertible or having FIR inverses. The symbols , ,
and stand for theth filter’s impulse response, its asso-
ciated -transform, and its Fourier transform, respectively, Sev-
eral special matrices have reserved symbols:

identity matrix;
reversal matrix;
null matrix
diagonal matrix whose entry is 1 when the cor-
responding filter is symmetric and 1 when the
corresponding filter is antisymmetric.

and are reserved for the number of channels and the filter
length. For abbreviations, we use LP, PR, PU, LT, and FB to
denotelinear phase, perfect reconstruction, paraunitary, lapped
transform,and filter bank. The terms LPPRFB and GLBT are
used interchangeably.

II. GENERAL LP-PROPAGATING STRUCTURE

A. Problem Formulation

Throughout this paper, the class of-channel FB’s under
investigation possesses all of the following characteristics.

i) The FB has perfect reconstruction as in (1).
ii) All filters (both analysis and synthesis) are FIR as in (2).
iii) All filters have the same length , where is a

positive integer, i.e., and have the same order.
iv) All analysis and synthesis filters have real coefficients

and LP, i.e., they are either symmetric
or antisymmetric .

For this class of LPPRFB, the problem of permissible condi-
tions on the filter length and symmetry polarity has been solved
in [6], [22], and [23]. Their fundamental results are summarized
in Table I. These necessary conditions for LPPR systems are ex-
tremely helpful in restricting the search space of possible solu-
tions, and they also play a key role in the development of general
lattice structures presented in the next sections.

B. General Structure

The essential concept of the lattice structure can be best illus-
trated in Fig. 3. Suppose we are given a set of filters
with the associated polyphase matrix satisfying a certain
set of desired properties. We would like to design a low-ordered
structure to translate into another set of filters

of higher order represented by the new polyphase
matrix in such a way that still
possesses the same set of desired properties as . The
following theorem introduces a general structure for ,
where the propagating properties are chosen to be LP and PR.

Theorem I: Suppose that there exists an-channel FIR LP-
PRFB with all analysis and synthesis filters of length

(a)

(a)

(b)

Fig. 2. M -channel LPPRFB as an LT. (a) Direct implementation in 1-D. (b)
Illustration in 2-D.

TABLE I
POSSIBLE SOLUTIONS FORM -CHANNEL

LPPRFBWITH FILTER LENGTHSL = K M + �

Fig. 3. Stage of the lattice structure.

with the associated order- polyphase matrix . De-
fine the order- polyphase matrix ,
where the propagating structure is the all-zero of order ,
i.e., . Then, has LP and PR if and
only if

1) is FIR invertible;
2) takes the form ;
3) .
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Proof: First, ; hence,
, and . Since is

FIR invertible, it is clear that exists and is FIR if and
only if is FIR invertible. Next, represents a LPFB;
therefore, and its associated synthesis polyphase matrix

satisfy the LP property [4], [6]

(analysis) (4)

(synthesis) (5)

where is the diagonal matrix with entries being1 or 1,
depending on the corresponding filter being symmetric or an-
tisymmetric. For clarity of presentation and without any loss
of generality, all symmetric filters are permuted to be on top,
i.e., , where stands for the number of sym-
metric filters, and stands for the number of antisymmetric
filters. and have to satisfy the necessary constraints in
Table I: if is even; and

if is odd.
Similarly, the LP property of is equivalent to

Thus, for to have LP, it is necessary and sufficient that

(6)

Now, substituting into the right-hand side
of (6) yields

(7)

In other words, the specific form of in (6) imposes inter-
esting symmetric constraints on the matrices.

Theorem I already presents a strong result. It states that the
building block with the three aforementioned properties
has a unique structure with respect to the propagation of LP
and PR—there exists no other solution. In addition, note that the
order of is purposely chosen to be arbitrary so that it can
cover all classes of FB that may be unfactorizable with order-1
structures. For example, according to Table I, an odd-channel
even-length LPPR system does not exist. Hence, it is not pos-
sible to construct a lattice with order-1 building blocks when

is odd. The minimum length increment in this case has to be,
and the simplest possible structure must have order of at least 2.
Sections III and IV discuss in details more specific cases with
order-1 and order-2 LP-propagating structures, respectively.

III. L ATTICE STRUCTURE FOREVEN-CHANNEL LPPRFB

Let us assume further that is even. In this case, possible
solutions must have symmetric and antisymmetric
filters, as indicated in Table I. Furthermore, we know that LP-
PRFB exists for every integer [4]–[6], i.e., these FB can
be factored by order-1 structure. If in (7), .
Then, takes the general form of .

Fact: is not FIR invertible if has full rank.
Suppose that is FIR invertible, and without loss of gen-

erality, let (keep in mind that the
synthesis filters have LP as well). Since , eval-
uating the equation with like powers ofyields

(8)

and

(9)

If is full rank, , and (8) becomes inconsistent.
Moreover, according to Sylvester’s rank theorem [24], we can

easily prove that from (9). Our interest is
in the most general solution, and there should be no bias on a
particular bank. Hence, we propose the following solution with

:

(10)

where and are arbitrary matrices. We will later
prove that the choice of in (10) is indeed the most general
solution (seeLemma Iin the Appendix). Now

can be factorized as follows:

(11)

All of the delays are now contained in , whereas re-
sembles the famous “butterfly” matrix in the FFT implementa-
tion. Since and are paraunitary, is invertible if and
only if is invertible, i.e., and are invertible. A cascade of

blocks and a zero-order ini-
tial block generates the polyphase matrix of an even-channel
LPPRFB with filter length :

(12)
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The starting block has no delay element, represents an
LPPRFB of length , and was often chosen to be the DCT [5],
[16], [17]. The most general that satisfies (4) has the form

(13)

For to have PR, and again have to be invertible. The
polyphase matrix of the corresponding causal synthesis bank is
then

(14)

The complete lattice for both analysis and synthesis bank is
depicted in Fig. 4. Results in (11)–(14) should not come as a
surprise. The factorization is very similar to the GenLOT’s lat-
tice structure [5] in the more restrictive case of paraunitary FB.
In that case, the authors obtained PU systems by enforcing or-
thogonality on . Now, we have to show that the proposed fac-
torization does cover all possible solutions in the problem for-
mulation of Section II by proving the converse of the result in
(12).

Theorem II: The analysis polyphase matrix of
any even-channel FIR LPPRFB with all analysis and syn-
thesis filters of length can always be factored as

, where is as in (11), and
is as in (13). The corresponding synthesis polyphase matrix is

.
The proof of Theorem II, where the LP and length constraint

on the filters play a crucial role, is presented in the Appendix.
We can now proceed without any loss of continuity.

Theorem III: The factorization in (12) is minimal, i.e., the
resulting lattice structure employs the fewest number of delays
in its implementation.

Proof: A structure is said to be minimal if the number of
delays used is equal to the degree of the transfer function. For
the class of systems in consideration, it can be easily proven [25]
that

Using the symmetry property of the polyphase matrix in (4), we
have

Therefore

which leads to . In our factor-
ization, there are building blocks , where each
employs delays. Thus, the total number of delays in use is

(a)

(b)

Fig. 4. General lattice structure for even-channel LPPRFB. (a) Analysis bank.
(b) Synthesis bank.

, leading to the conclusion that the factorization
is minimal.

IV. L ATTICE STRUCTURE FORODD-CHANNEL LPPRFB

Suppose is now odd. As previously mentioned in Section
II, the minimum order of the propagating structure is 2,
i.e., . According to Theorem I,
the following relationships must hold:

(15)

(16)

where we are is reminded that

We expect the factorization to be quite similar to the
even-channel case’s. The main difference is that the system
now has one more symmetric filter. Therefore, consider the
factorization in

(17)

where matrices , , , , and have size
; and are of size ; and

are of size ; and are scalars.
This particular choice of results in (18)–(20), shown at

the bottom of the page. For (15) and (16) to hold simultaneously,
the general solution is to set bothand to . (Another solu-
tion is to choose , , and to be . However, annihilating

and also automatically eliminates from the set of free
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Fig. 5. Lattice structure for odd-channel LPPRFB.

parameters.) With , the simplified factorization
takes the form

(21)

The two matrices containing delay elements can be factored
further as

(22)

and

(23)

In both (22) and (23), all factors have trivial orthogonal in-
verses. Hence, further enforcement of the PR property on

requires , , , and to be invertible, whereas is a
nonzero scalar. Higher order systems can be constructed by cas-
cading more stages:

odd
(24)

and the corresponding synthesis polyphase matrix is given by

(25)

Again, the starting block of the cascade does not contain
any delay; it represents the simplest LPPRFB with all filters of
length . The general solution for is

(26)

where and need to be invertible. For fast-com-
putable transform, can be chosen as the DCT coef-
ficient matrix.

The full lattice structure for the analysis bank is depicted
in Fig. 5. The synthesis bank can be obtained by reversing
the signal flow. In contrast to the even-channel case, the
odd-channel lattice in Fig. 5 is not complete; it is still minimal,
however.

Theorem IV: The factorization in (24) is minimal in terms of
the number of delay elements used in the FB’s implementation.

(18)

(19)

(20)
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Proof: This result comes straight from the proof of The-
orem III. The degree of is for both odd and
even . In our odd-channel solution, is always odd; there are

“double” building blocks , where each employs
delays [ has , whereas has

delays]. Therefore, the total number of delays employed in the
implementation is .

There are a couple of interesting side notes on the lattice in
Fig. 5. First, to construct odd-channel LPPUFB (odd-channel
GenLOT), we simply have to choose all free-parameter ma-
trices , , , , and in the propagating stages

and the starting block to be orthogonal. This choice
turns out to be an alternate, but equivalent, form of the factor-
ization presented earlier in [26]. Second, the curious will im-
mediately ponder the following: What happens at the middle of
the “double” structure? Let us consider the simplest case where
only half of stage is involved, i.e.,

(27)

The FB’s corresponding coefficient matrix (transposed) is
then as in (27a), shown at the bottom of the page. Interestingly,
the FB still has PR because every factor in (27) is invertible.
Furthermore, all filters still have LP as indicates. The only
trouble comes from the symmetric filter in the middle, which
turns out to have only taps. This type of system with filters
of unequal lengths is outside the class of FB in consideration
and is beyond the scope of this paper.

V. PARAMETERIZATION OF INVERTIBLE MATRICES

Up until this point, we are still evasive on how to parameterize
invertible matrices. In the paraunitary case, each of the
orthogonal matrices containing the free parameters is
completely characterized by Givens rotations [5],
as shown in Fig. 6 (drawn for ). The parameterization of
the FB into rotation angles (which are called lattice coefficients)
structurally enforces the LP and PR properties, i.e., in the lattice
representation, both LP and PR properties are retained regard-
less of coefficient quantization. From a design perspective, the
lattice structure is a powerful FB design tool since the lattice
coefficients can be varied independently and arbitrarily without
affecting the most desirable FB characteristics. Unconstrained
optimization can be applied to obtain secondary features such

as high coding gain and low stopband attenuation. From a prac-
tical perspective, the lattice provides a fast, efficient, modular,
and robust structure suitable for hardware implementation.

The difficulty in the biorthogonal case is obvious: How do
we completely characterize a nonsingular square matrixof
size ? One naive solution is to choose ’s elements as the
lattice coefficients. However, there are many problems with this
solution. First of all, it is difficult to guarantee exact reconstruc-
tion when the matrix elements are quantized. Second, this “pa-
rameterization” method does not provide a fast and efficient FB
implementation. Furthermore, in order to obtain a high-perfor-
mance FB, we have to synthesize the lattice by an optimization
process to find the set of locally optimal lattice coefficients. This
process typically involves thousands of iterative steps; therfore,
we have to face the costly matrix inversion problem. Finally,
how can we prevent the optimization process from encountering
singular or near-singular matrices?

To solve the aforementioned problems, we propose a param-
eterization method of invertible matrices by their singular value
decompositions (SVD’s). Recall that every invertible matrix has
an SVD representation , where and are
orthogonal matrices, and is a diagonal matrix with positive
elements [27]. Thus, of size can be completely character-
ized by rotation angles (from , ) and
diagonal multipliers (from ), as illustrated in Fig. 7. In-
vertibility is guaranteed structurally under a mild condition—as
long as none of the diagonal lattice coefficientsrepresenting

is quantized to zero. Moreover, inverting is now very fast,
and singularity can be prevented by a simple cost function in
the optimization process, where a penalty is assigned whenever
a diagonal coefficient (or its inverse) ventures too close to zero.

In the even-channel case, under the SVD parameterization,
can be further factorized as

(28)

Again, the orthogonal matrices , , ,
and are parameterized by rotations each.
The diagonal matrices and are characterized by pos-
itive parameters each. The detailed even-channel lattice struc-
ture is shown in Fig. 8 (drawn for ). Each of the cas-
cading blocks in the lattice (including ) has degrees of
freedom. Thus, the most general-channel LPPRFB with filter
length (i.e., GLBT) can be parameterized by

parameters, as expected from the most gen-
eral LP systems. The classical tradeoff between the FB’s com-
plexity and performance can be elegantly carried out by setting
some of the diagonal multipliers to 1 or some of the rotation an-
gles to 0.

(27a)
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Fig. 6. Parameterization of orthogonal matrix.

Fig. 7. Parameterization of invertible matrix.

It is also very easy to verify that all previously reported even-
channel LPPRFB’s rotation-based lattice structures are special
cases of the new lattice. For examples, the GLT design example
in [16] has , , and from the DCT;

; and parameterized as a
cascade of block diagonal matrices. The LBT in [18] has

, , and from the DCT, ,
, and , orthogonal. When

orthogonality is imposed, we get back GenLOT [5]. When
, the lattice turns into a modular form of the Type-A system

lattice [8]. Comparing the novel GLBT with the biorthogonal
lapped transform (BOLT) in [28] reveals several fundamental
differences.

i) The GLBT’s analysis polyphase matrix is not restricted
to have order 2.

ii) The GLBT have LP analysis and synthesis filters of the
same length.

iii) The factorization approaches are totally dissimilar.
The odd-channel case is more complicated. An order-2 stage

contains
free parameters, whereas has

. Since there are
symmetric filters, antisymmetric filters, and all of
them have LP, the most general solution is expected to have

free parameters. Subtracting param-
eters that belong to the initial stage , each stage [there
are of them] should possess degrees of freedom.
Hence, each stage in our proposed solution in the previous sec-
tion is off by parameters.

VI. DESIGN AND APPLICATION IN IMAGE CODING

A. FB Optimization

Any realization of the lattice coefficient set in the
previous two sections results in an LPPR system. However, for
the FB to have high practical value, several other properties
are also needed. High-performance FB can be obtained using
unconstrained nonlinear optimization, where the lattice coeffi-
cients are the free parameters. Since image compression is the
main concern in this paper, the cost function is a weighted linear
combination of coding gain, DC leakage, attenuation around
mirror frequencies, and stopband attenuation, all of which are

well-known desired properties in yielding the best reconstructed
image quality [2], [29]

(29)

Among these criteria, higher coding gain correlates most
consistently with higher objective performance (PSNR). Trans-
forms with higher coding gain compact more energy into a
fewer number of coefficients, and the more significant bits of
those coefficients always get transmitted first in the progressive
transmission framework employed in the later section. All
design examples in this paper are obtained with a version of the
generalized coding gain formula in [30]

(30)

where
variance of the input signal;

variance of theth subband;

norm of the th synthesis filter.

The signal is the commonly-used AR(1) process with in-
tersample autocorrelation coefficient [19].

Low DC leakage and high attenuation near the mirror fre-
quencies are not as essential to the coder’s objective perfor-
mance as coding gain. However, they do improve the visual
quality of the reconstructed image significantly by eliminating
annoying blocking and checkerboard artifacts. Finally, the stop-
band attenuation cost helps in improving the signal decorre-
lation, decreasing the amount of aliasing, and enhancing the
smoothness of the filters. These cost functions are defined as

(31)

(32)

(33)

(34)

The two simple functions and are used to
enforce the weighting of the stopband attenuation of the analysis
and synthesis bank, respectively.
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Fig. 8. Detailed lattice structure for even-channel LPPRFB.

Fig. 9. Design example I:M = 8 L = 16 optimized for coding gain, DC attenuation, mirror frequency attenuation, and stopband attenuation.

Fig. 10. Design example II:M = 16 L = 32 optimized for coding gain, DC and mirror frequency attenuation, and stopband attenuation.

B. Design Examples

Figs. 9–14 present several design examples obtained from
nonlinear optimization of the new lattice coefficients with var-
ious cost functions. Fig. 9 shows design example I: an 8-channel
LPPRFB with 16-tap filters (8 × 16 GLBT). Fig. 10 shows de-
sign example II with 16 channels and filter length 32 (16 × 32
GLBT). Both FB’s are DCT-based and are obtained from a com-
binatorial cost function where the coding gain is given highest
priority. The two design examples illustrate the tremendous de-
gree of flexibility that the new biorthogonal class of LT enjoys
over its orthogonal relative in previous works [4]–[6]. The anal-
ysis bank is designed to maximize coding gain, minimize the

DC leakage, and maximize the stopband attenuation in low fre-
quency bands where there is usually a high concentration of
image energy. On the other hand, the synthesis bank is designed
to have its filters decaying asymptotically to zero to completely
eliminate blocking artifacts. Furthermore, the stopband attenua-
tion in high-frequency synthesis bands is also maximized so that
the resulting synthesis filters are generally smooth, leading to
more visually pleasant reconstructed images. The 8 × 16 GLBT
in design example I, if optimized for pure coding gain, can at-
tain 9.63 dB , which equals the coding gain reported on optimal
biorthogonal systems in [31]. However, the 8 × 16 LBT in [31]
was obtained by a direct constrained optimization on the filter
coefficients; therefore, it might only be near-PR, and it certainly
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Fig. 11. Design example III:M = 8 L = 32 optimized for coding gain, DC attenuation, mirror frequency attenuation, and stopband attenuation.

TABLE II
COMPARISON OFVARIOUS TRANSFORMPROPERTIES

does not have a fast, efficient, and robust implementation. In de-
sign example I, 0.01 dB of coding gain has been sacrificed for
high attenuation at DC, near DC, and mirror frequencies to en-
sure a high level of perceptual performance in image coding. In
the 16 × 32 case, our GLBT in Fig. 10 achieves an impressive
coding gain of 9.96 dB.

GLBT design examples with longer filter length are shown
in Figs. 11 and 12. While increasing the GLBT length only im-
proves the coding gain marginally (see design example III in
Fig. 11), it helps tremendously in the case of stopband attenu-
ation (where longer filters are always beneficial), as attested to
by design example IV in Fig. 12.

Two odd-channel FB are presented in Figs. 13 and 14. Design
example V in Fig. 13 is a seven-channel 21-tap LPPRFB opti-
mized for maximum coding gain and high stopband attenuation
near DC for the analysis bank and nearfor the synthesis bank.
Hence, the synthesis basis functions are much smoother than
the analysis. Design example VI in Fig. 14 has five channels
and filters of 15 taps optimized for coding gain and DC attenu-
ation. Various properties of high-performance design examples
are compiled in Table II; the DCT [20], the LOT [19], and the
8 × 40 GenLOT [33] are included for comparison purposes.

C. Application in Image Coding

To test the performance of the new family of LT’s, new
GLBT’s are incorporated into the block-transform progressive
coding framework described in [32] and [33], where each block
of lapped transform coefficients is treated analogously to a tree

of wavelet coefficients. The resulting GLBT-based embedded
coders provide unrivaled objective and subjective performance,
as indicated in Table III and Fig. 15. For a smooth image like
Lena, which the wavelet transform can sufficiently decorrelate,
the best wavelet-based embedded coder SPIHT [21] provides a
comparable performance. However, for a highly textured image
like Barbara, the 16 × 32 GLBT coder can provide a PSNR gain
of around 2.5 dB over a wide range of bit rates. The visual re-
constructed image quality is also superior: texture is beautifully
preserved, blocking is completely eliminated, and ringing is
barely noticeable. Compared with the optimal 8 × 40 GenLOT
in [33], the 8 × 16 GLBT in Fig. 9 already offers a compa-
rable performance at a much lower level of computational
complexity. Compared with the dyadic wavelets in the SPIHT
coder, the GLBT can be viewed as a transform replacement for
higher performance and comparable complexity. Higher perfor-
mance with nondyadic (full-tree) association of filter banks is
possible, but such a system incur a high computational burden.
In this light, the GLBT proves itself as a compact and efficient

-band invertible transformation in image compression. More
objective and subjective evaluation of GLBT-based progressive
coders can be found at http://thanglong.ece.jhu.edu/Coder/.

VII. CONCLUSIONS

This paper presents general lattice structures for-channel
LPPRFB’s with all analysis and synthesis filters of the same
length . The novel lattice based on the SVD pro-
vides a fast, robust, efficient, and modular implementation
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Fig. 12. Design example IV:M = 8 L = 32 optimized for stopband attenuation of analysis bank.

Fig. 13. Design example V:M = 7 L = 21 optimized for coding gain and stopband attenuation.

Fig. 14. Design example VI:M = 5 L = 15 optimized for coding gain and DC attenuation.

and a friendly design procedure for all LP lapped transforms
with arbitrary integer overlapping factor . In the popular
even-channel case, the lattice is proven to completely span the
set of all possible solutions. We also prove that the proposed
lattice structures are minimal in term of the number of delays
employed in its implementation for both even and odd number
of channels. The relaxation of the orthogonal constraint gives

the new biorthogonal LT a whole new dimension of flexi-
bility; the analysis and the synthesis bank can now be tailored
appropriately to fit a particular application. Particularly, in
image coding, the analysis bank can be optimized for max-
imum energy compaction, whereas the synthesis filters can
be designed to have a high degree of smoothness. Through
the progressive image coding example, we have demonstrated
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(a) (b)

(c) (d)
Fig. 15. Embedded coding results of Barbara at 1 : 32 compression ratio. (a) Original image. (b) SPIHT, 27.58 dB. (c) Embedded 8 × 16 GLBT, 29.04 dB. (d)
Embedded 16 × 32 GLBT, 30.18 dB.

that -channel LPPRFB’s, when appropriately designed and
utilized, offer the highest performances up to date and easily
surpass state-of-the-art wavelets by a significant margin.

APPENDIX

PROOF OFTHEOREM II

The proof is inductive. It keys on the existence of a
matrix that reduces the order of by 1 at a time while
retaining all of the desirable properties in the reduced-order

. The proof also serves as a guideline for
the construction of the lattice given the transform coefficient
matrix.

Linear Phase: Consider a stage of the lattice in Fig. 3. Note
that and now have order and , respec-
tively, whereas is anticausal with order 1. can be
shown to satisfy the LP property in (4) in a similar manner to
the proof of Theorem I:

where we have exploited the facts that
from (1) and

from Theorem I.
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TABLE III
OBJECTIVE CODING RESULT COMPARISON(PSNRIN DECIBELS)

Perfect Reconstruction:From (11)

(A.1)

Since all matrices on the right-hand side of this equation have
FIR inverse, is also FIR invertible, i.e., it represents an FIR
perfect reconstruction system.

Causality: The above proofs for to have LP and PR
are actually expected because we specifically design to
propagate these properties. Any choice of such that
it is invertible will suffice. The difficult part is to show that there
always exist invertible matrices and that will produce a
causal obtained from (A.1). Let

and

(A.2)

From (A.1), we have

(A.3)

We have to show that it is possible to eliminate the noncausal
part in (A.3) by achieving

(A.4)

Now, let the polyphase matrix of the corresponding synthesis
bank be

(A.5)

where the factor in (1) has been absorbed into to
make it anticausal. The biorthogonal condition is modified to

, leading to the following equivalent condition in
the time domain:

(A.6)

The relationship of interest here is . Next, the LP
property of and in (4) and (5) implies that

and (A.7)

Hence, we can obtain

Applying Sylvester’s rank inequality [24] to pro-
duces

(A.8)

The proof of causality is accomplished if since
in that case, the dimension of the null space of is larger
than or equal to . Hence, it is possible to choose
linearly independent vectors from ’s null space to serve as

. In the paraunitary case, this can be achieved easily
because (3) immediately implies . The
biorthogonal case is more troublesome, and we need the fol-
lowing Lemma I, which shows that the condition
[or ] leads to asymmetrical systems where the fil-
ters of one bank have higher order than the filters of the other.
More simply stated, in the case where all analysis and synthesis
filters have linear phase and the same length , it is
necessary that

and

Order Reduction: It can be easily verified that the structure
in (A.1) with and chosen to eliminate noncausality

as in (A.4) also reduces the order of by 1. From (A.3), after
one factorization step, the highest order component of

is

(A.9)
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Substituting from (A.7) into (A.9) yields

(A.10)
Therefore, the factorization is guaranteed to terminate after

steps.
Lemma I: If there exist two polyphase matrices

and representing FIR even-
channel LPPRFB with all filters having the same length

, then , and .
Proof: Note that we consider the causal analysis bank and

the anticausal synthesis bank purely for the clarity of presenta-
tion. Equation (1) now simplifies to , whereas

and . Indeed, we can
manipulate (4) and (5) in similar fashions to the techniques in
the proof of Theorem III to obtain the exact orderof their de-
terminants:

We will complete the proof by contradiction. Suppose that
; thus, . Consider the possibility

of the factorization of the anticausal . Similarly to the ap-
proach described by (A.3) and (A.4), we need to obtain

(A.11)

to eliminate causality. In this case, ,
and it is possible to choose from
linearly independent vectors from the null space of

. In other words, it is possible to write as
, where both factors are anticausal.

Now, . Since ,
. Therefore,

it is easy to show that represents an FIR LPPR system
of order .

On the other hand, .
Consider the product . We have

causal with determinant . However,
since , the null space of has dimension
less than . Therefore, the anticausal part of
cannot possibly be suppressed, i.e.,

for any invertible matrices and . Moreover, the highest
order of still exists as

because . Theefore, , a shift of
leads to a causal system with order, which is contradictory to
the fact that is causal with order . The case of

can be proven in a similar fashion.
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