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Exploiting Sparsity in Hyperspectral Image
Classification via Graphical Models

Umamahesh Srinivas, Yi Chen, Vishal Monga, Nasser M. Nasrabadi, and Trac D. Tran

Abstract—A significant recent advance in hyperspectral image
classification relies on the observation that the spectral signature
of a pixel can be represented by a sparse linear combination of
training spectra which come from an over-complete dictionary.
The sparse representation corresponding to a test pixel is ob-
tained by solving a sparsity-constrained optimization problem,
and has been shown to be discriminative while simultaneously
enabling excellent noise robustness. A spatio-spectral notion of
sparsity is further captured by developing a joint sparsity model
according to which, spectral signatures of pixels in a local spatial
neighborhood (of the pixel of interest) are constrained to be rep-
resented by a common collection of training spectra, albeit with
different weights. A challenging open problem is to effectively
capture the class conditional correlations between these multiple
sparse representations corresponding to different pixels in the
spatial neighborhood. In this letter, we propose a probabilistic
graphical model framework to explicitly mine the conditional
dependencies between these distinct sparse features. In particular,
our probabilistic graphical models are synthesized using simple
tree structures which can be discriminatively learnt (even under
limited training) for the purpose of classification. Experimental
results on benchmark hyperspectral image databases reveal
significant practical improvements over competing approaches
that are particularly pronounced in the low training regime.

I. INTRODUCTION

Hyperspectral imaging sensors acquire digital images in
hundreds of continuous narrow spectral bands spanning the
visible to infrared spectrum [1]. A pixel in hyperspectral im-
ages (HSI) is typically a high-dimensional vector of intensities
as a function of wavelength. The high spectral resolution of the
HSI pixels facilitates superior discrimination of object types in
a captured scene. HSI has varied applications including both
commercial [2] and military domains [3].

Classification is an important research topic in HSI process-
ing, wherein the class label of each pixel is determined based
on its spectral characteristics given a representative training set
from each class. The support vector machine (SVM) [4], which
solves supervised binary classification problems by finding
the optimal separating hyperplane between the two classes,
has proved to be a powerful classifier for HSI classification
tasks [5]. Classification performance can be further improved
using variations of SVM-based classifiers such as the trans-
ductive SVM which exploits both labeled and unlabeled sam-
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ples [6], and SVM with composite kernels which incorporates
spatial information directly in the SVM kernels [7].

Recent work has highlighted the relevance of incorporating
contextual information during HSI classification to improve
performance [7]–[10], particularly because HSI pixels in a
local neighborhood generally correspond to the same ma-
terial and have similar spectral characteristics. A number
of techniques have exploited this aspect, for example by
including post-processing of individually-labeled samples [8],
[9] and Markov random fields in Bayesian approaches [10].
The composite kernel approach [7] explicitly extracts spatial
information for each spectral pixel and then combines the
spectral and spatial information via kernel composition.

A seminal advance in efforts towards robust image classi-
fication is the recent sparse representation-based classification
(SRC) technique for automatic face recognition [11]. Experi-
ments have demonstrated the superior recognition performance
and robustness of this approach to a variety of imaging
distortion scenarios. This sparsity model has been adopted in
HSI classification [12], relying on the observation that spectral
signatures of the same material usually lie in a subspace whose
dimensionality is much smaller than the number of spectral
bands. An unknown pixel is then expressed as a sparse linear
combination of a few training samples from a given dictionary
and the underlying sparse representation vector implicitly
encodes the class information. To exploit contextual (spatial)
correlation, a joint sparsity model is employed in [12], where
neighboring pixels are assumed to be represented by linear
combinations of a few common training samples in order to
enforce smoothness across these neighboring pixels.

The technique in [12] performs classification by using
(spectral) reconstruction error computed over the pixel neigh-
borhood. We propose a probabilistic graphical model frame-
work to explicitly determine conditional dependencies between
distinct sparse features obtained via the joint sparsity model.
Specifically, a pair of discriminative tree graphs [13] is learnt
for each distinct set of features, i.e. the sparse representation
vectors of each pixel in the local spatial neighborhood of a cen-
tral pixel. These features invariably exhibit class conditional
correlations. To capture these correlations for classification,
we thicken (i.e. introduce new edges) the individual (disjoint)
graphs corresponding to each sparse feature set via a boosting
approach [14]. Hence we learn a discriminative classifier that
combines the distinct sparse features unlike the reconstruction
residual in [12] which does not capture inter class information.
Further, probabilistic graphical models as proposed in this
work can be robustly learnt even under limited training.

The remainder of this letter is structured as follows. We first
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briefly review sparsity-based classification and probabilistic
graphical models in Section II. Our main contribution is
presented in Section III. The effectiveness of the proposed
approach is demonstrated on several real HSI data sets in
Section IV. Section V concludes the paper.

II. BACKGROUND

A. Sparsity model for hyperspectral classification
As discussed earlier, the HSI sparsity model is an extension

of the sparse representation-based framework first introduced
for face recognition [11]. This model relies on the key ob-
servation that the spectral signatures of pixels approximately
lie in a low-dimensional subspace spanned by representative
training pixels from the same class. Consequently, for a test
pixel whose class identity is unknown, there exists a sparse
representation in terms of training samples from all classes.
Let yyy∈RB be a pixel with B indicating the number of spectral
bands, DDDm ∈ RB×Nm ,m = 1,2, . . . ,M be the sub-dictionary
whose columns are the Nm training samples from the m-th
class. The HSI pixel yyy can then be written as:

yyy =DDD1ααα1 + · · ·+DDDMαααM =
[
DDD1 · · · DDDM

]︸ ︷︷ ︸
DDD

ααα1
...

αααM


︸ ︷︷ ︸

ααα

=DDDααα, (1)

where DDD ∈RB×N with N = ∑
M
m=1 Nm is a structured dictionary

consisting of training samples (referred to as atoms) from all
classes, and ααα∈RN is a sparse vector. Given the overcomplete
dictionary DDD, the sparse coefficient vector ααα is obtained by
solving the following optimization problem:

α̂αα = argmin‖ααα‖0 subject to ‖yyy−DDDααα‖2 ≤ ε, (2)

where ε is a suitably chosen reconstruction error tolerance. The
sparse vector α̂αα can be recovered efficiently using many norm
minimization techniques, including greedy algorithms or `1-
norm relaxation [15]. The class label of yyy is finally determined
by the minimal residual between yyy and its approximation from
each class sub-dictionary:

Class(yyy) = arg min
m=1,...,M

‖yyy−DDDmα̂ααm‖2 , (3)

where α̂ααm is the collection of coefficients in α̂αα corresponding
to the m-th class sub-dictionary.

B. Joint sparsity model
Hyperspectral images are usually smooth in the sense that

pixels within a small neighborhood usually represent the same
material, and thus their spectral characteristics are highly
correlated. In order to incorporate this spatial correlation
information, the joint sparsity model [16] is employed in
HSI classification in [12] by assuming that the sparse vectors
associated with pixels in a local spatial neighborhood share
a common sparsity pattern. Specifically, let {yyyt}t=1,...,T be
T pixels in a spatial neighborhood centered at yyy1. These
neighboring pixels can be expressed as:

YYY =
[
yyy1 yyy2 · · · yyyT

]
=
[
DDDααα1 DDDααα2 · · · DDDαααT

]
=DDD

[
ααα1 ααα2 · · · αααT

]︸ ︷︷ ︸
SSS

=DDDSSS. (4)

The sparse vectors {αααt}t=1,...,T share the same support, i.e.
they are linear combination of the same collection of atoms
from DDD, but with possibly different weights assigned to each
atom. As a result, SSS is a sparse matrix with only a few nonzero
rows. This row-sparse matrix SSS can be recovered by solving
the following constrained optimization problem:

ŜSS = argmin‖YYY −DDDSSS‖F subject to ‖SSS‖row,0 ≤ K0, (5)

where ‖SSS‖row,0 denotes the number of non-zero rows of SSS
and ‖·‖F is the Frobenius norm. The problem in (5) can be
approximately solved by the greedy Simultaneous Orthogonal
Matching Pursuit (SOMP) algorithm [16]. The identity of yyy1
is then determined by the minimal total residual:

Class(yyy1) = arg min
m=1,...,M

∥∥∥YYY −DDDmŜ̂ŜSm

∥∥∥
F
, (6)

where Ŝ̂ŜSm contains the rows of Ŝ̂ŜS associated with the m-th class
sub-dictionary DDDm.

C. Probabilistic graphical models
A graph G = (V ,E) is a collection of nodes V =

{v1, . . . ,vr} and a set of (undirected) edges E ⊂
(V

2

)
. A

probabilistic graphical model describes the joint distribution
of a random vector such that each node represent one (or a
group of) random variables whose conditional dependencies
are indicated by the presence of the connecting edges. The
graph structure defines a particular factorization of the joint
probability distribution of the random vector in terms of
marginal and pairwise statistics. The use of graphical models
imparts robustness to the process of learning models for high-
dimensional data using limited training (which is usually
the case in many practical HSI applications) under moderate
computational complexity.

Graphical models can be learnt either generatively or dis-
criminatively. In the generative setting, a single graph which
approximates a given distribution is learnt by minimizing the
approximation error. The seminal contribution in this area is
due to Chow and Liu [17], who obtained the optimal tree
approximation p̂ of a multivariate distribution p by minimizing
the Kullback-Leibler (KL) distance D(p||p̂) = Ep[log(p/ p̂)]
using first- and second-order statistics, via a maximum-weight
spanning tree (MWST) problem. In discriminative learning, a
pair of graphs is jointly learnt by minimizing the classifica-
tion error. Recently, a discriminative learning framework has
been proposed [13] by maximizing the tree-approximate J-
divergence (a symmetric extension of the KL distance):

Ĵ(p̂, q̂; p,q) =
∫
(p(x)−q(x)) log

[
p̂(x)
q̂(x)

]
dx. (7)

Based on the observation that maximizing the J-divergence
minimizes the upper bound on the probability of classification
error, the discriminative learning problem then becomes:

(p̂, q̂) = arg max
p̂,q̂ are trees

Ĵ(p̂, q̂; p̃, q̃), (8)

where p̃ and q̃ are the empirical estimates. The problem in (8)
is shown to decouple into two MWST problems [13]:

p̂ = arg min
p̂ is a tree

D(p̃||p̂)−D(q̃||p̂)

q̂ = arg min
q̂ is a tree

D(q̃||q̂)−D(p̃||q̂).
(9)
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Fig. 1. Hyperspectral image classification using discriminative graphical models on sparse feature representations obtained from local pixel neighborhoods.

Algorithm 1 LSGM (Steps 1-4 offline)
1: Feature extraction (training): Compute sparse representations

αααl , l = 1, . . . ,T for neighboring pixels of the training data
2: Initial disjoint graphs:

Discriminatively learn T pairs of N-node tree graphs G p
l and Gq

l
on {αααl}, for l = 1, . . . ,T , obtained from training data

3: Separately concatenate nodes corresponding to the two classes,
to generate initial graphs

4: Boosting on disjoint graphs: Iteratively thicken initial disjoint
graphs via boosting to obtain final graphs G p and Gq

{Online process}
5: Feature extraction (test): Obtain sparse representations αααl , l =

1, . . . ,T in RN from test image
6: Inference: Classify based on output of the resulting classifier

using (10).

It is clear from (9) that the optimal choice of p̂ (q̂) simul-
taneously minimizes its distance to p̃ (q̃) and maximize its
distance from q̃ (p̃). The trade-off between generalization and
performance inherent to graphical models has been overcome
by iteratively thickening the initial graph with more edges via
boosting [14] to learn a richer structure.

Typically in image classification, a variety of features with
complementary benefits are employed and the individual clas-
sification decisions resulting from each such feature set can
be fused intelligently to enhance classification performance.
We recently proposed a principled framework to exploit this
complementary yet correlated information using probabilistic
graphs in [18]. The next Section presents an instantiation of
this framework for HSI classification.

III. EXPLOITING JOINT SPARSITY VIA PROBABILISTIC
GRAPHICAL MODELS

In this section, we introduce our proposed approach for joint
sparsity and graphical model-based HSI classification. The
proposed Local-Sparsity-Graphical-Model (LSGM) algorithm,
summarized in Algorithm 1, consists of an offline training
stage (Steps 1-4) and an online classification stage (Steps 5-6).
The local sparsity in the name is indicative of the underlying
joint sparsity model to obtain the local sparse features.

An illustration of the overall framework is shown in Fig. 1.
The discriminative graphs are learnt in the training stage. Note
that the process described here is for binary classification. The

approach extends to multi-class problems by learning graphs in
a one-against-all manner. That is, for an M-class classification
problem, we learn M pairs of discriminative graphs that
represent the class conditional p.d.fs f (ααα|Cm) and f (ααα|C̃m)
for m = 1,2, . . . ,M, where Cm denotes the m-th class and C̃m
denotes the complement of Cm (i.e., C̃m =

⋃
k=1,...,M,k 6=m Ck).

We first obtain the feature vectors (i.e., sparse vectors with
respect to a given training dictionary DDD) of training samples
and their neighboring pixels by solving the joint sparse recov-
ery problem in (5). Let T be the size of the neighborhood. The
extraction of sparse features may be viewed as a projection
Pl : RB 7→ RN , and there are T such distinct projections
Pl , l = 1,2, . . . ,T . For every pixel yyy ∈RB, T different features
αααl ∈ RN , l = 1,2, . . . ,T are obtained, as illustrated in Fig. 1
for a 3×3 neighborhood with T = 9 (only three features are
displayed). For each projection, training features for class Cm
correspond to pixels in a neighborhood of training samples
known to belong to class Cm. Features for C̃m are the sparse
vectors associated with neighbors of representative training

For each of the T projections Pl , a pair of N-node
discriminative tree graphs G p

l and Gq
l , which respectively

approximate the class distributions f (αααl |Cm) and f (αααl |C̃m),
are simultaneously learnt by solving the decoupled MWST
problems in (9). The initial disjoint graphs with T N nodes
representing the class distribution corresponding to Cm and
C̃m are then generated by separately concatenating the nodes
of G p

l , l = 1, . . . ,T and Gq
l , l = 1, . . . ,T , respectively. These

graphs with sparse edge structure are then iteratively thickened
via boosting [18]. Different pairs of discriminative graphs over
the same sets of nodes with different weights are learnt in
different iterations, and the newly-learnt edges are used to
augment the graphs. The final “thickened” graphs G p and Gq

are shown in Fig. 1 (right side).

The process described above (Steps 1-4 in Algorithm 1)
is performed offline, and M pairs of discriminative graphs
are learnt for the M binary classification problems in a one-
against-all manner. The classification of a new test sample is
then performed online. Features ααα are extracted from the test
sample yyy by solving the sparse recovery problem in (5) for
the T pixels in the neighborhood centered at yyy. Let f̂ (ααα|Cm)
and f̂ (ααα|C̃m) denoted the final graphs learnt for Cm and C̃m
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(a) (b)

(c) (d)

(e) (f)
Fig. 2. Classification maps for the AVIRIS Indian Pine data set: (a) Ground
truth map. (b) Training set. (c) Test set. (d) Composite kernel SVM (SVM-
CK) [7]. (e) Simultaneous Orthogonal Matching Pursuit (SOMP) [12]. (f)
Proposed LSGM approach.

respectively. The class label of yyy is determined as follows:

Class(yyy) = arg max
m∈{1,...,M}

log
(

f̂ (ααα|Cm)

f̂ (ααα|C̃m)

)
. (10)

IV. EXPERIMENTS AND RESULTS

We compare our proposed LSGM approach with two other
state-of-the-art approaches using support vector machines
(SVM-CK) [7] and the joint sparsity model (SOMP) [12]. The
SVM-CK approach, which develops a family of composite
kernels that effectively combine both spectral and contextual
spatial information for classification using SVM, has been
shown [7] to perform better than many competing approaches.
Experiments are performed on three benchmark real-world
hyperspectral images and classification rates are reported for
each class along with overall classification maps. We further
investigate the performance as a function of training size.

A. AVIRIS Data Set: Indian Pines

The first hyperspectral image in our experiments is the
Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) In-
dian Pines image [19]. The AVIRIS sensor generates 220
bands across the spectral range from 0.2 to 2.4 µm, of
which only 200 bands are considered by removing 20 water
absorption bands [20]. This image has spatial resolution of
20m per pixel and spatial dimension 145× 145. There are
16 ground-truth classes, listed in Table I. For each class,
we randomly choose around 10% of the labeled samples

TABLE I
CLASSIFICATION RATES FOR THE AVIRIS INDIAN PINES TEST SET.

Class type Training Test SVM-CK SOMP LSGM
Alfalfa 6 48 95.83 87.50 89.58
Corn-notill 144 1290 96.67 95.04 95.27
Corn-min 84 750 90.93 94.67 94.67
Corn 24 210 85.71 92.86 94.76
Grass/pasture 50 447 93.74 89.72 90.60
Grass/trees 75 672 97.32 98.81 99.40
Pasture-mowed 3 23 69.57 91.11 91.11
Hay-windrowed 49 440 98.41 99.13 99.55
Oats 2 18 55.56 0 38.89
Soybeans-notill 97 871 93.80 89.76 90.70
Soybeans-min 247 2221 94.37 96.96 97.43
Soybeans-clean 62 552 93.66 87.93 92.03
Wheat 22 190 99.47 100 100
Woods 130 1164 99.14 99.62 99.62
Building-trees 38 342 87.43 99.47 99.71
Stone-steel 10 85 100 97.65 98.82
Overall 1043 9323 94.86 95.34 96.07

Fig. 3. AVIRIS Indian Pines test set: Performance of different approaches
as a function of amount of training provided.

for training and use the remaining 90% for testing. The
training and test sets are visually shown in Fig. 2(b) and
2(c) respectively. Classification rates for each class as well
as overall accuracy are shown in Table I for the different
classifiers. Our LSGM approach outperforms the competing
approaches in terms overall classification performance. The
improvement over SOMP indicates the benefits of using a
discriminative classifier instead of reconstruction residuals for
class assignment. For the class of pixels corresponding to
Oats, the SOMP approach performs very poorly because a
large local neighborhood (9×9) is chosen while the actual
class spans only 20 pixels. The proposed LSGM approach
performs slightly better owing to the choice of a smaller local
neighborhood (3×3).

Fig. 3 shows the variation in overall classification rates as a
function of number of training samples provided. As expected,
the classification accuracy decreases as training is reduced
and for each of the three techniques. That said, the LSGM
approach offers a more graceful degradation when compared
to the SVM-CK and SOMP algorithms as training is varied
from high (half the available pixels) to very low (a few pixels).

B. ROSIS Urban Data Over Pavia, Italy

The next two hyperspectral images, University of Pavia and
Center of Pavia, are urban images acquired by the Reflective
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TABLE II
CLASSIFICATION RATES FOR THE UNIVERSITY OF PAVIA TEST SET.

Class type Training Test SVM-CK SOMP LSGM
Asphalt 548 6304 79.89 59.42 66.56
Meadows 540 18146 84.88 78.25 85.95
Gravel 392 1815 82.26 83.91 86.83
Trees 524 2912 95.09 96.36 96.88
Metal sheets 265 1113 99.82 87.87 98.74
Bare soil 532 4572 93.13 77.56 94.34
Bitumen 375 981 90.21 98.78 99.29
Bricks 514 3364 93.01 89.15 94.50
Shadows 231 795 95.72 92.20 95.72
Overall 3921 40002 87.11 78.74 86.28

TABLE III
CLASSIFICATION RATES FOR THE CENTER OF PAVIA TEST SET.

Class type Training Test SVM-CK SOMP LSGM
Water 745 64533 97.46 99.32 99.44
Trees 785 5722 93.08 92.38 92.96
Meadow 797 2094 97.09 95.46 96.99
Brick 485 1667 77.02 85.66 87.46
Soil 820 5729 98.39 96.37 97.59
Asphalt 678 6847 94.32 93.81 94.51
Bitumen 808 6479 97.50 94.68 97.05
Tile 223 2899 99.83 99.69 99.90
Shadow 195 1970 99.95 98.68 99.19
Overall 5536 97940 96.93 97.81 98.20

Optics System Imaging Spectrometer (ROSIS). The ROSIS
sensor generates 115 spectral bands ranging from 0.43 to
0.86 m and has a spatial resolution of 1.3 m per pixel. The
University of Pavia image consists of 610×340 pixels, each
having 103 bands with the 12 noisiest bands removed. About
9% of all labeled data are used as training and the rest are used
for testing. The third image, Center of Pavia, is the other urban
image collected by the ROSIS sensor over the center of Pavia
City. This image consists of 1096× 492 pixels, each having
102 spectral bands after 13 noisy bands are removed. For
this image, about 5% of the labeled data are used as training
samples. Classification rates for the two ROSIS images are
provided in Tables II and III respectively. In Table II the
SVM-CK technique performs marginally better than LSGM
in the sense of overall classification accuracy. However, for
most individual classes LSGM does better and particularly
in cases where training sample size is smaller. In Table III,
LSGM performs better than SOMP as well as SVM-CK.

V. CONCLUSION

In this letter, we propose a principled graphical model-
based framework to exploit contextual correlation information
for hyperspectral image classification. Our approach extends
recent work in the area of sparsity-based HSI classifica-
tion, wherein the spectral signature of each pixel can be
approximately represented by a sparse linear combination of
training pixels from all available classes. Sparse feature vectors
corresponding to pixels in a local spatial neighborhood are
obtained by solving a joint sparsity recovery problem. The
statistical correlations between these local sparse features are
then explicitly learnt in a discriminative setting via probabilis-
tic graphical models. Experiments on benchmark hyperspectral
images reveal the benefits of our proposed approach over com-

peting state-of-the-art schemes, and over a range of scenarios
corresponding to varying training set sizes.
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