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Abstract—This paper presents a general framework of con-
structing a large family of lapped transforms with symmetric
basis functions by adding simple time-domain pre- and post-pro-
cessing modules onto existing block discrete cosine transform
(DCT)-based infrastructures. A subset of the resulting solutions
is closed-form, fast computable, modular, near optimal in the
energy compaction sense and leads to an elegant boundary
handling of finite-length data. Starting from these solutions, a
general framework for block-based signal decomposition with
a high degree of flexibility and adaptivity is developed. Several
simplified models are also introduced to approximate the optimal
solutions. These models are based on cascades of plane rotation
operators and lifting steps, respectively. Despite tremendous
savings in computational complexity, the optimized results of
these simplified models are virtually identical to that of the
complete solution. The multiplierless versions of these pre- and
post-filters when combined with an appropriate multiplierless
block transform, such as the binDCT, which is described in an
earlier paper by Liang and Tran, generate a family of very large
scale intergration (VLSI)-friendly fast lapped transforms with
reversible integer-to-integer mapping. Numerous design examples
with arbitrary number of channels and arbitrary number of
borrowed samples are presented.

Index Terms—Compression, DCT, lapped transform, pre-fil-
tering, post-filtering.

I. INTRODUCTION

M OST image and video coding standards have shared one
common coding philosophy: Data is partitioned into

small local blocks, which are decorrelated by the discrete cosine
transform (DCT) and then encoded by various variable-length
codes [2]–[4]. The popularity of this coding approach can be
attributed to many factors:

i) DCT’s near-optimality for smooth signal models;
ii) many efficient fast-computable DCT algorithms;
iii) small on-board memory requirement;
iv) flexibility and adaptivity on the block level, e.g., coding

mode can be selected on a block-by-block basis;
v) parallel processing capability;

vi) simple resynchronization in noisy environments.
However, there are two main problems with this block-based

DCT approach. The first problem is the lack of coding efficiency
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since inter-block correlation has not been well taken into ac-
count. The second is the notorious blocking artifacts—discon-
tinuities at the block boundaries resulting from reconstruction
mismatches—at low bit-rate situations. Blocking artifacts are
visually annoying, and they set a severe limit on the achievable
bit-rate with acceptable quality.

Many techniques have been developed to improve coding
efficiency and to avoid or reduce blocking effects. Most can
be classified into two distinct categories: i) using a global
transform (more accurately, transforms with overlapping basis
functions) and ii) using pre- and post-processing techniques.
Algorithms in the first approach improve reconstruction quality
by employing either the wavelet transform or the lapped
transform (LT) in signal decomposition and reconstruction
[5]. New developments in the wavelet coding community lead
to the blocking-free JPEG2000 image compression standard.
In the second approach, pre- and post-processing techniques
have been proposed to improve reconstruction quality while
maintaining standard compliance. However, pre- and post-pro-
cessing are mostly treated separately, and they usually destroy
the original signal contents.

In this paper, through a series of elementary matrix ma-
nipulations, we will demonstrate that a large class of lapped
transforms can be constructed as a combination of pre-filtering
and post-filtering in the current block-based DCT framework.
The pre- and post-processing operator is placed at each block
boundary. Unlike most previous pre- and post-processing
approaches, the pre- and post-filter in our framework are
intimately related. In fact, they are the exact inverse of each
other, and together with the DCT, they form invertible lapped
transforms with arbitrary amount of overlapping samples.
Perfect reconstruction and linear-phase basis functions can be
structurally guaranteed. The new framework provides several
advantages.

• Existing block-based infrastructure can be kept intact.
• Coding efficiency is improved by taking into account

inter-block spatial correlation in the pre-filtering stage.
• Blocking artifacts are eliminated with post-filtering along

the block boundaries, while ringing artifacts can be con-
trolled by varying the number of borrowing samples.

• Pre- and post-filter are constructed in modular cascaded
stages, leading to minimal hardware/software modifica-
tions and simple future upgrades.

• Pre- and post-processing retain all flexible features of
block-based approaches and add on top a high level of
adaptivity in signal decomposition.

• Intuitive time-domain interpretation facilitates the design
of transforms with arbitrary-length basis functions, odd-
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channel filterbanks, boundary filterbanks, and switching
filterbanks in adaptive decomposition.

The outline of the paper is as follows. In Section II, we offer
a review of important background materials, concepts, moti-
vations, and previous related works. Next, Section III demon-
strates that the well-known type-II fast LOT [6] can be expressed
as a combination of time-domain pre/post-filtering in the pop-
ular block DCT/IDCT framework. Based on this result, Sec-
tion IV presents the general block-based signal decomposition
framework that includes orthogonal solutions, biorthogonal so-
lutions, global time-domain viewpoint, LT with arbitrary over-
lapping factors, and boundary handling for finite-length signals.
Issues in optimal pre- and post-filter design, fast implementa-
tions, multiplierless solutions as well as complexity and coding
performance are addressed in Section V. Finally, conclusions are
drawn in Section VI.

Notations and Conventions: We use bold-faced lowercase
characters to denote vectors and bold-faced uppercase char-
acters to denote matrices. The symbols , , , and

denote respectively the determinant, the transpose, the
inverse, and the element at theth row and th column of the
matrix . Occasionally, uppercase subscript such as is
added to indicate the matrix size if it is unclear from context.
Lower case subscripts are reserved for indexing purposes.
Several special matrices with reserved symbols are the identity
matrix , the anti-diagonal (reversal) matrix, the null matrix

, and the diagonal matrix with alternating1 and 1 entries
, i.e., diag . In addition, the symbols

, , and denote, respectively, the type-II
DCT matrix, type-IV DCT matrix, and type-IV discrete sine
transform (DST) matrix, as defined in [7]. Signals and basis
functions are represented as column vectors. For presentation
simplicity, our convention has the forward transform (analysis
FB) being anticausal, whereas the inverse transform (synthesis
FB) being causal.

II. REVIEW

A. Block Transform

In this paper, a block transform is defined as an
linear operator that maps input samples to transform
coefficients. The matrix describing the linear mapping is
called the transform matrix. The two families of block trans-
forms used throughout this paper are the DCT and the DST
defined in [7]. All of these transforms are orthonormal, i.e.,,

. In addition,
the following relationship between the DCT and the DST
matrix can be easily established: . The popular
DCT in JPEG and MPEG is the eight-point type-II DCT. Be-
cause of its practical value, numerous fast DCT-II algorithms
have been proposed [7]; the most effective are ones based on
sparse matrix factorizations. One factorization is even partly
recursive, i.e., an -point DCT-II can be implemented via an

-point DCT-II and an -point DCT-IV [8], [9],

(1)

B. Lapped Transform

An -band lapped transform (LT) is a linear transforma-
tion that partitions the input signal into small overlapped blocks
and then processes each block independently. In the one-dimen-
sional (1-D) direct implementation, the input signalcan be
blocked into short sequences of length . The cor-
responding transform vector of length is obtained from
the transform matrix as

Each block of input samples has an overlap of sam-
ples with each of its adjacent neighbors and . Typ-
ically, is chosen as a multiple of , i.e., , where

is called the overlapping factor. The overlapping percentage
is defined as . The rows of the transform ma-
trix hold the transposed analysis basis functions. At the
decoder, we have the inverse transform matrix whose
columns hold the synthesis basis functions. The reconstructed
segments must be accumulated in an
overlap-add fashion to recover the original signal. For two-di-
mensional (2-D) signals such as images and video frames, the
transform can be applied separably, i.e., each row is processed
in 1-D followed by each column or vice versa.

With the forward LT matrix and the
inverse LT matrix divided into square submatrices

as
and , perfect reconstruction
is achieved when

[10]. As pointed out in [6], the aforementioned
lapped transform is simply the polyphase implementation of
a maximally decimated -channel -tap filter banks. The
precise relationship between the lapped transform
matrix (assuming )
and the polyphase matrix is .

Fast lapped transforms can be constructed in polyphase form
from components with well-known fast-computable algorithms
such as the DCT and the DST. One of the most elegant solution
is the type-II fast LOT whose polyphase matrix is [6]

(2)

This structure is illustrated in Fig. 1. It is scalable to all
even-channel , generating a large family of LOT with
symmetric basis functions and 50% overlap . There
are many other fast solutions; all of them involve replacing
the product by different matrices , which are
usually cascades of various 22 matrices along the diagonal
axis [6], [10]. If a larger overlapping percentage is desired,
more modules with different can be added, i.e.,

This is
known as the generalized LT [10]–[12].

C. Pre- and Post-Processing for DCT-Based Systems

There has been a tremendous amount of research on pre- and
post-processing algorithms for image and video compression
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Fig. 1. Type-II fast lapped orthogonal transform.

Fig. 2. Different LT viewpoints. (a) LT as post-processing of DCT coefficients.
(b) LT as pre-processing of DCT inputs.

systems. Both classes of algorithms share one common goal:
to eliminate or reduce the severity of coding artifacts in the re-
constructed signal. This section can only offer a compact survey
of popular approaches. See [13]–[26] and references therein.

There are only a few pre-processing algorithms discussed
in the literature [13], [20]. All of them concentrate on the re-
moval of noise, texture, or small features and try to allocate the
bit-budget savings to more important visual information. Note
that we are interested in time-domain pre-filtering only, i.e., al-
gorithms that work directly on the input time samples and not
algorithms that process DCT coefficients before coding or quan-
tization.

There are significantly more research activities in the
post-processing field. Post-filtering algorithms can be divided
into two classes: enhancement [18], [22]–[24], [26] and re-
covery [16], [17], [19], [21]. In the enhancement approach, a
heuristic operator is designed to filter along the block bound-
aries. These enhancement algorithms are usually fast; they work
well in practice and can be found in most international video
coding standards [23], [26] as deblocking filters. However, they
have a tendency to smooth out the true underlying edge infor-
mation. The second class of post-processing algorithms relies
on more mathematically rigorous recovery techniques such as
optimization via a Lagrangian linear model or projection onto
convex sets. Algorithms using the recovery approach usually
outperform theirad hoc enhancement counterparts, but they
are much more computationally expensive. Previous work on
an integrated pre- and post-processing for DCT-based codecs
is almost nonexistent.

III. LT F ROM PRE- AND POST-PROCESSING

A. Motivation

All lapped transforms mentioned in Section II can be viewed
as post- and pre-processing of the DCT coefficients with the
quantizer in between, as shown in Fig. 2(a). Up until now, all
high-performance LTs with linear-phase basis functions de-
signed for image and video compression (type-I fast LOT/LBT,

type-II fast LOT/LBT, GLT, GenLOT, GLBT) are based on
the DCT-II post-processing approach [6], [10]–[12], [27]. A
more intuitive viewpoint is depicted in Fig. 2(b), where the
pre- and post-filter areoutsidethe existing framework. This
way, we have a chance at improving coding performance while
achieving standard-compliance with minimal software/hard-
ware modifications.

The idea is not new. For example, the modulated LT (MLT)
in audio coding standards [6] can be viewed as time-domain
pre-filtering of the type-IV DCT input. Here, the block operator

in the MLT plays the modulation role, whereas the block
operator in Fig. 2(b) plays the decorrelation role. Moreover,
from a general theoretic viewpoint, the LOT has been shown to
comprise of either i) cross-boundary post-processing of a certain
block transform’s output or ii) cross-boundary pre-processing
of a block transform’s input [28]. Surprisingly, the pioneering
LT construction attempt by Malvar in [29] and [30] actually fol-
lows the pre-processing approach. This work even predates its
celebrated cousins: the type-I and type-II fast LOT. This paper
provides a straightforward generalization of the early effort in
[29] and [30]. Our focus is on the construction of various pre-
and post-filters.

B. Type-II Fast LOT as DCT/IDCT Pre- and Post-Processing

Through a series of elementary matrix manipulations, we il-
lustrate that the type-II fast LOT can be viewed as a combination
of the common block-based DCT/IDCT framework with simple
time-domain pre- and post-filtering. In other words, the analysis
polyphase matrix in (2) can be rewritten as

(3)

where

(4)

(5)

The derivation can be found in the Appendix.
Since the diagonal matrix only inverts the polarity of

the transform coefficients, it can be ignored. Finally, if we de-

fine as the permuted

advance chain, then the modified LOT polyphase matrix be-
comes , where can be interpreted as
time-domain pre-processing across block boundaries. The new
LT structure is illustrated in Fig. 3, where the resulting basis
functions are, discounting sign changes from , exactly
the type-II fast LOTs.

The synthesis polyphase matrix is simply the inverse of anal-
ysis polyphase matrix: .
We are reminded that is the -point type-II IDCT matrix.
Following our convention, the synthesis bank is causal. In ad-
dition, since every component in this lattice is paraunitary, we
have . In other words, the post-filter is the trans-
pose of the pre-filter. The advance chain in and the delay
chain in place the pre-filter and the post-filter
between two adjacent DCT/IDCT blocks. Viewing the LT under
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Fig. 3. LOT via time-domain pre- and post-filtering.

Fig. 4. Global viewpoint of LT as pre- and post-filtering at DCT/IDCT block boundaries.

the time-domain pre/post-filtering prism leads to numerous in-
teresting solutions, as demonstrated in Section IV.

C. Biorthogonal Extension

The matrix in (5) and (4) controls pre- and post-filtering.
It holds all of the degrees of freedom in the structure. Ifis
chosen orthogonal as in Fig. 3, we have an orthogonal solution.
However, just to maintain FIR perfect reconstruction,only
has to be invertible. Notice that as in (5) is already a product of
two orthogonal matrix. Hence, we propose to insert an invertible
diagonal matrix between and to represent in

the singular value decomposition form .
To minimize the additional complexity in the biorthogonal sys-
tems and maintain the nice closed-form solution, we limitto
diag , where is a scaling factor. A good value of
for a smooth image model is 8/5; other scaling factors that also
work well include 3/2, 25/16, , and . These choices of
, which will be revisited in Section IV, follow the simple con-

struction of the lapped biorthogonal transform (LBT) proposed
in [31].

IV. GENERAL PRE- AND POST-PROCESSINGFRAMEWORK

A. Global Viewpoint

Although the new structure in Fig. 3 does not look that much
more intriguing than that in Fig. 1, viewing the structure glob-
ally as shown in Fig. 4 reveals its elegance. In the decomposition

stage, acts as the pre-filter working across the block bound-
aries, taking away interblock correlation; the pre-processed time
samples are then fed to the DCT to be encoded as usual. In
the reconstruction stage, serves as the post-filter, recon-
structing the data in an overlapping manner, hence alleviating
blocking artifacts. The symmetry of the basis functions is guar-
anteed by the specific structure of as in (4), regardless of
the choice of the free-parameter matrix. The advance chain

extends the processing across the block boundary. Pre-
and post-filtering are operating in the time domain, completely
outside of the existing block-based architecture. Because of this
characteristic, we label this LT family the time-domain lapped
transform (TDLT).

B. Time-Domain Derivation

The pre- and post-filter can be designed directly in the time
domain. In fact, one issue that requires immediate attention is
the generality of the solution in Section III. Do other solutions
besides in (5) exist? What is the most general form of?
Does necessarily have the structure in (4)?

Consider in Fig. 4 the mapping of input samples to the
input of the DCT. The corresponding mapping operator is
actually an forward LT:

(6)
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Let , where are arbitrary matrices of size

as long as . The forward transform matrix
can then be expressed as the equation at the bottom of the

page.
Hence, to obtain linear-phase basis functions, we need

, ,
, and ,

which leads to and . Therefore,
the most general pre-filter generating symmetric basis
functions is

(7)

Exploiting the symmetry of in (7), we arrive at the following
factorization:

(8)

where and . To obtain
an orthogonal solution, chooseand as orthogonal matrices.
To obtain a biorthogonal solution, chooseand as invertible
matrices. It turns out that helps little in improving energy
compaction. In this paper, for simplicity of presentation,is
ignored (set to ). Certainly, the choice of keeps the
complexity of the pre/post-filter down. In addition, note that if
the block transform operator is not fixed,(or ) can be moved
across the butterfly and embedded into the block transform stage
via several simple matrix manipulations.

C. LT With Small Overlap

The type-II fast LOT in Fig. 1 and our new variation in Fig. 3
is quite restrictive. It can only generate LT with an even number
of channel and a 50% overlap . It is crucial in many
applications to find the best tradeoff between coding perfor-
mance and complexity. It is desirable to be able to vary the
amount of overlap between neighboring blocks (let

) and, hence, have fine control over the computational com-
plexity of the transform.

The answer to the seemingly complex question above keys on
a simple observation of the global structure as shown in Fig. 4.
The amount of overlap can be lowered by reducing the size of

the pre-processing matrix. An LT, where and
, can be easily constructed with the

pre-filter , which has the same form asin (4), except that all
submatrices are now of size . The smaller free-parameter

matrix can be chosen as

(9)

where yields a family of orthogonal LTs, whereas
diag yields good biorthogonal solutions. In

the 8 10 case, orthogonal symmetric solution does not exist:
The only degree of freedom is the scaling factor, which is the
degeneration of the scaling matrix.

Note that we can obtain LT of various numbers of bands and
sizes by just controlling the matrix in Fig. 4, i.e., an
LT can be realized by employing

(10)

The choice of as a diagonal matrix yields the pioneering re-
sults in [29] and [30]. If , then pre- and post-filtering are
turned off (see Fig. 5).

D. Interesting Observations

Several basic properties of our framework are best explained
through an almost trivial example—the case of 22 pre- and
post-filtering depicted in Fig. 6. In this case, ,
, and our proposed solution in (9) degenerates to the single

scaling factor .
Let , , , and be the set of the pre-filter’s

input samples, the pre-filter’s output samples, the post-filter’s
input samples, and the post-filter’s output samples, respectively.
We examine the post-filter first since its operation is slightly
more intuitive than the pre-filter’s. Considerand , which
are two input samples of the post-filter at the boundary of two
neighboring IDCT blocks, and their corresponding output sam-
ples and . We can easily derive the following relation-
ships:

(11)
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Fig. 5. Example of LT with small overlap (8� 12 biorthogonal via four-point pre-filtering) in polyphase representation.

Fig. 6. Demonstration of two-point pre- and post-filtering.

Fig. 7. Pre- and post-filtering effect.

(12)

Define a crude measure of blocking artifactas the absolute
difference between two samples at the block boundary. Without
post-filtering, . With post-filtering

Hence, by choosing , or , we guarantee a de-
crease in “blocking artifact.” This post-filtering effect is demon-
strated in Fig. 7. For example, if we choose , then the
post-filter partitions the distance into four seg-
ments of equal length moves up one segment length from
and moves down one segment length from . There-
fore, post-filtering adaptively reduces the observed discrepancy

by a factor of two.
The pre-filter modifies the samples in the opposite direction:

attempting to lower the smaller-value samplewhile increase

the larger-value based on their difference . The
input-output relationships are

(13)

(14)

From (13) and (14), the choice also makes intuitive
sense. If , samples are adjusted in the wrong direction. We
found that a good choice of in the energy compaction sense
for smooth signal models is theGolden Ratio . In fact, all
of theFibonacci ratio , where is the th
member of the Fibonacci sequence ,
work well. In addition, note that

.
When more than two samples are involved, the pre-filter

acts as aflattening operator. It attempts to make the input
to the DCT as homogeneous as possible, hence improving
the overall energy compaction. This is quite consistent with
most pre-filtering schemes in practice; smoothing the input
signal improves coding efficiency. However, in our framework,
perfect reconstruction is maintained. High-frequency signal
components are never eliminated; they are only slightly shifted
in time. We take full advantage of the block-based framework
by carefully aligning high-frequency components at block
boundaries. Discontinuities between DCT blocks, i.e., high-fre-
quency contents, do not affect coding performance, whereas
within each block, data samples are smoothened out, enhancing
the DCT’s effectiveness in energy compaction.

The flattening property of the pre-filter is best demonstrated
in an image processing example shown in Fig. 8. When more
samples are borrowed at each block boundary, the pre-filtered
image becomes more blocky since each 88 block becomes
smoother, and more high-frequency components are shifted to
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Fig. 8. Pre-filtering’s block-wise flattening effect with 8� 8 block size. From left to right: Original image; after two-point pre-filtering (borrowing one sample
at each boundary); after four-point pre-filtering (borrowing two samples); after six-point pre-filtering (borrowing three samples); after eight-point pre-filtering
(borrowing four samples).

the block boundary. Notice that in 2-D applications, the decom-
position can be written as

(15)

Based on (15), transformation steps can be performed separably
and in many different orders. In the illustration of Fig. 8, only
separable 2-D pre-processing is carried out.

It is also interesting to observe that when setting and
, the pre/post-filtering framework generates the following

polyphase matrix:

(16)

which yields the scaled versions of the 4/4 spline wavelet filters:
and

.
The four-tap de-blocking post-filter in [23] can be

represented in our framework as well by choosing the 44
having the same form as in (4) but with the following param-
eter matrix:

Despite its good deblocking property, does not have a cor-
responding pre-filter: Its inverse does not exist.

E. Lifting-Based Pre- and Post-Filtering

To map integers to integers with perfect reconstruction and
minimum bit expansion, we can replace each butterfly in the
pre-filter in (4) by the unnormalized Haar matrix as follows:

(17)

The all-lifting pre-filter can be constructed by modeling the free-
parameter matrix in the LU decomposition form. This will be
explored further in Section V.

Fig. 9. Boundary handling for finite-length signals.

F. Boundary Handling for Finite-Length Signals

To process finite-length signals using transforms with over-
lapping symmetric basis functions, symmetric extension is ap-
plied at the signal boundaries to achieve perfect reconstruction
[5], [6]. In our framework, since the pre-processoris placed
between block boundaries, it is intuitive that there should be no
extra processing needed at the signal boundaries. In fact, sup-
pose that we are performing decomposition using an
symmetric LT and symmetrically extend the first samples.
Then, the reflected signal always flows by the pre-processor un-
touched:

(18)

suggesting that pre- and post-filtering at the signal boundaries
should be skipped.

An example of the boundary handling technique in our
pre/post-filtering framework is illustrated in Fig. 9. A 12-point
finite length signal is decomposed by 44 block DCT and
4 4 pre-filter (or in other words, an 4 8 LT). Pre-filtering
operators are placed between DCT blocks but not at the two
signal boundaries. From a pre-filtering perspective, there is no



1564 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 51, NO. 6, JUNE 2003

Fig. 10. General pre- and post-filter constructed from cascading modular structures.

interblock correlation to take advantage of at the boundary.
From a post-filtering perspective, there are no blocking artifacts
to be concerned about at the boundary. Note that in Fig. 9,
we have also chosen to demonstrate the replacement of the
common butterfly by the unnormalized forward/inverse Haar
(also known as the S transform) following the idea proposed
in Section IV-E.

G. Arbitrary Overlap Solution

To increase the amount of overlap to any arbitrary number
( even), more stages of pre- and post-processing

are added, as shown in Fig. 10, where each added processing
stage works at the boundaries of the previous stage .
Thus, is aligned with . The analysis polyphase matrix
of a general symmetric LT, where , can
be constructed modularly as follows:

(19)

The corresponding synthesis polyphase matrix is

(20)

This general solution is demonstrated in Fig. 10. Each stage
of possibly employs a different matrix. The first
stages in (19) generate LT of length , whereas the last stage

is responsible for the remaining. We can also think of the
DCT as the initial operator . If linear phase is not required,
then does not need have any structure. It only has to be in-
vertible. In the most general form, can even be a nonlinear
operator.

It is trivial to see that (19) generates FIR perfect reconstruc-
tion systems as long as are invertible. To structurally guar-
antee linear-phase basis functions, in (19) has to satisfy
the LP test [5]

(21)

where is the order of the anticausal polyphase matrix. To
show that (19) satisfies (21), let us first establish

(22)

Substituting (19) into the right side of (21) yields

(23)

Next, using and (22), we obtain

Finally, taking advantage of the symmetry of in (37), we can
simplify the previous equation to

In short, the modular construction in (19) always generates
transforms with linear-phase FIR basis functions, regardless of
the choices of invertible matrices in . Note that the result
in this section is only for even .

H. Adaptive Time-Varying Pre- and Post-Processing

A quick review of Fig. 4 and (10) reveals that our pre/post-
processing framework lends itself nicely to the problem of de-
signing adaptive time-varying signal decomposition. Adaptivity
can lead to significant coding improvements if the amount of
side information is kept to a minimum. It is clear that long basis
functions are best for smooth signal regions. However, long
basis functions cause ringing artifacts near strong edges and tex-
ture regions. To keep both blocking and ringing artifacts under
control, we have three options.

i) Vary the number of overlapping samples at each block
boundary.

ii) Vary the transform block size.
iii) Do a combination of both of the above.
Based on the energy of the transform coefficients generated,

we can decide to turn on or off pre/post-filtering. It is just as
easy to vary the number of borrowing samples dynamically. This
adaptive-borrowing signal decomposition is illustrated on the
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Fig. 11. Adaptive time-varying pre-filtering. Left: Adaptive borrowing, fixed block size. Right: Adaptive block size, fixed borrowing.

left side of Fig. 11, where the block size is fixed to 4, whereas the
pre-filtering operator can be chosen amongst: no filtering, bor-
rowing one sample, or borrowing two samples. In other words,
from top to bottom, we are switching from a 46 to a 4 7
to a 4 5 LT and possibly to a 4 4 DCT. Unfortunately, the
linear-phase property of the filters in the switching filter banks
(4 7 and 4 5) has been sacrificed.

If the block transform in use is the eight-point DCT and the
number of borrowing samples can be chosen from the set {0,
1, 2, 4}, then the side information for each block boundary is 2
bits. This side information can be a lot lower if it is coded by
Huffman or arithmetic coding.

Another adaptive decomposition scheme can be obtained by
employing variable block sizes. In the slowly changing part of
the signal, it is desirable to employ a large block size. In the
fast-changing transient part of the signal, it is more advanta-
geous to switch to a small block size. Such a signal-adaptive
switching scheme has proven to be very effective in practice.
For instance, MPEG-4’s Advanced Audio Coder switches
back-and-forth between a 256-point high-time-resolution short
window and a 2048-point high-frequency-resolution long
window to avoid pre-echo and to improve coding efficiency
[32]. In our pre/post-filtering framework, an example of a
variable-block-size decomposition scheme is depicted on the
right side Fig. 11, where two samples are borrowed at each
boundary. Here, we are switching from a 48 to a 8 12 to
a 6 10 LT. Interestingly, in this time-varying example, there
is no switching filterbank and every filter involved has linear
phase. The side information, just like in the adaptive-borrowing
case, can be kept manageable as well with a well chosen set of
block sizes, e.g., {4, 8, 16, 32} for image applications.

In the most general case, both adaptive pre-filtering with dif-
ferent lengths, with multiple stages and adaptive variable block
size, can be combined. This decomposition scheme generates
a large library of basis functions that the encoder can choose
from depending on the input signal behavior. By having well-be-
haved structured solutions, the encoder can perform fast qua-
sioptimal dynamic optimizations online, much like the motion
estimation problem in video coding. How to make the right de-
cision quickly and how to minimize the amount of side infor-
mation are two open research problems.

Fig. 12. Representation of an orthogonal matrix by rotation angles.

To conclude the section, we remark that under the proposed
pre/post-filtering framework, the design of odd-band LTs
becomes a simple and straightforward extension. In fact, the
same pre-filters presented in this section can be combined
with odd-size DCTs to realize LTs with an odd number of
channels. Unfortunately, these solutions do not seem to offer
any advantage over the even-band solutions.

V. DESIGN

A. Optimized TDLT

In this section, we present the highest coding gains that can
be achieved when the matrix in the TDLT is allowed to be any
orthogonal or invertible matrix. An unconstrained optimization
program is set up to find the optimal coding gain of the orthog-
onal or biorthogonal TDLT, where .

It is well known that any orthogonal matrix can be
factored as a cascade of plane rotations and
sign parameters [33]. This representation is highly nonunique.
One example for a 4 4 matrix is shown in Fig. 12. The free
parameters for the orthogonal pre-filter are the
rotation angles. In the biorthogonal case, we use ro-
tation angles and diagonal entries following the SVD model.

Table I compares the coding gains of various lapped trans-
forms, whereOpt. TDLOTandOpt. TDLTdenote the optimized
orthogonal and biorthogonal TDLT obtained whenis chosen
as an arbitrary orthogonal or biorthogonal matrix, respectively.
The TDLT developed in (5) is labeled asTDLOT-I, whose
performance is identical to that of theLOT-II. The results
of TDLT-I are obtained from (5) by inserting a single scaling
factor of 8/5. The results ofOpt. LOTare obtained by choosing
the matrix in the LOT as an appropriate Karhunen–Loève
transform (KLT) [6].
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TABLE I
CODING GAIN IN D B OF VARIOUS LAPPED

TRANSFORM FOR ANAR(1) SIGNAL WITH � = 0:95

Except for the case of , the optimized TDLOT
achieves slightly higher coding gains than the optimal LOT.
The 8 16 optimized TDLT has a coding gain of 9.62 dB,
which is impressively close to the optimal 9.63 dB in [34] and
the optimized GLBT in [12]. However, the TDLT has a much
simpler structure than both of the above. Table I also shows
that the coding gains of the TDLOT-I, and the LOT-II are only
below the optimized cases by up to 0.04 dB. The frequency
responses of some optimized TDLTs are shown in Fig. 13,
together with their impulse responses. These are quite close to
the LBT basis functions in [31].

B. Plane Rotation-Based Fast TDLOT-II

We observe that the significant entries of the matrix
in the optimized pre-filter concentrate along the diag-

onal. This is also true for the matrix in the TDLOT-I,
as defined in (5). For example, the rotation angles cor-
responding to the 4 4 matrix in TDLOT-I are

. Since
, , and are relatively small, we expect that they can be

discarded without significant performance loss. In addition,
notice that the remaining angles have a strong decreasing trend.

The strong diagonal property of the optimized matrixsug-
gests a simplified orthogonal model for the matrix: a cas-
cade of rotation angles between neighboring channels. The cor-
responding TDLT structure is shown in Fig. 14 for the case
of . We denote this model as theTDLOT-II. For an

TDLOT, this simplified model only needs
rotation angles. Compared with the TDLOT-I, the complexity
of this algorithm is reduced significantly, enabling much faster
implementation. Notice that the arrangement of rotation angles
in TDLOT-II is different from that of the fast LOT-I in [6] and
[35], where the cascading of rotation angles starts from the top
channels and propagates to the bottom of. The significance
of this difference will be explained later in this section.

Coding gain results of the optimized TDLOT-II are presented
in Table II, which also contains results of other fast TDLTs
presented later in the section. Tables I and II show that the
TDLOT-II has better performance than the TDLOT-I. In fact, its
coding gain is almost identical to that of the optimized TDLOT
with full matrix model. This suggests that the simplified model
in Fig. 14 is a very accurate approximation of the optimal re-
sults.

Table III lists the rotation angles in several optimized
TDLOT-II. As previously mentioned, their magnitudes are

steadily decreasing. The reason is quite intuitive. The pre-filter
in the TDLT framework is applied at the boundaries of neigh-
boring signal blocks, and it tries to smoothen the input to the
DCT in order to improve energy compaction. Each input to the
matrix is the difference between a pair of samples from two
sides of a block boundary. Moreover, the upper inputs of
correspond to the differences of nearer sample pairs, whereas
the lower inputs correspond to those of farther pairs. Since the
correlations between nearer neighbors are stronger, it is clear
that the upper inputs of should have more weightings than
the lower ones in pre-filtering.

For these kinds of decreasing rotation angles, the simplified
model in Fig. 14 starts from the smallest angles and therefore
yields less accumulation error, making it valid even for large

. Compared with this, the main rotation angles in the LOT-I
are very close to each other. As a result, the structure of LOT-I
only yields good performance for [6].

C. Lifting-Based Fast Algorithm

Although the simplified model in TDLOT-II is faster than the
TDLT-I, it still involves floating multiplications, which are slow
and undesired in many software and hardware applications. In
this section, a lifting-based fast TDLT is developed, paving the
path to much faster multiplierless solutions. The lifting scheme
is proposed in [36] as a tool for filterbank implementation. More
systematic and general results were presented in [37]. It is well
known that a plane rotation can be decomposed into three lifting
steps [36], [37]. This can be written in matrix form as

(24)

where

(25)

To obtain fast implementation, we can approximate the
floating-point lifting coefficients by hardware-friendly dyadic
values (i.e., rational values in the format of ; and
are integers), which can be implemented by only shift and
addition operations. The elimination of the multiplication can
also reduce the dynamic range of the transform [1].

A trivial lifting-based pre-filter for the TDLT can be obtained
from the TDLOT-II structure by replacing each rotation angle
with its three-lifting representation in (24) and (25). How-
ever, since the rotation angles in the TDLOT-II are steadily
decreasing, we notice that

(26)

and many lifting parameters thus have very small magnitudes.
This enables the approximation of such rotation angles by only
two lifting steps, as shown in Fig. 15(b). This can be justified
by the following analysis.

In Fig. 15(a), the outputs of the three-lifting structure can be
written as

(27)
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Fig. 13. Design examples. Left: Orthogonal 8� 16 TDLT; coding gain 9.26 dB. Right: Biorthogonal 8� 16 TDLT; coding gain: 9.62 dB.

Fig. 14. Structure of the fast TDLOT-II.

TABLE II
CODING GAIN IN D B OF VARIOUS FAST TDLTS FOR AN AR(1)

SIGNAL WITH � = 0:95

TABLE III
OPTIMIZED ROTATION ANGLES FORDIFFERENTPRE-FILTERS IN THE TDLOT-II

whereas the outputs of the simplified structure in Fig. 15(b) are

(28)

If the rotation angle is small enough such that the magnitudes
of its lifting parameters are much less than unity, all second-
and third-order terms in (27) and (28) can be ignored, and the

Fig. 15. Approximating a small rotation angle by two lifting steps.
(a) Standard three-lifting representation. (b) Simplified two-lifting structure.

Fig. 16. Simplified structures for the matrixV in the pre-filter of the TDLT.
(a) Structure that approximates the cascading of rotation angles. (b) Structure
in the TDLT-III. (c) Structure in the TDLT-IV. (d) Structure in the TDLT-V.

following setting of the two-lifting model can approximate the
standard model closely:

(29)

When the rotation angle is not small enough and only the third-
order term can be ignored, the following choice will yield a more
accurate approximation:

(30)

By replacing the rotation angles in the TDLOT-II with the
two-lifting structure, we obtain another simplified model for the
matrix , as illustrated in Fig. 16(a). The transform can be made
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Fig. 17. General structure of the TDLT-III.

even faster if each lifting parameter is approximated by an ap-
propriate dyadic value. This is similar to the approach taken in
the LiftLT design [38].

The structure in Fig. 16(a) is designed as a close approxi-
mation of the orthogonal TDLOT-II, whose coding gain is not
as high as the biorthogonal case. However, by introducing a
scaling coefficient to each channel of the matrix, as shown
in Fig. 16(b), the structure would approximate the SVD model
very well. The corresponding biorthogonal TDLT is given in
Fig. 17, which is denoted as theTDLT-III. The butterflies in the
TDLT-III are also implemented by lifting steps, as discussed
previously in Section IV. For an TDLT-III,
has only parameters, representing a dramatic simplifi-
cation over the parameters of the SVD model.

Some coding gain results of TDLT-III are given in Table II
by optimizing the lifting and scaling parameters in Fig. 17. It
can be observed that the optimized TDLT-III without scalings
has better performance than its TDLOT-II original. When scal-
ings are used, the result is virtually identical to the optimized
SVD-based TDLT in Table I when . It is interesting
to note that for , this model for reduces to the LDU
factorization of a matrix [39], which is equivalent to the SVD.
Therefore, the model in TDLT-III is a complete model for all
invertible 2 2 matrices.

Besides the SVD decomposition, the LU factorization [39]
provides another model for the invertible matrixin the TDLT.
Two simplified models that resemble the LU factorization and
provide good performance in the TDLT framework are given
in Fig. 16(c) and (d). We denote the corresponding TDLT as
TDLT-IV andTDLT-V. They have the same complexity as the
TDLT-III, i.e., requiring scalings and lifting steps
for . The scaling coefficients can be placed between the upper
and lower triangular parts or at the end of the signal flow without
losing any optimal performance.

D. Comparison of Complexity and Coding Performance

This section summarizes the computational complexity of
various fast TDLTs developed in this paper when a floating-
point implementation is considered. The fast DCT algorithms in
[8] is used throughout. Define and as the number
of floating-point multiplications and additions per input data

block required by an -channel transform. The computational
complexity of this fast DCT algorithm for even is given by

(31)

The LOT-II and its equivalence—the
TDLOT-I—require roughly twice the DCT complexity
[6]

(32)

For the TDLOT-II, since each rotation angle in thematrix can
be implemented with three multiplications and three additions
[9], the complexity of a TDLOT-II is

(33)

The complexity of the lifting-based TDLT-III,
TDLT-IV and TDLT-V is given by

(34)

The 1/2 normalization of the butterflies is not counted in all
of the formula above. Table IV compares the complexity be-
tween the DCT, the LOT-II, and various fast TDLTs with full
borrowing. The TDLOT-II and TDLT-III reduces the computa-
tional overhead compared with the fast DCT implementation in
[8] to around 40 to 70%.

E. TDLT With Rational or Dyadic Coefficients

This section investigates the approximation of the optimized
values for the free parameters in the TDLT-III and TDLT-IV
by various rational and dyadic values. These designs lead to
fast, sometimes even multiplierless, implementations and allow
lossless compression.

The fast DCT algorithm chosen for the following examples
is the lifting-based binDCT [1], which is derived from the
well-known Chen–Wang factorization of the DCT [8], [9].
This binDCT version needs 23 shifts and 37 additions and has
a coding gain of 8.82 dB (the DCT has 8.83 dB). The final
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TABLE IV
COMPARISON OFCOMPUTATIONAL COMPLEXITY BETWEEN THEDCT, THE LOT-II, TDLOT-II, AND THE TDLT-III

TABLE V
EXAMPLES OF FAST TDLT-III AND TDLT-IV W ITH RATIONAL OR DYADIC PARAMETERS

scalings of the binDCT should be combined with quantization
to reduce the complexity even further.

Table V tabulates various rational approximations forin
the 8 10, 8 12, 8 14, and 8 16 TDLT-III and TDLT-IV.
The complexity in it is computed by averaging that of the
forward transform and the inverse transform. Compared with
the results in Table II, the performance loss due to finite-length
approximation of the optimized floating parameters and the
binDCT is negligible. Reversible integer-to-integer mapping,
which is a critical requirement for lossless compression, can be
easily achieved by setting all scaling factors in the matrixto
be unity. In this case, both pre- and post-filter can be imple-
mented with only shift and addition operations, simplifying the
hardware implementation significantly.

The performances of lapped transform in compression have
been thoroughly investigated [6], [10]. Instead of repeating
these results here, see other publications [40]–[42] that address
these applications much more adequately.

VI. CONCLUSION

This paper demonstrates that a large class of LT with an arbi-
trary number of channels and overlapping samples can be gen-
erated through time-domain pre-processing of DCT inputs and
post-processing of IDCT outputs. The pre- and post-filtering
module is placed between two neighboring DCT operators. The
pre-filter acts like a flattening operator, trying to make the input
data of each DCT block to be as homogeneous as possible. The
post-filter plays the role of a smooth interpolator, eliminating
or at least reducing blocking artifacts. We investigate the design
of various pre-/post-filters—with closed-form, fast-computable
algorithms, and quasioptimal energy compaction.

Compared with previous LT constructions for image pro-
cessing [6], [11], [12], [27], the proposed framework provides
several advantages.

• Existing block-based infrastructures can be kept intact,
and standard compliance is achievable.

• Trade-off between complexity and performance is easily
obtained through varying the amount of borrowing sam-
ples, i.e., the support of the pre-/post-filter.

• The new pre- and post-filter designs provide slightly
better coding performance at a lower computational
complexity. Scaled DCT algorithms [2], [43] and mul-
tiplierless DCT approximations [1] can be applied to
further lower complexity without seriously deteriorating
energy compaction.

Finally, the link to pre- and post-filtering opens up many re-
search directions. The general framework allows a great degree
of flexibility. Adaptive time-varying systems can be easily de-
signed by deciding what is the optimal pre- and post-filter to
apply at every block boundary, by allowing variable block size,
or by combining both.

APPENDIX

Starting with the type-II fast LOT in (2) and substituting the
DST-IV by the DCT-IV, we have
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Since any block-diagonal matrix can be moved across the but-
terfly and the delay chain, i.e.,

and

can be modified as follows:

Taking advantage of the symmetry of the type-II DCT
and modifying the butterfly

(35)

we can obtain

(36)

With the following definitions in (4) and (5)

it can be easily verified that

(37)

Indeed, this equation holds for all matricesand not only for
the one defined in (5). Finally, with (1), (4), (5), and (37), the
type-II LOT polyphase matrix in (36) can be rewritten as
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