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Abstract—This paper presents a general framework of con- since inter-block correlation has not been well taken into ac-
structing a large family of lapped transforms with symmetric  count. The second is the notorious blocking artifacts—discon-
basis functions by adding simple time-domain pre- and post-pro- 4 jities at the block boundaries resulting from reconstruction

cessing modules onto existing block discrete cosine transform . tch t bit-rate situati Blocki tifact
(DCT)-based infrastructures. A subset of the resulting solutions mismatches—at low bit-rate situations. blocking artiracts are

is closed-form, fast computable, modular, near optimal in the Visually annoying, and they set a severe limit on the achievable
energy compaction sense and leads to an elegant boundarybit-rate with acceptable quality.

handling of finite-length data. Starting from these solutions, a Many techniques have been developed to improve coding
general framework for block-based signal decomposition with efficiency and to avoid or reduce blocking effects. Most can

a high degree of flexibility and adaptivity is developed. Several o . i L2 .
simplified models are also introduced to approximate the optimal be classified into two distinct categories: i) using a global

solutions. These models are based on cascades of plane rotatioffansform (more accurately, transforms with overlapping basis
operators and lifting steps, respectively. Despite tremendous functions) and ii) using pre- and post-processing techniques.
savings in computational complexity, the optimized results of Algorithms in the first approach improve reconstruction quality
these simplified models are virtually identical to that of the by employing either the wavelet transform or the lapped
complete solution. The multiplierless versions of these pre- and t f LT i . | d iti d tructi
post-filters when combined with an appropriate multiplierless ransform (LT) in S|gn§1 ecompositon an recons .ruc lon
block transform, such as the binDCT, which is described in an [5]. New developments in the wavelet coding community lead
earlier paper by Liang and Tran, generate a family of very large  to the blocking-free JPEG2000 image compression standard.
scale intergration (VLSI)-friendly fast lapped transforms with |n the second approach, pre- and post-processing techniques
reversible integer-to-integer mapping. Numerous design examples p5ve peen proposed to improve reconstruction quality while
with arbitrary number of channels and arbitrary number of intaini tandard i H d t
borrowed samples are presented. maintaining standard compliance. However, pre- and post-pro-

cessing are mostly treated separately, and they usually destroy
the original signal contents.

In this paper, through a series of elementary matrix ma-
nipulations, we will demonstrate that a large class of lapped
I. INTRODUCTION transforms can be constructed as a combination of pre-filtering
OST image and video coding standards have shared post-filtering in the cur.rent block-bgsed DCT framework.

e pre- and post-processing operator is placed at each block

common coding philosophy: Data is partitioned int q Unlik ¢ : q ¢ .
small local blocks, which are decorrelated by the discrete cosi gundary. Lnlike most previous pre- and post-processing

transform (DCT) and then encoded by various variable-leng?i‘?proaChes’ the pre- and post-filter in our framework are

codes [21-[41. The pobularity of this coding approach can Bgtimately related. In fact, they are the exact inverse of each
attributEac]i tE) ]many fgctpz)urs Y I 18 =ph other, and together with the DCT, they form invertible lapped

\ DCT timality th sianal models- transforms with arbitrary amount of overlapping samples.
..') S r;ft'-:‘a'lr—otpfmlal y orter:JODCs_ll_gnla mt?] N S Perfect reconstruction and linear-phase basis functions can be
..'.') many etlicient fast-computable aigorithms, structurally guaranteed. The new framework provides several
iiiy small on-board memory requirement;

) - - .__advantages.
iv) flexibility and adaptivity on the block level, e.g., coding Existing block-based inf be kept i

mode can be selected on a block-by-block basis; : Cmg_tmg ﬁqc_ -basedin rastrugtubre (t:al?' ¢ Gipt Intact, ;
v) parallel processing capability; oding efficiency is improved by taking into accoun

vi) simple resynchronization in noisy environments. inter-block spatial correlation in the pre-filtering stage.

However, there are two main problems with this block-based « Blocking artifacts are eliminated with post-filtering along

DCT approach. The first problem is the lack of coding efficiency :?;I s{ljogl; 52&?:; r[ihees ’nﬂfefS?Efrr%:,tvi{ﬁ;tz;ﬁ&gse o

« Pre- and post-filter are constructed in modular cascaded
stages, leading to minimal hardware/software modifica-

. . _ tions and simple future upgrades.
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channel filterbanks, boundary filterbanks, and switchinB. Lapped Transform

filterbanks in adaptive decomposition. An M-band lapped transform (LT) is a linear transforma-
The outline of the paper is as follows. In Section II, we offefio, that partitions the input signal into small overlapped blocks
a review of important background materials, concepts, mojyq then processes each block independently. In the one-dimen-
vations, and previous related works. Next, Section 11| demogl-ona| (1-D) direct implementation, the input signakan be
strates that the well-known type-ll fast LOT [6] can be expresseghcked into short sequences, oflengthL (L > M). The cor-

as a combination of time-domain pre/post-filtering in the POResponding transform vectgr,, of length M is obtained from
ular block DCT/IDCT framework. Based on this result, S€Gne 07 « I, transform matrixd asy,, = Hx,,.

tion IV presents the general block-based signal decompositiong 5 plock of input samples has an overlaplof- M) sam-
framework that includes orthogonal solutions, biorthogonal SBles with each of its adjacent neighbers_; andx,.1. Typ-
lutions, global time-domain viewpoint, LT with arbitrary OVel4cally, L is chosen as a multiple o¥, i.e., L = KM, where
lapping factors, and boundary handling for finite-length signalgs is called the overlapping factor. The overlapping percentage
Issues in optimal pre- and post-filter design, fast implementg-yefined ag00 x = %. The M rows of the transform ma-
tions, multiplierless solutions as well as complexity and codingy 1 hold the trans?:)osed analysis basis functibfis At the

performance are addressed in Section V. Finally, conclusions gg qoder. we have the x M inverse transform matrik' whose

drawn in Section V1. _ columns hold the synthesis basis functind he reconstructed
Notations and ConventiondVe use bold-faced |°Wercasesegment§;m — Fy,, = FHx,, must be accumulated in an

characters to denote vectors and bold-face(% uppercase CBRErlap-add fashion to recover the original sigralFor two-di-
acters to denote matrices. The symbf¥§, V=, V™', and  mensjonal (2-D) signals such as images and video frames, the

[V]m,» denote respectively the determinant, the transpose, ig,storm can be applied separably, i.e., each row is processed
inverse, and the element at theh row andnth column of the i, 1_p followed by each column or vice versa.

matrix V. Occasionally, uppercase subscript suchas N is With the M x I forward LT matrix H and thel x M
added to indicate the matrix size if it is unclear from contexfyerse LT matrixF divided into squaré/ x M submatrices

Lower case subscripts are reserved for indexing purposgf. g (i=0,1,..., K-1)asH=[H, H;, ... Hyx_i]
Several special matrices with reserved symbols are the idengWéF - [FO' F, ... Fx L7, perfect reconstruction
matrix I, the anti-diagonal (reversal) matri the null matrix ; ; K—1-1 c K—1—1

g ( ) matrik is achieved whey~;" " "F/H;\, = Y., " FL H; =

0, and the diagonal matrix with alternatingl and—1 entries 5(1)1

D}Ii.e.,R = dia%{‘}, —1,1,-1,...}. In addition, the symbols |5056 transform is simply the polyphase implementation of
Cir, Cir . andS;; denote, respectively, thel x M type-Il 5" mayimally decimated\/-channel L-tap filter banks. The

DCT matrix, type-IV DCT matrix, and type-IV discrete Si”eprecise relationship between thel x L lapped transform
transform (DST) matrix, as defined in [7]. Signals and bas}g,;rix (assuming. = KM)H = [H, H;, ... Hg_ 1]

functions are represented as column vectors. For presentag?]la the polyphase matrix B(z) = ZKA H. i

simplicity, our convention has the forward transform (analysis_Fast lapped transforms can be cofiggruct:ed in polyphase form

FB) being anticausal, whereas the inverse transform (synth&gi3y, components with well-known fast-computable algorithms
FB) being causal. such as the DCT and the DST. One of the most elegant solution
is the type-Il fast LOT whose polyphase matrix is [6]

u [10]. As pointed out in [6], the aforementionéd x L

Il. REVIEW 171 0
E(Z) =5 |:0 slv CIIT :|
A. Block Transform 2 M/2  “MJ2
In this paper, a block transform is defined as ahx M > {I I } [I 0 }
linear operator that mapd/ input samples ta\/ transform I -I][0 I
coefficients. The matrix describing the linear mapping is I I I a I
called the transform matrix. The two families of block trans- <11 x| Cudu = GECyIM ()

forms used throughout this paper are the DCT and the D%’Eis structure is illustrated in Fig. 1. It is scalable to all

defined in [7l. All of these transforms are orthonormal, i.e. . . .
It ir vt T QIv-! VT o Bven-channelM, generating a large family of LOT with
Cu =6C3; :Cyy =Cy/ Sy =83 . Inaddition, : . .
. . L . ymmetric basis functions and 50% overi@d = 2). There
the following relationship between the DCT and the DS T . .
are many other fast solutions; all of them involve replacing

, ) shegt’ — DIV
matrix can be easily establishesh; Cyy J. The popular productsj'\}’/chr\}’;2 by different matricesV, which are

DCT in JPEG and MPEG is the eight-point type-ll DCT. Be- . . :
cause of its practical value, numerous fast DCT-II algorithn%S.ua”g calsgadltfas Olf var|ous<22| mgtnces along the.d%gor.]al q
have been proposed [7]; the most effective are ones baseddl? [6], [ I]' a arg(_aL oy?fr apping percentage Is esired,
sparse matrix factorizations. One factorization is even parfg/ore modulesG(z) with different V; can beI?ddec_i, €.
recursive, i.e., ad/-point DCT-II can be implemented via an (2) = Gr-a(2) Grz(z) ... Gi(z)Cj;. This is

M /2-point DCT-II and anM/2-point DCT-IV [8], [9], known as the generalized LT [10}-{12].
C. Pre- and Post-Processing for DCT-Based Systems

ol L y Cﬁ/2 0 I J 1) There has been a tremendous amount of research on pre- and
M= /2 0 Cg}’mJ J I post-processing algorithms for image and video compression
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Wi w

" T i 7 a © type-ll fast LOT/LBT, GLT, GenLOT, GLBT) are based on

W/ bet 7 /s . the DCT-Il post-processing approach [6], [10]-[12], [27]. A

%f m - mzj * more intuitive viewpoint is depicted in Fig. 2(b), where the

TN 1 per 28 28 Liper W vst .o Pre- and post-filter areutsidethe existing framework. This

/ \X:jg ZE v é é St way, we have a chance at improving coding performance while
— ber Post-Processing G achieving standard-compliance with minimal software/hard-

ware modifications.
Fig. 1. Type-ll fast lapped orthogonal transform. The idea is not new. For example, the modulated LT (MLT)
in audio coding standards [6] can be viewed as time-domain
y ¥ & pre-filtering of the type-1V DCT input. Here, the block operator
1 Q Pre = IDCT — IV in the MLT plays the modulation role, whereas the block
Inverse LT — operatoiC4Lin Fig. 2(b) plays the decorrelation role. Moreover,
from a general theoretic viewpoint, the LOT has been shown to
Existing Framework . . . . .
. . comprise of either i) cross-boundary post-processing of a certain
Ynl o FJdiper [ post L Tm. plock transform’s output or ii) cross-boundary pre-processing
of a block transform’s input [28]. Surprisingly, the pioneering
LT construction attempt by Malvar in [29] and [30] actually fol-
Fig.2. Different LT viewpoints. (a) LT as post-processing of DCT coefficientdOWSs the pre-processing approach. This work even predates its
(b) LT as pre-processing of DCT inputs. celebrated cousins: the type-I and type-Il fast LOT. This paper
provides a straightforward generalization of the early effort in

systems. Both classes of algorithms share one common gd&$] and [30]. Our focus is on the construction of various pre-

to eliminate or reduce the severity of coding artifacts in the r@nd post-filters.

constructed signal. This section can only offer a compact survey .

of popular approaches. See [13]-[26] and references thereinb- 1YPe-!l FastLOT as DCT/IDCT Pre- and Post-Processing
There are only a few pre-processing algorithms discussedlhrough a series of elementary matrix manipulations, we il-

in the literature [13], [20]. All of them concentrate on the relustrate that the type-Il fast LOT can be viewed as a combination

moval of noise, texture, or small features and try to allocate tibéthe common block-based DCT/IDCT framework with simple

bit-budget savings to more important visual information. Notiéme-domain pre- and post-filtering. In other words, the analysis

that we are interested in time-domain pre-filtering only, i.e., apolyphase matrix in (2) can be rewritten as

gorithms that work directly on the input time samples and not

xm
(a) —{ DCT = Post

LT

X
(b) == Pre |— DCT

LT Inverse LT —

algorithms that process DCT coefficients before coding or quan- E(z) ZDMCﬁ I 0 01 P (3)
tization. S0 A1 0

There are significantly more research activities in thgnare
post-processing field. Post-filtering algorithms can be divided
into two classes: enhancement [18], [22]-[24], [26] and re- pal [I J } [I 0} [I J ] 4)
covery [16], [17], [19], [21]. In the enhancement approach, a 2|J -Ij[0 V]|J -I
heuristic operator is designed to filter along the block bound- v éJCJId/ZC{\}//QJ. (5)

aries. These enhancement algorithms are usually fast; they work

well in practice and can be found in most international videbhe derivation can be found in the Appendix.

coding standards [23], [26] as deblocking filters. However, they Since the diagonal matrild;; only inverts the polarity of
have a tendency to smooth out the true underlying edge infdie transform coefficients, it can be ignored. Finally, if we de-
mation. The seconq class_ of post-processing algorithms rel}ﬁ\]se f\(z) a1 0 LO 1 _ L 0 I as the permuted

on more mathematically rigorous recovery techniques such as 0 2I||I O z2I 0

optimization via a Lagrangian linear model or projection ontddvance chain, then the modified LOT polyphase matrix be-
convex sets. Algorithms using the recovery approach usuafigmesE(z) = C17A(z)P, whereA(2)P can be interpreted as
outperform theirad hoc enhancement counterparts, but theffme-domain pre-processing across block boundaries. The new
are much more Computationa”y expensive_ Previous Work M structure iS i||UStrated in F|g 3, Where the I’eSU|ting baSiS
an integrated pre- and post-processing for DCT-based codB#ictions are, discountiny//2 sign changes fro ,;, exactly

is almost nonexistent. the type-Il fast LOTSs.
The synthesis polyphase matrix is simply the inverse on anal-
lll. LT FROM PRE- AND POST-PROCESSING ysis polyphase matri®(2) = E~'(2) = P~'A™!(2)C}] .

We are reminded thatt!!" is the)M-point type-Il IDCT matrix.
Following our convention, the synthesis bank is causal. In ad-
All lapped transforms mentioned in Section Il can be viewedition, since every component in this lattice is paraunitary, we
as post- and pre-processing of the DCT coefficients with thaveP~! = P7. In other words, the post-filter is the trans-
quantizer in between, as shown in Fig. 2(a). Up until now, ghlose of the pre-filter. The advance chain&(w) and the delay
high-performance LTs with linear-phase basis functions dehain infrl(z) place the pre-filte and the post-filteP !
signed for image and video compression (type-I fast LOT/LBDetween two adjacent DCT/IDCT blocks. Viewing the LT under

A. Motivation
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Fig. 3. LOT via time-domain pre- and post-filtering.
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Fig. 4. Global viewpoint of LT as pre- and post-filtering at DCT/IDCT block boundaries.

the time-domain pre/post-filtering prism leads to numerous istage P acts as the pre-filter working across the block bound-

teresting solutions, as demonstrated in Section IV. aries, taking away interblock correlation; the pre-processed time
samples are then fed to the DCT to be encoded as usual. In
C. Biorthogonal Extension the reconstruction stag®~! serves as the post-filter, recon-

structing the data in an overlapping manner, hence alleviating
It holds all of the degrees of freedom in the structureVis blocking artifacts. The symmetry of the basis functions is guar-

chosen orthogonal as in Fig. 3, we have an orthogonal soluti rr?ge;do.kéé g;etthfergg? Z::Jn?ntel{; qua?:;}r(]i) é;e%ifelecsﬁap:

However, just to maintain FIR perfect reconstructidhonly ! para v !
A(z) extends the processing across the block boundary. Pre-

:f\émd post-filtering are operating in the time domain, completely

. . 11T v . outside of the existing block-based architecture. Because of this

dlag(?nal matris betweenCM./? andCyy, to rer;reseniv' n characteristic, we label this LT family the time-domain lapped

the singular value decomposition foréh = JC47,,SC17/,J.  transform (TDLT).

To minimize the additional complexity in the biorthogonal sys-

tems and maintain the nice closed-form solution, we lignib B. Time-Domain Derivation

diag{s, 1,...,1}, wheres is a scaling factor. A good value ef

The matrixV in (5) and (4) controls pre- and post-filtering.

The pre- and post-filter can be designed directly in the time

for a smooth image model 'Slfl\% other scaling factors that al§gmain. In fact, one issue that requires immediate attention is
work well include 3/2, 25/16:%2, andy/2. These choices of the generality of the solution in Section I1l. Do other solutions

s, which will be revisited in Section 1V, follow the simple con-pasidesv in (5) exist? What is the most general form BP
struction of the lapped biorthogonal transform (LBT) proposgg§yesp necessarily have the structure in (4)?

in [31]. Consider in Fig. 4 the mapping 2/ input samples to th&/
input of the DCT. The corresponding mapping operdgy. is
IV. GENERAL PRE- AND POST-PROCESSINGFRAMEWORK actually anM x 2M forward LT:

A. Global Viewpoint _[Omy2 Tnja Onrgo OM/Q]

H re —
Although the new structure in Fig. 3 does not look that much® Onrr/2 Oarzz Ingye Opgyo
more intriguing than that in Fig. 1, viewing the structure glob- P Oy 6
ally as shown in Fig. 4 reveals its elegance. In the decomposition 0y P |7 )



TRAN et al: LAPPED TRANSFORM VIA TIME-DOMAIN PRE- AND POST-FILTERING 1561

Poo Po the pre-processing matr. An M x L LT, whereL < 2M and
Pio Pu M > 2, can be easily constructed with the— M) x (L — M)

M/2 x M/2 as long agP| # 0. The forward transform matrix pre-filter P, which has the same form &sin (4), except that all

H can then be expressed as the equation at the bottom of {i@matrices are now of siZe2L. The smaller free-parameter

LetP = , whereP;; are arbitrary matrices of size

page. o _ _ V matrix can be chosen as
Hence, to obtain linear-phase basis functions, we need R . )
c]f\,@zp10 = Clf,JPud, Ci[,Pu = C[,IPyJ, V=JCLL,SCLL,J )
CJI\[/QPH) = CJI\,‘I//QJPOlJ, and CJI\,‘I//QP11 = CJI\[ 2Jl)()o.], . . . }
which leads taP;, = JPy1J andP;; = JPgoJ. Therefore, where_S = T yields gfamlly of qrthogonal LTs, vyhereas
the most general pre-filteP generating symmetric basisS = diag{8/5, 1, ...,1} yields good biorthogonal solutions. In
functions is the 8x 10 case, orthogonal symmetric solution does not exist:
The only degree of freedom is the scaling factpwhich is the
P= [ Poo Po: } _ (7) degeneration of the scaling mati$x
JPo1J  JPgod Note that we can obtain LT of various humbers of bands and

sizes by just controlling the matri¥ in Fig. 4, i.e., anM x L

Exploiting the symmetry oP in (7), we arrive at the following LT (M < L < 2M) can be realized by employing

factorization:

JCU' SCLV . J 0L 20m
N ] e[ ) g

P=217 Z1llo v||3 -1 )

02L—JW L—M IQL—JW
=X IS =

whereU 2 Py, + Py, J andV 2 JPy,J — JP,,. To obtain The choice ofV as a diagonal matrix yields the pioneering re-
an orthogonal solution, choo&BandV as orthogonal matrices. Sults in [29] and [30]. IfV = T, then pre- and post-filtering are
To obtain a biorthogonal solution, chodgeandV as invertible turned off (see Fig. 5).

matrices. It turns out thatJ helps little in improving energy D
compaction. In this paper, for simplicity of presentati@h,is :
ignored (set td). Certainly, the choice ofJ = I keeps the  Several basic properties of our framework are best explained
complexity of the pre/post-filter down. In addition, note that ithrough an almost trivial example—the case of 2 pre- and

the block transform operator is not fixed,(or V) can be moved post-filtering depicted in Fig. 6. In this cage!" = 1, CIT" =
across the butterfly and embedded into the block transform stageénd our proposed solutidvt in (9) degenerates to the single

Interesting Observations

via several simple matrix manipulations. scaling factors.
Let {z;}, {p:}, {P:}, and{Z;} be the set of the pre-filter's
C. LT With Small Overlap input samples, the pre-filter's output samples, the post-filter's

3jnput samples, and the post-filter's output samples, respectively.
bXYe examine the post-filter first since its operation is slightly
more intuitive than the pre-filter's. Considgyandp; 1, which

The type-Il fast LOT in Fig. 1 and our new variation in Fig.
is quite restrictive. It can only generate LT with an even num

of channel and a 50% overld@ = 2M). It is crucial in many

applications to find the best tradeoff between coding perfo"i’-re, two inpl"t samples of the post_—filter at the b'oundary of two
mance and complexity. It is desirable to be able to vary t ighboring IDCT blocks, and their corresponding output sam-

amount of overlap between neighboring blocks (igt< I, < p e_s:?ci andz;41. We can easily derive the following relation-
2M) and, hence, have fine control over the computational cormIPs:

plexity of the transform. o1 1, .
The answer to the seemingly complex question above keys on Ti=5 [(Bi + i) + g(f’i — Dit1)]
a simple observation of the global structure as shown in Fig. 4. . % -1
The amount of overlap can be lowered by reducing the size of =pi + - 5 (Pi — Pit1) (11)
H=C{H,,.

_1 [Cﬁm Cil/d }
\/5 Cﬁn _Cﬁ/QJ
Pyw Por O 0
« 0 I 0o o0 P, Py O 0
0 0I O 0 0 Py Pnn
0 0 Py, Py
1 [Cﬁmplo Cﬁ/an CﬁmJPOO CJI\§/2JP01

V2 LGP0 CfpPu —ClpdPo —ClppdPor |
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Pre-Filtering
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Fig. 5. Example of LT with small overlap (8 12 biorthogonal via four-point pre-filtering) in polyphase representation.

M-4 M-4 —> T='a—>M4 M-4
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N
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£
3 3l & —3 3
&

Fig. 6. Demonstration of two-point pre- and post-filtering.

Pint Xin the larger-value;; ., based on their differende; — z;41|. The
o9 tje oo input-output relationships are
5 I I ?%T p p p
Before Post-Filtering After Post-Filtering P; =x; + ; (J:z _ ‘T’i+1) (13)
Xist Pirt s—1
< lo? I T pET X Pit1 =Tiy1 — —5 (Ti — Tit1)- (14)
|
c* ‘T T T T °° Y T T ? °e° From (13) and (14), the choice > 1 also makes intuitive
Before Pre-Filiering Afier Pre-Filiering sense. Ik < 1, samples are adjusted in the wrong direction. We

found that a good choice afin the energy compaction sense

Fig. 7. Pre- and post-filtering effect. . . ’
for smooth signal models is tl&olden Rauo%. In fact, all

. 1. . 1. of the Fibonacci ratio F'(n + 1)/ F(n), whereF(n) is thenth
Tip1 25[(271' + Pit1) — g(pi = Pit1)] member of the Fibonacci sequenide 1,2,3,5,8,13,21,...},
1_1 work well. In addition, note thdim,, ... (F(n+ 1)/F(n)) =

=Piv1 — 5 (i — Di+1)- (12) 1+ v5)/2.

Defi d  blocki itdpas the absolut When more than two samples are involved, the pre-filter
cfin€ a crude measure ot blocking art S e abSOIUe 55 as aflattening operator. It attempts to make the input

differe_nce_ between two samples_ atthe bl_ock_boundary. Withqgt the DCT as homogeneous as possible, hence improving
post-iltering,D = |p; — pi+1|. With post-filtering the overall energy compaction. This is quite consistent with

L o 1 o most pre-filtering schemes in practice; smoothing the input
D =|ii = &ipa] = [(hi = Dit1) + s 1) (Pi = Pita)| signal improves coding efficiency. However, in our framework,
L 1 perfect reconstruction is maintained. High-frequency signal
_ (Pi — Pi+1) _ . o L . . -
il I el I |pi — Pival. components are never eliminated; they are only slightly shifted

in time. We take full advantage of the block-based framework
Hence, by choosinfll/s| < 1, or|s| > 1, we guarantee a de-by carefully aligning high-frequency components at block
crease in “blocking artifact.” This post-filtering effect is demonboundaries. Discontinuities between DCT blocks, i.e., high-fre-
strated in Fig. 7. For example, if we choose= 2, then the quency contents, do not affect coding performance, whereas
post-filter partitions the distande = |p; — p;+1] into four seg- within each block, data samples are smoothened out, enhancing
ments of equal length movéds up one segment length fropy  the DCT'’s effectiveness in energy compaction.
and movest;; down one segment length frofia,. There- The flattening property of the pre-filter is best demonstrated
fore, post-filtering adaptively reduces the observed discreparinyan image processing example shown in Fig. 8. When more
D by a factor of two. samples are borrowed at each block boundary, the pre-filtered
The pre-filter modifies the samples in the opposite directioimage becomes more blocky since eack 8 block becomes
attempting to lower the smaller-value samplewhile increase smoother, and more high-frequency components are shifted to
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Fig. 8. Pre-filtering’s block-wise flattening effect with>88 block size. From left to right: Original image; after two-point pre-filtering (borrowing one sample
at each boundary); after four-point pre-filtering (borrowing two samples); after six-point pre-filtering (borrowing three samples); affieigire-filtering
(borrowing four samples).

the block boundary. Notice that in 2-D applications, the decor 0 o—
position can be written as 1 |
l —
Youm = CHH _ x,, ,HL CII". 15) 2 __,bcr ) |
s M>+p s pre ¥ M
Based on (15), transformation steps can be performed separ: > 1/2T il/z il/ZT— 12 . S
and in many different orders. In the illustration of Fig. 8, onh4 = > 0 o—
separable 2-D pre-processing is carried out. 5 K A4 R | | —
It is also interesting to observe that when settidg= 2 and DCT
s = 2, the pre/post-filtering framework generates the followin ¢ = 2 i
iX: 7 — —>
polyphase matrix: s T i”z *1/2T — \ 3 3
V2 1 170 1 8 = = 0 o
E(z) =— A%
1 —1(]z 0 9 > > 1 11—
! DCT
X[1 1“1 0”1 1] 10 2 21—
1 —1]]|0 2|1 -1 0 5 N
_ﬁ [—1 +3z 33— Z] (16) Fig. 9. Boundary handling for finite-length signals.
T4 | -1-32 3+=z
which yields the scaled versions of the 4/4 spline wavelet filterlé': Boundary Handling for Finite-Length Signals
Ho(z) = —(1/4) + (3/4)z + (3/4)2% — (1/4)2% andH, (z) = To process finite-length signals using transforms with over-
—(1/4) + (3/4)z — (3/4)2% + (1/4)25. lapping symmetric basis functions, symmetric extension is ap-

The four-tap de-blocking post-filter iff.263+ [23] can be plied at the signal boundaries to achieve perfect reconstruction

represented in our framework as well by choosing tke#P 1 [5], [6]. In our framework, since the pre-procesddiis placed
having the same form & in (4) but with the following param- between block boundaries, it is intuitive that there should be no

eter matrix: extra processing needed at the signal boundaries. In fact, sup-
L pose that we are performing decomposition usinglanx L
vl — [0 %] _ symmetric LT and symmetrically extend the fifst®. samples.
0 3 Then, the reflected signal always flows by the pre-processor un-
Despite its good deblocking proper®;~! does not have a cor- touched: i i
responding pre-filter: Its inverse does not exist. pldxo| _LIT J /T 0
[xo ] 23 -1 [0 V}
E. Lifting-Based Pre- and Post-Filtering I J7[JIx
To map integers to integers with perfect reconstruction and % [J —I] [ Xo ]
minimum bit expansion, we can replace each butterfly in the 1[I J 7 [2Ixg Jxg
pre-filter P in (4) by the unnormalized Haar matrix as follows: 913 -1 [ 0 ] - [ X0 ] (18)
p_L [I J } {I 0 ] [I J } suggesting that pre- and post-filtering at the signal boundaries
213 -I||0 V||J I should be skipped.
1 3771 o I J An example of the boundary handling technique in our
= |:§J —I] [0 V] |:%J —%I] : (17)  pre/post-filtering framework is illustrated in Fig. 9. A 12-point

finite length signal is decomposed byx#4 block DCT and
The all-lifting pre-filter can be constructed by modeling the freet x 4 pre-filter (or in other words, an 4 8 LT). Pre-filtering
parameteV matrix in the LU decomposition form. This will be operators are placed between DCT blocks but not at the two
explored further in Section V. signal boundaries. From a pre-filtering perspective, there is no
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Fig. 10. General pre- and post-filter constructed from cascading modular structures.

interblock correlation to take advantage of at the bounda§ubstituting (19) into the right side of (21) yields

From a post-filtering perspective, there are no blocking artifacts K

to be concerned about at the boundary. Note that in Fig. 9, ,Kpg(,~1)J = :XDCH [A(z_l)Pi} 3. (23)

we have also chosen to demonstrate the replacement of the pait

common butterfly by the unnormalized forward/inverse Haar e I .

(also known as the S transform) following the idea proposi\bEXt’ uSIngCM/2 - DCM/2J and (22), we obtain

in Section IV-E. K
KDE(:~1)J =DDCILy AG"HP; [T

G. Arbitrary Overlap Solution ? (=) M Zl:[l [Z (=) ]

To increase the amount of overlap to any arbitrary number . K o
L > 2M (M even), more stages of pre- and post-processing =C)J H [ZJJA(Z_ )JJPi:| J
are added, as shown in Fig. 10, where each added processing i=1

stageP; works at the boundaries of the previous st®je;.
Thus,P; is aligned withP;_». The analysis polyphase matrix

K
=ciI]] [JA(z)JPl} J.
of a generalM x L symmetric LT, wherd. = KM + N, can =1

be constructed modularly as follows: Finally, taking advantage of the symmetryl®fin (37), we can
K simplify the previous equation to
— I A , . . .
E(z) = Cu ,_1[A(Z)P1]' 19 KDE(:1)7 =CIITA(2)TP1TA(2)IPs ... JA(2)IP I
- _ I A A A _
The corresponding synthesis polyphase matrix is =CuA(2)P1A(2)P2 ... A(2)Pk = E(2).
1 R . In short, the modular construction in (19) always generates
R(z) =[] [PflA_l(z)} Cii . (20) transforms with linear-phase FIR basis functions, regardless of
i=K the choices of invertible matric&g; in P;. Note that the result

This general solution is demonstrated in Fig. 10. Each staigfethis section is only for even/.
of P, possibly employs a differed; matrix. The first( K — 1) ] ) ] _
stages in (19) generate LT of length\/, whereas the last stage- Adaptive Time-Varying Pre- and Post-Processing
P x is responsible for the remaining. We can also think ofthe A quick review of Fig. 4 and (10) reveals that our pre/post-
DCT as the initial operatadPy. If linear phase is not required, processing framework lends itself nicely to the problem of de-
thenP; does not need have any structure. It only has to be isigning adaptive time-varying signal decomposition. Adaptivity
vertible. In the most general fornl?; can even be a nonlinearcan lead to significant coding improvements if the amount of
operator. side information is kept to a minimum. It is clear that long basis
It is trivial to see that (19) generates FIR perfect reconstruftinctions are best for smooth signal regions. However, long
tion systems as long @6; are invertible. To structurally guar- basis functions cause ringing artifacts near strong edges and tex-
antee linear-phase basis functioli¥) in (19) has to satisfy ture regions. To keep both blocking and ringing artifacts under

the LP test [5] control, we have three options.
K 1 i) Vary the number of overlapping samples at each block
E(z) =2"DE(z7")J (21) boundary.
where K is the order of the anticausal polyphase matrix. To 1) Vary the transform block size.
show that (19) satisfies (21), let us first establish iii) Do a combination of both of the above.
Based on the energy of the transform coefficients generated,
zJA(z‘l)J =z [0 J} { 91 I} [0 J] we can decide to turn on or off pre/post-filtering. It is just as
J oj[-71 0][J O easy to vary the number of borrowing samples dynamically. This

:A(z). (22) adaptive-borrowing signal decomposition is illustrated on the
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Fig. 11. Adaptive time-varying pre-filtering. Left: Adaptive borrowing, fixed block size. Right: Adaptive block size, fixed borrowing.

left side of Fig. 11, where the block size is fixed to 4, whereas the £ \ /-\/—Xe-o st

pre-filtering operator can be chosen amongst: no filtering, bor- o ~—— .

rowing one sample, or borrowing two samples. In other words, \/ ><33X /\9' sin@

from top to bottom, we are switching from ax46 to a 4x 7 1 ><3;/\64 / \2 cosb

to a 4x 5 LT and possibly to a 4 4 DCT. Unfortunately, the o

linear-phase property of the filters in the switching filter banks

(4 x 7 and 4x 5) has been sacrificed. Fig. 12. Representation of an orthogonal matrix by rotation angles.

If the block transform in use is the eight-point DCT and the
number of borrowing samples can be chosen from the set {0,To conclude the section, we remark that under the proposed
1, 2, 4}, then the side information for each block boundary is gre/post-filtering framework, the design of odd-band LTs
bits. This side information can be a lot lower if it is coded byecomes a simple and straightforward extension. In fact, the
Huffman or arithmetic coding. same pre-filters presented in this section can be combined
Another adaptive decomposition scheme can be obtainedgyh odd-size DCTs to realize LTs with an odd number of
employing variable block sizes. In the slowly changing part @hannels. Unfortunately, these solutions do not seem to offer

the signal, it is desirable to employ a large block size. In theéhy advantage over the even-band solutions.
fast-changing transient part of the signal, it is more advanta-

geous to switch to a small block size. Such a signal-adaptive V. DESIGN

switching scheme has proven to be very effective in practice. o

For instance, MPEG-4's Advanced Audio Coder switche® Optimized TDLT

back-and-forth between a 256-point high-time-resolution shortin this section, we present the highest coding gains that can
window and a 2048-point high-frequency-resolution longe achieved when the matikinthe TDLT is allowed to be any
window to avoid pre-echo and to improve coding efficiencgrthogonal or invertible matrix. An unconstrained optimization
[32]. In our pre/post-filtering framework, an example of grogram is set up to find the optimal coding gain of the orthog-
variable-block-size decomposition scheme is depicted on theal or biorthogonalM x (M +2N) TDLT, whereN < |M/2].
right side Fig. 11, where two samples are borrowed at eachlt is well known that anyN x N orthogonal matrix can be
boundary. Here, we are switching from a4 to a 8x 12 to factored as a cascade &f(N — 1)/2 plane rotations andv

a 6x 10 LT. Interestingly, in this time-varying example, thereign parameters [33]. This representation is highly nonunique.
is no switching filterbank and every filter involved has lineaOne example for a 4 4 matrix'V is shown in Fig. 12. The free
phase. The side information, just like in the adaptive-borrowingarameters for the orthogonal pre-filter are tN¢N — 1)/2
case, can be kept manageable as well with a well chosen setatétion angles. In the biorthogonal case, we N§éV — 1) ro-
block sizes, e.g., {4, 8, 16, 32} for image applications. tation angles andv diagonal entries following the SVD model.

In the most general case, both adaptive pre-filtering with dif- Table | compares the coding gains of various lapped trans-
ferent lengths, with multiple stages and adaptive variable blofdems, whereOpt. TDLOTandOpt. TDLTdenote the optimized
size, can be combined. This decomposition scheme generat¢bogonal and biorthogonal TDLT obtained wheéris chosen
a large library of basis functions that the encoder can choa®an arbitrary orthogonal or biorthogonal matrix, respectively.
from depending on the input signal behavior. By having well-b&he TDLT developed in (5) is labeled a&DLOT-I, whose
haved structured solutions, the encoder can perform fast gparformance is identical to that of theOT-Il. The results
sioptimal dynamic optimizations online, much like the motionf TDLT-I are obtained from (5) by inserting a single scaling
estimation problem in video coding. How to make the right déactor of 8/5. The results dpt. LOTare obtained by choosing
cision quickly and how to minimize the amount of side inforthe matrixV in the LOT as an appropriate Karhunen—Loéve
mation are two open research problems. transform (KLT) [6].
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TABLE | steadily decreasing. The reason is quite intuitive. The pre-filter
CODING GAIN IN DB OF VARIOUS LAPPED in the TDLT framework is applied at the boundaries of neigh-
TRANSFORM FOR ANAR(1) SGNAL WITH p = 0.95 . . o .
boring signal blocks, and it tries to smoothen the input to the
Size | TDLOT-I | Opt. | Opt. | TDLII | Opt. DCT in order to improve energy compaction. Each input to the
__| &LOTN | LOT | TDLOT TDLT matrix V is the difference between a pair of samples from two
iig ;SZ 7'95 ;gz 2'2‘7‘ g'g; sides of a block boundary. Moreover, the upper input&vof
Sx10 383 - 583 9.06 1 906 correspond to the differences of nearer sample pairs, whereas
8 x 12 8.99 - 9.00 9.31 9.34 the lower inputs correspond to those of farther pairs. Since the
8 x 14 9.11 - 9.14 9-42 g-zg correlations between nearer neighbors are stronger, it is clear
8% 16 922 | 924 | 926 9.5 . : _
T LT e 557 55 that the upper |_nputs qV s_hould have more weightings than
32x64 | 997 998 | 1001 | 1003 | 1007 the lower ones in pre-filtering.

For these kinds of decreasing rotation angles, the simplified
model in Fig. 14 starts from the smallest angles and therefore
Except for the case oM = 4, the optimized TDLOT yjelds less accumulation error, making it valid even for large
achieves slightly higher coding gains than the optimal LOT/. Compared with this, the main rotation angles in the LOT-I
The 8x 16 optimized TDLT has a coding gain of 9.62 dBare very close to each other. As a result, the structure of LOT-I
which is impressively close to the optimal 9.63 dB in [34] andnly yields good performance fdd < 16 [6].

the optimized GLBT in [12]. However, the TDLT has a much
simpler structure than both of the above. Table | also shofis Lifting-Based Fast Algorithm

that the coding gains of the TDLOT-1, and the LOT-Il are only  Ajthough the simplified model in TDLOT-II is faster than the

below the optimized cases by up to 0.04 dB. The frequengyy| 1.y it sill involves floating multiplications, which are slow

responses of some optimized TDLTs are shown in Fig. 134 yndesired in many software and hardware applications. In

together with their impulse responses. These are quite closgd section, a lifting-based fast TDLT is developed, paving the

the LBT basis functions in [31]. path to much faster multiplierless solutions. The lifting scheme

) is proposed in [36] as a tool for filterbank implementation. More

B. Plane Rotation-Based Fast TDLOT-II systematic and general results were presented in [37]. It is well
We observe that the significant entries of the matriknown thata plane rotation can be decomposed into three lifting

V in the optimized pre-filter concentrate along the diagsteps [36], [37]. This can be written in matrix form as

onal. This is also true for the matri¥ in the TDLOT-I, )

as defined in (5). For example, the rotation angles cor- [Cf’sg _Smg} - [1 P} [ 1 0} [1 P} (24)

responding to the %4 matrix V in TDLOT-l are § = sinf  cosd O 11U 1]]0 1

[-0.207, 0.047, —0.037, —0.157, —0.017, —0.087]. Since \yhere

61, 62, andd, are relatively small, we expect that they can be

discarded without significant performance loss. In addition, P= cosf —1 — _tan <Q> U =sind. (25)

notice that the remaining angles have a strong decreasing trend. sin ¢ 2)’

The strong diagonal property of the optimized maWisug- 14 gptain fast implementation, we can approximate the

gests a simplified orthogonal model for the matNk a cas-  figating-point lifting coefficients by hardware-friendly dyadic
cade of rotation angles between neighboring channels. The Go{j,es (i.e., rational values in the format bf2™; k andm
responding TDLT structure is shown in Fig. 14 for the casgq integers), which can be implemented by only shift and

of M = 8. We denote this model as tDLOT-II. For an  ,qgition operations. The elimination of the multiplication can
M x(M+2N) TDLOT, this simplified model only needS —1 5154 reduce the dynamic range of the transform [1].

rotation angles. Compared with the TDLOT-I, the complexity a trivial lifting-based pre-filter for the TDLT can be obtained

of this algorithm is reduced significantly, enabling much fastgf, 1 the TDLOT-II structure by replacing each rotation angle

@mplementation._Notice that the arrangement of roFation anglesh its three-lifting representation in (24) and (25). How-
in TDLOT-Il is different from that of the fast LOT-lin [6] and gyer since the rotation angles in the TDLOT-II are steadily
[35], where the cascading of rotation angles starts from the tBBcreasing we notice that

channels and propagates to the bottomVofThe significance
of this difference will be explained later in this section. lmP =0, lmU=0 (26)
Coding gain results of the optimized TDLOT-Il are presented =0 =0
in Table II, which also contains results of other fast TDLTand many lifting parameters thus have very small magnitudes.
presented later in the section. Tables | and Il show that thidis enables the approximation of such rotation angles by only
TDLOT-II has better performance than the TDLOT-I. In fact, itéwo lifting steps, as shown in Fig. 15(b). This can be justified
coding gain is almost identical to that of the optimized TDLODy the following analysis.
with full matrix model. This suggests that the simplified model In Fig. 15(a), the outputs of the three-lifting structure can be
in Fig. 14 is a very accurate approximation of the optimal revritten as
sults.
Table Il lists the rotation angles in several optimized Vi =(1+ PU)X:1 + (2P + P?U) X,
TDLOT-Il. As previously mentioned, their magnitudes are Yo =UX; + (1+ PU)X> 27)
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Structure of the fast TDLOT-II.

TABLE I

CODING GAIN IN DB OF VARIOUS FAST TDLTS FOR AN AR(1)

SIGNAL WITH p = 0.95

Size TDLOT-II | TDLT-III  TDLT-III | TDLT-IV TDLT-V
(no scale)  (with scale)
4x6 7.57 8.07 8.07 8.07 8.07
4x8 7.94 8.13 8.63 8.63 8.63
8 x 10 8.83 9.06 9.06 9.06 9.06
8 x 12 9.00 9.08 9.34 9.34 9.34
8 x 14 9.14 9.25 9.50 9.50 9.50
8 x 16 9.26 9.38 9.61 9.60 9.60
16 x 32 9.80 9.83 9.95 9.91 9.90
32 x 64 10.00 9.99 10.06 10.00 9.98
64 x 128 10.07 10.05 10.09 10.04 9.96
TABLE Il

OPTIMIZED ROTATION ANGLES FORDIFFERENTPRE-FILTERS IN THE TDLOT-II

Size of V| Rotation angles: 6y to O _o

2% 2 -0.10 7.

3x3 -0.157,-0.07 7

4x4 -0.17m,-0.12 7, -0.05 7

5x5H -0.197,-0.157,-0.10 7, -0.04 7

6 x6 -0.20 7, -0.17 7, -0.13 7, -0.09 7,
-0.04

Tx7 -0.21 7, -0.197,-0.167,-0.12 7,
-0.08 7, -0.03 7

8x 8 -0.21 7, -0.20 7, -0.18 w, -0.15 7,

-0.117,-0.07m,-0.037

whereas the outputs of the simplified structure in Fig. 15(b) aPe

Yy =(1+ P'U)X, + P'X,
Yy =U'X, + X,.

(28)

Magnaude Response (0B)
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Design examples. Left: Orthogonak86 TDLT; coding gain 9.26 dB. Right: Biorthogonab816 TDLT; coding gain: 9.62 dB.
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Fig. 15. Approximating a small rotation angle by two lifting steps.
(a) Standard three-lifting representation. (b) Simplified two-lifting structure.
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Fig. 16. Simplified structures for the matr in the pre-filter of the TDLT.
(a) Structure that approximates the cascading of rotation angles. (b) Structure
in the TDLT-III. (c) Structure in the TDLT-IV. (d) Structure in the TDLT-V.

following setting of the two-lifting model can approximate the
standard model closely:

P =2p, U =U. (29)
When the rotation angle is not small enough and only the third-
derterm can be ignored, the following choice will yield a more
accurate approximation:

U

P'=2P, U'=<. (30)

If the rotation angle is small enough such that the magnitudesBy replacing the rotation angles in the TDLOT-II with the
of its lifting parameters are much less than unity, all seconto-lifting structure, we obtain another simplified model for the
and third-order terms in (27) and (28) can be ignored, and theatrix V, as illustrated in Fig. 16(a). The transform can be made
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Fig. 17. General structure of the TDLT-III.

even faster if each lifting parameter is approximated by an dplock required by a/-channel transform. The computational
propriate dyadic value. This is similar to the approach taken aomplexity of this fast DCT algorithm for evelf is given by
the LiftLT design [38].

M
The structure in Fig. 16(a) is designed as a close approxi- ppct (M) = logy M +1
mation of the orthogonal TDLOT-II, whose coding gain is not 3IM
as high as the biorthogonal case. However, by introducing a apcr(M) =—-logy M — M + 1. (31)

scaling coefficient to each channel of the mafkix as shown

- : The M x 2M LOT-l and its equivalence—the
in Fig. 16(b), the structure would approximate the SVD mOdq'lDLOT-I—require roughly twice the DqCT complexity
very well. The corresponding biorthogonal TDLT is given qu]

Fig. 17, which is denoted as tR®LT-III. The butterflies in the

TDLT-IIl are also implemented by lifting steps, as discussed prot—11(M) =M logy, M + 2

previously in Section IV. For ad/ x (M + 2N) TDLT-Ill, V avor—rr(M) =3M logy M — M + 2. (32)
has only3N — 2 parameters, representing a dramatic simplifi-

cation over theV? parameters of the SVD model. For the TDLOT-II, since each rotation angle in tematrix can

Some Coding gain results of TDLT-Ill are given in Table |be implemented with three multiplications and three additions
by optimizing the lifting and scaling parameters in Fig. 17. It9], the complexity of al/ x (M + 2N) TDLOT-Il is
can be observed that the optimized TDLT-IIl without scalings .
has better performance than its TDLOT-II original. When scal- wrpLor-1r(M; 2N) =pper(M) + (3N = 3)
ings are used, the result is virtually identical to the optimized arpror-11(M,2N) =apcr(M) + (TN - 3). (33)
SVD-based TDLT in Tab_le | whed/ < 16. It is interesting The complexity of the lifting-basedll x (M + 2N) TDLT-III,
to not_e that forNV = 2,_th|s mode_l fo_rV reo!uces to the LDU TDLT-IV and TDLT-V is given by
factorization of a matrix [39], which is equivalent to the SVD.

Therefore, the model in TDLT-IIl is a complete model for all prorr—111(M,2N) =pper(M) 4+ (3N —2)
invertiple 2x 2 matrices. N o arprr—r111(M,2N) =apcr(M) + (6N —2).  (34)
Besides the SVD decomposition, the LU factorization [39]
provides another model for the invertible matsixin the TDLT. The 1/2 normalization of the butterflies is not counted in all
Two simplified models that resemble the LU factorization an@f the formula above. Table IV compares the complexity be-
provide good performance in the TDLT framework are giveiveen the DCT, the LOT-II, and various fast TDLTs with full
in F|g 16(0) and (d) We denote the Corresponding TDLT ég)rrOWing. The TDLOT-Il and TDLT-Ill reduces the Computa-
TDLT-IV and TDLT-V. They have the same complexity as th&onal overhead compared with the fast DCT implementation in
TDLT-IIl, i.e., requiring N scalings an@(N — 1) lifting steps [8] to around 40 to 70%.
for V. The scaling coefficients can be placed between the upper _ . -
and lower triangular parts or at the end of the signal flow withoﬁ TDLT With Rational or Dyadic Coeflicients
losing any optimal performance. This section investigates the approximation of the optimized
values for the free parameters in the TDLT-IIl and TDLT-IV
by various rational and dyadic values. These designs lead to

D. Comparison of Complexity and Coding Performance fast, sometimes even multiplierless, implementations and allow
lossless compression.

This section summarizes the computational complexity of The fast DCT algorithm chosen for the following examples
various fast TDLTs developed in this paper when a floatings the lifting-based binDCT [1], which is derived from the
point implementation is considered. The fast DCT algorithms imell-known Chen—-Wang factorization of the DCT [8], [9].
[8] is used throughout. Defing(M) anda (M) as the number This binDCT version needs 23 shifts and 37 additions and has
of floating-point multiplications and additions per input data coding gain of 8.82 dB (the DCT has 8.83 dB). The final
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TABLE IV
COMPARISON OFCOMPUTATIONAL COMPLEXITY BETWEEN THEDCT, THE LOT-Il, TDLOT-II, AND THE TDLT-III
Number of multiplications Number of additions
M | DCT LOT-I/TDLOT-I TDLOT-II TDLT-III | DCT LOT-I/TDLOT-I TDLOT-1I TDLT-1II
2 2 2 2 3 2 2 2 6
4 5 10 8 9 9 22 20 19
8 13 26 22 23 29 66 54 51
16 33 66 54 55 81 178 134 127
32 81 162 126 127 209 450 318 303
64 193 386 286 287 513 1090 734 703
128 | 449 898 638 639 1217 2562 1662 1599
TABLE V

EXAMPLES OF FAST TDLT-IIl AND TDLT-IV WITH RATIONAL OR DYADIC PARAMETERS

Sizeof | Cfg. | Sy S1 Sz S3 Py Uy P, U P, Uy | #of #of #of | Cod. Gain Cod. Gain

TDLT Muls. Shifts Adds. | TDLT-III TDLT-1V

8 x 10 1 32 - - - - - - - - - 05 255 415 9.05 9.05

8 x 12 1 4/3 4/3 - - -3/16 12 - - - - | 31 50 9.32 9.32
2 3/2 32 - - =3/16 172 - - - - | 31 50 9.27 9.27
3 1 1 - - -3/16 172 - - - - 0 30 48 9.07 9.07

8 x 14 1 3/2 5/4 5/14 - -1/8 3/8 -3/18 3/4 - - 1.5 375 59 9.47 9.47
2 4/3 8/7 8/7 - -1/8 3/8 -3/8 3/4 - - 1.5 375 59 9.48 9.47
3 1 | 1 - 0 3/8 -3/8 11/16 - - 0 33 56 9.25 9.25

8 x 16 1 4/3 8/7 8/7 8/7 | -1/16 1/4 -1/4 172 -3/8 3/4 2 40 65 9.59 9.58
2 3/2 9/8 9/8 9/8 | -1/16 1/4 -1/4 1/2 -3/8 3/4 2 40 65 9.58 9.57
3 4/3 1 1 | 0 14 -1/4 172 -1/4 3/4 0.5 365 60 9.49 9.49
4 32 1 1 1 0 14 -1/4 172 -1/4 3/4 0.5 36.5 60 9.47 9.47
5 1 1 1 | 0 /4 -1/4 12 -172 3/4 0 36 59 9.37 9.35

scalings of the binDCT should be combined with quantization Compared with previous LT constructions for image pro-

to reduce the complexity even further. cessing [6], [11], [12], [27], the proposed framework provides
Table V tabulates various rational approximationsYoin several advantages.
the 8x 10, 8x 12, 8x 14, and 8 16 TDLT-IIl and TDLT-IV. « Existing block-based infrastructures can be kept intact,

The complexity in it is computed by averaging that of the  and standard compliance is achievable.
forward transform and the inverse transform. Compared with « Trade-off between complexity and performance is easily
the results in Table I1, the performance loss due to finite-length  obtained through varying the amount of borrowing sam-
approximation of the optimized floating parameters and the ples, i.e., the support of the pre-/post-filter.
binDCT is negligible. Reversible integer-to-integer mapping, « The new pre- and post-filter designs provide slightly
which is a critical requirement for lossless compression, can be petter coding performance at a lower computational
easily achieved by setting all scaling factors in the ma¥fixo complexity. Scaled DCT algorithms [2], [43] and mul-
be unity. In this case, both pre- and post-filter can be imple- tiplierless DCT approximations [1] can be applied to
mented with only shift and addition operations, simplifying the  further lower complexity without seriously deteriorating
hardware implementation significantly. energy compaction.

The performances of lapped transform in compression havq:ina"y, the link to pre- and post-filtering opens up many re-
been thoroughly investigated [6], [10]. Instead of repeatingarch directions. The general framework allows a great degree
these results here, see other publications [40]-[42] that addrS\Sﬂexibility. Adaptive time-varying systems can be easily de-

these applications much more adequately. signed by deciding what is the optimal pre- and post-filter to
apply at every block boundary, by allowing variable block size,
VI. CONCLUSION or by combining both.

This paper demonstrates that a large class of LT with an arbi-
trary number of channels and overlapping samples can be gen-
erated through time-domain pre-processing of DCT inputs andStarting with the type-Il fast LOT in (2) and substituting the
post-processing of IDCT outputs. The pre- and post-filteringST-1V by the DCT-IV, we have

APPENDIX

module is placed between two neighboring DCT operators. The

) : . ; ; 1[I 0 I I
pre-filter acts like a flattening operator, trying to make the input E(z) = v g

X 2 |0 DGy JC5; 0| [T ~I

data of each DCT block to be as homogeneous as possible. The )
post-filter plays the role of a smooth interpolator, eliminating X [I 0 } [I I } —
or at least reducing blocking artifacts. We investigate the design 0 HZI I -I]v2
of various pre-/post-filters—with closed-form, fast-computable CM/2 0 I 1]

. . . . X v Jur
algorithms, and quasioptimal energy compaction. 0 CM/ZJ J I



1570 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 51, NO. 6, JUNE 2003

Since any block-diagonal matrix can be moved across the blrtdeed, this equation holds for all matric€sand not only for

terfly and the delay chain, i.e., the one defined in (5). Finally, with (1), (4), (5), and (37), the
type-1l LOT polyphase matrix in (36) can be rewritten as
[1 IHC 0]_[0 OHI I}and
I -I|]|0 C 0 C||I -I E(z)—D,c”—I 01[7 0]py.
[I OHC 0]_[0 oHI 0] TOMEM A L1f|o J|TM
0 zI 0 C| |0 C 0 zI T o0]1[J ollo J
" =DvCi g u1|lo 3 {J O]P
E(z) can be modified as follows: ‘I 1To 11
0 0
— II
1 [clL, ol 0 =DuCir 0 2zI||I O P.
E(Z) _- M/2~M/2 v - L 4 L E
2 0 DCM/2JCM/2
I I I 0 I I
X |:I —I:| |:0 ZI:| |:I —I:| ACKNOWLEDGMENT
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