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i

Abstract

This dissertation studies the theory, structure, design, and implementation of discrete-

time FIR linear phase perfect reconstruction �lter banks with arbitrary M channels and

arbitrary-length �lters. The class of �lter banks in consideration has high practical values,

and the results reported are the most general solutions in the current literature. The

approach consistently taken throughout the dissertation is to parameterize these systems

by lattice structures based on the factorizations of the analysis and synthesis polyphase

transfer matrices. The lattice robustly enforces the two most desirable properties, namely

linear phase and perfect reconstruction, so that they are inherently retained regardless

of the quantization of lattice coe�cients to any desired level. The various lattices are

proven to completely span the set of all possible solutions and to employ the least number

of delay elements in the �lter bank's implementation.

The novel multi-band linear phase perfect reconstruction �lter banks can also be

viewed as the generalized lapped orthogonal/biorthogonal transforms with fast, e�cient,

robust, and modular implementations. The lapped transform elegantly solves the block-

ing artifact problem in traditional block-transform-based image coders. Extensive image

coding examples demonstrate that the new lapped transforms, when appropriately de-

signed and utilized, o�er signi�cant improvements in both objective and subjective coding

performances over all transforms reported in previous works.
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Chapter 1

Introduction

1.1 Filter Banks and Multirate Systems

There has been a tremendous growth in the �eld of �lter banks (FBs) and multirate sys-

tems in the last �fteen years [11], [95], [98], [77]. These systems provide new and e�ective

tools to represent signals for processing, understanding, and compression purposes. For

instance, one of the newest addition to the �lter bank �eld is the dyadic wavelet transform

which can be interpreted as an iteration on the lowpass output of a two-channel �lter

bank with certain degrees of regularity (vanishing moments) [13], [43], [44]. As another

example, the current image compression standard JPEG [58] is based on the 8�8 Discrete

Cosine Transform (DCT) which is nothing more than a well-designed 8-channel linear

phase orthogonal �lter bank with 8-tap �lters [67]. Some classical linear system tools also

�t elegantly in the �lter bank framework as well: the Discrete Fourier Transform (DFT)

can be viewed as a multi-channel uniform �lter bank whose �lters are modulations of

a single complex sinusoid. It is quite accurate to say that �lter banks �nd applications

in virtually every signal processing and closely related �eld: speech, audio, image, and

video compression; signal �ltering; communication; time-frequency representation and
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analysis; statistical signal processing; optical signal processing; computer graphics, etc.

Obviously, of extreme importance is the ability to design a FB that can fully exploit the

properties and nature of a particular signal or application.

1.2 Application in Image Compression

One particular application that �lter banks have found tremendous successes in is the

compression of images. Image compression, or image coding, is the technology of image

data reduction to save storage space and transmission bandwidth. With the recent

explosion of the internet, the search for better image compression techniques is becoming

ever more pressing. It is evidently desirable to represent images by the minimum number

of binary digits given a �xed level of distortion, or for a given bit budget, to retain as

much visual information as possible.

Two dominant techniques in existing image compression standards and implementa-

tions are block transform coding and subband coding [32], [58], [66], [104]. Both methods

actually exhibit many similarities: operating in the frequency domain, utilizing the same

basic building blocks such as bit allocation, quantization, and entropy coding to achieve

compression. In the coder, both techniques rely heavily on �lter banks to generate the

frequency coe�cients that can be quantized and entropy coded. In the decoder, �lter

banks are again employed to combine and reconstruct the signal. Therefore, designing

good �lter banks plays an integral role in the advancement of image coding technology.

A good �lter bank has to be able to fully exploit two main principles that make image
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compression successful:

� Reduction of redundancy. There exists statistical dependency between neigh-

boring pixels in meaningful images. The analysis �lters must possess high energy

compaction property. In other words, they have to be able to decorrelate the image

as much as possible, representing the image by the fewest number of coe�cients.

� Reduction of irrelevancy. The Human Visual System (HVS) cannot perceive

certain deviations of the reconstructed image from the original image. The syn-

thesis �lters must be designed to minimize the perceivable di�erence between the

compressed and the original representation. Image properties such as smoothness

that human eyes prefer should be retain whereas annoying artifacts such as blocking

and ringing should be adequately suppressed.

1.3 Concentration and Approach

M -channel uniform LPPRFBs can be implemented as lapped transforms which can re-

duce blocking artifacts in traditional block-transform-based image coders [45], [46], [47],

[62] at low bit rates. The lapped transform borrows pixels from the adjacent blocks to

produce the transform coe�cients of the current block. Hence, it takes into account inter-

block correlation, provides better energy compaction, and reduces blocking discontinuities

drastically. The block-based nature of multi-band lapped transforms also o�ers numerous

other advantages: capable of processing large signals under limited memory constraint,

increasing computational parallelism, facilitating region-of-interest coding/decoding, and
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providing a �ner tiling of the time-frequency plane.

A �lter bank that �nds application in image coding may also need to have linear

phase, �nite �lter length, real (sometimes rational or even interger) �lter coe�cients,

and perfect reconstruction. In this dissertation, the theory, design, and implementation

of M -channel discrete-time FIR linear phase perfect reconstruction �lter banks with

application in image coding are studied in details. Besides the aforementioned often-

desired properties, all of the novel �lter banks presented in this work are obtained from

the attractive approach of system's parameterization by lattice structures based on the

factorization of the analysis and synthesis polyphase matrices. The lattice structurally

enforces the linear phase and perfect reconstruction properties on the �lter banks, i.e.,

in the lattice representation both of these properties are retained regardless of coe�cient

quantization. Not only does the lattice structure o�er a powerful FB design tool, it also

provides a fast, e�cient, and robust structure suitable for hardware implementation. Note

that although image compression is the main application in mind, �lter banks presented

here can bene�t numerous other applications as well. The dissertation provides a unique

blend of experience in �lter bank theory, �lter bank structure, �lter design, and image

compression.
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1.4 Outline

The outline is as follows. In chapter 2, we o�er a review of important background

materials, major concepts, as well as previous related works in the theory, design, im-

plementation of multirate systems, �lter banks, and their application in image coding.

Chapter 3 lays the foundation for the whole thesis by investigating general �lter bank

theories concerning the equivalent conditions for the linear phase property and the per-

missible conditions of existence for linear phase perfect reconstruction systems. These

fundamental results are extremely helpful in restricting the search space of possible so-

lutions and they also play key roles in the development of general lattice structures

throughout the dissertation.

Chapter 4 next introduces a lattice structure based on the singular value decomposi-

tion that propagates the linear phase and the perfect reconstruction property. The lattice

is proven to use a minimal number of delay elements and to completely span a large class

of linear phase perfect reconstruction �lter banks (LPPRFBs): arbitrary channel M ,

all analysis and synthesis �lters have the same FIR length L = KM sharing the same

center of symmetry. Under the lapped transform's prizm, these LPPRFBs represent the

complete family of generalized lapped biorthogonal transforms (GLBTs) with arbitrary

number of channels M and arbitrary large overlapping samples KM . The biorthogonal

property allows the novel �lter bank to have signi�cantly di�erent analysis and synthesis

basis functions which can then be tailored appropriately to �t a particular application.

A generalization step is taken in chapter 5 where the length of the �lters L is not
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constrained to be an integer multiple of the number of channels M anymore. This is the

true lapped transform whose number of overlapping samples can be chosen arbitrarily.

Solutions for both cases of orthogonal and biorthogonal systems are presented.

Chapter 6 discusses the theory, structure, and design of �lter banks with variable-

length �lters, or generalized lapped transforms with variable-length basis functions. The

variable-length property leads to extremely fast, low-complexity transforms which are

also to reduce ringing artifacts at high compression ratios while being as e�ective in

eliminating blocking artifacts as the traditional lapped transforms in Chapter 4{5. Design

procedures and design examples are presented throughout Chapter 4{6.

The successful application of the newly found �lter banks in progressive and percep-

tually progressive image coding is illustrated in chapter 7. Our lapped-transform-based

embedded coder consistently outperforms the wavelet-based SPIHT coder [71] by a large

margin. The improvement in PSNR can be up to an astounding 2.6 dB. Finally, chapter

8 draws up the �nal conclusions and presents several future research directions.
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Chapter 2

Review

2.1 Introduction

This chapter introduces the notations, symbols, and terminologies as well as reviews

some basic de�nitions and important concepts that are used extensively throughout the

dissertation. Discussions of previous works on �lter banks and their application in image

coding are also provided as motivational background materials.

2.2 Notations

Let C;R;Z;Z+ denote the sets of complex, real, integer, and positive integer numbers.

The symbols hi[n], Hi(z), and Hi(ej!) stand for the i-th �lter's impulse response (stor-

ing the �lter's coe�cients), its associated z-transform, and its Fourier transform. If a

discrete-time �lter has �nite length, it is called FIR (�nite impulse response); otherwise,

it is labeled IIR (in�nite impulse response). A �lter hi[n] is said to be causal if hi[n] = 0,

8 n < 0, n 2 Z, and anticausal if hi[n] = 0, 8 n > 0, n 2 Z. When refering to the trans-

fer function or the z-domain representation, the term causal is equivalent to \polynomial

in z�1" and the term anticausal is equivalent to \polynomial in z". For various practical
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purposes, only FIR and real-coe�cient systems are under consideration.

Bold-faced lower case characters are used to denote vectors while bold-faced upper

case characters are used to denote matrices. Ay, AT , A�1, tr(A), jAj, �(A), ai�, a�j

denote respectively the conjugate transpose, the transpose, the inverse, the trace, the

determinant, the rank, the i-th row, and the j-th column of the matrix A. If a matrix

A has elements as polynomials in z, it is denoted as A(z). Moreover, if A(z) has an

inverse and its determinant is a pure delay, i.e., jAj = z�m, m 2 Z, then A(z) is called

FIR invertible or having FIR inverse.

Several special matrices with reserved symbols are: the polyphase matrix of the anal-

ysis bank E(z), the polyphase matrix of the synthesis bank R(z), the identity matrix I,

the reversal matrix J (I ipped left-right or up-down), the null matrix 0, the nonvacuous

matrix X, and the diagonal matrix with entries being either +1 or �1 D. When the size

of a matrix or vector is not clear from context, subscripts will be included. For example,

JM denotes the square reversal matrix of size M , and 0M�N denotes the M � N null

matrix. M and L are usually reserved for the number of channels and the �lter length.

Finally, Sfa1;a2; : : : ;ang is used to denote the vector space spanned by the n vectors

a1;a2; : : : ;an.

For abbreviations, we use LP, PR, PU, VL, LT, and FB to denote linear phase,

perfect reconstruction, paraunitary, variable length, lapped transform, and �lter bank,

respectively. Symmetric and antisymmetric are sometimes abbreviated as S and A. The

terms { LPPUFB and GenLOT, LPPRFB and GLBT, LPPUFB with �lters of di�erent

lengths and VLLOT, LPPRFB with �lters of di�erent lengths and VLGLBT { are used
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interchangeably in the thesis. The term lapped transform usually emphasizes the possible

block-based implementation of the �lter bank.

2.3 Filter Bank Fundamentals

2.3.1 What is a Filter Bank?

A �lter bank is simply a bank of lowpass, bandpass, and highpass �lters, each of which

covers a band in the frequency spectrum. Other possible components of a �lter bank

include downsamplers, upsamplers, and delay elements. In this dissertation, we consider

the discrete-timeM -channel maximally-decimated uniform �lter bank as depicted in Fig-

ure 1. At the analysis stage, the input signal x[n] is passed through a bank of M analysis

�lters Hi(z), each of which preserves a frequency band of uniform bandwidth �
M
. These

M �ltered signals are then decimated by M to preserve the system's overall sampling

rate (thus this system is commonly labeled as maximally decimated or critically sam-

pled �lter bank). The resulting subband signals can be encoded, processed, transmitted,

and/or decoded independently or jointly. All of these activities are grouped together

in the processing block, which is typically not considered as a component of the �lter

bank. At the synthesis stage, the subbands are combined by a set of upsamplers and

M synthesis �lters Fi(z) to form the reconstructed signal x̂[n]. If the �lters are ideal,

no aliasing occurs and perfect reconstruction is obtained trivially. However, this is not

the case in practice, so judicious choices of Hi(z) and Fi(z) need to be made. The most
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general perfect reconstruction property can be de�ned as follows.

De�nition 2.1 A �lter bank is said to have perfect reconstruction if its output x̂[n] is a

pure time-delayed version of its input x[n], i.e., x̂[n] = x[n� `]; ` 2 Z:

This is also the most intuitive de�nition of perfect reconstruction. Later we shall

provide more speci�c de�nitions in term of the �lter bank's polyphase matrices. Perfect

reconstruction is, of course, a very attractive property since it provides a lossless signal

representation and it simpli�es the error analysis signi�cantly.
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Figure 1: A typical M -channel maximally-decimated uniform �lter bank.

2.3.2 Linear Phase Filter Banks

In numerous applications, especially image processing, it is crucial that all analysis and

synthesis �lters have linear phase. Such system is called a linear phase �lter bank (LPFB).

Besides the elimination of the phase distortion which is often disastrous in many image

processing applications [40], LP �lters preserve the locality of the edges, the key to success

of hierarchy image coding algorithms [110], [66], [73], [71]. For the same reason, LP �lters

are also important in frame-to-frame correlation schemes used in video processing and
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for event localization in geophysical signal processing. Furthermore, LP �lters allow us

to employ simple symmetric extension methods to e�ectively handle the boundaries of

�nite-length signals [8], [36], [61]. Symmetric extension eliminates the annoying energy

leakage due to discontinuities at the borders when circular convolution and periodic

extension are used to implement non-LP �lter banks. Finally, from an implementation

perspective, the symmetry of the �lters helps reducing the number of multipliers needed

by a factor of 2.

The most general condition for an L-tap FIR linear phase �lter is that its impulse

response h[n] must satis�es the equation: h[n] = c h[L � n] for some c 2 C with jcj = 1

[95]. Since we only deal with real-coe�cient �lters, this condition simpli�es to either

h[n] = h[L � 1 � n] (symmetric �lter) or h[n] = �h[L � 1 � n] (antisymmetric �lter).

Depending on whether h[n] is odd-length or even-length, symmetric or antisymmetric, we

have four types of real-coe�cient LP �lters as summarized in Table 1. Notice that some of

these �lters cannot cover certain frequency. A �lter bank with all Type 4 �lters certainly

cannot have perfect reconstruction: signal component at DC (! = 0) is discarded in the

analysis bank and cannot be recovered.

2.3.3 Polyphase Representation

Consider a �lter hi of an M -channel �lter bank in z-domain Hi(z) =
P1

n=�1 hi[n] z�n.

Even-indexed and odd-indexed coe�cients can be separated as

Hi(z) =
1X

n=�1
hi[2n] z

�2n +
1X

n=�1
hi[2n+ 1] z�2n�1
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Type Length Symmetry Zero Locations Special Characteristics

1 odd S { good lowpass, bandpass, highpass

2 even S at � good lowpass, bandpass

3 odd A at 0 and � good bandpass, middle coe�cient is 0

4 even A at 0 good bandpass, highpass

Table 1: Four types of real-coe�cient LP �lters.

De�ne

Ei0(z)
4
=

1X
n=�1

hi[2n] z
�n and Ei1(z)

4
=

1X
n=�1

hi[2n+ 1] z�n

as two polyphase components of Hi(z). We can then represent Hi(z) as

Hi(z) = Ei0(z
2) + z�1Ei1(z

2):

More generally speaking, Hi(z) can be characterized equivalently by itsM polyphase

components for any given positive integer M :

Hi(z) =
M�1X
`=0

z�` Ei`(z
M) (Type I polyphase); (2.1)

where

Ei`(z) =
1X

n=�1
hi[nM + `] z�n: (2.2)

Another polyphase representation of Hi(z) is given by

Hi(z) =
M�1X
`=0

z�(M�1�`) R`i(z
M) (Type II polyphase); (2.3)

with R`i(z) = Ei(M�1�`)(z):
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Figure 2: Equivalent polyphase representations of an M -channel �lter bank.

Armed with the polyphase representations, let us reconsider the M -channel critically

sampled �lter bank depicted in Figure 1. Again, the coding and quantization errors in

the processing step are ignored. De�ne the M �M matrix E(z)
4
= [ Ei`(z) ] as the

polyphase matrix of the analysis bank. The Type I polyphase in Eq.(2.1) yields266666666666664

H0(z)

H1(z)

...

HM�1(z)

377777777777775
= E(zM)

266666666666664

1

z�1

...

z�(M�1)

377777777777775
: (2.4)

Similarly, the synthesis bank can be represented by the Type II polyphase matrixR(z)
4
=

[ R`i(z) ] as follows

"
F0(z) F1(z) : : : FM�1(z)

#
=

"
z�(M�1) z�(M�2) : : : 1

#
R(zM): (2.5)

Eq.(2.4) and Eq.(2.5) produce the equivalent �lter bank in Figure 2(a). The noble iden-

tities illustrated in Figure 3 can then be applied to obtain another representation shown

in Figure 2(b) where the delay chain and the downsamplers at the analysis stage work as
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a serial-to-parallel converter. At the synthesis bank, the upsamplers and the delay chain

can be thought of as a parallel-to-serial converter.

(b)
x[n]

L H(zL )
2y [n] x[n] 2y [n]

LH(z)

(a)
x[n]

H(zM ) M
1y [n] x[n] 1y [n]

M H(z)

Figure 3: Noble identities.

The latter polyphase representation in Figure 2(b) proves to be very useful, both

theoretically and practically, in �lter bank design and application. Not only does it allow

the processing of signals at lower rates, but it also simpli�es �lter bank theory dramati-

cally. As demonstrated throughout the dissertation, polyphase matrices are cornerstones

in the lattice structure design method. In light of the polyphase representation, we can

now de�ne some FB terminologies in a more mathematically precise manner. First, it is

a simple exercise to show that when R(z)E(z) = I, the output x̂[n] is a delayed version

of the input x[n]. Hence, perfect reconstruction is guaranteed if the polyphase matrix

E(z) is invertible.

De�nition 2.2 A �lter bank is said to have perfect reconstruction if its polyphase ma-

trices R(z) and E(z) satisfy the following equation

R(z) E(z) = z�` I; ` 2 Z: (2.6)

The reader should note that De�nition 2.2 is not as general as De�nition 2.1; more

general condition can be found in [95]. However, De�nition 2.2 still covers a huge class of
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PR �lter banks. In fact, for a FB to have practical values, many more restrictions need to

be imposed. For instance, to obtain stable synthesis �lters, E(z) must be invertible with

strictly minimum-phase determinant, i.e., its determinant has all zeros inside the unit

circle (except zero at z = 1 as in z�1). With this requirement, stability is established,

but the synthesis �lters will most likely turn out to be IIR. To obtain FIR synthesis �lters,

we need the following constraints on the determinants of both polyphase matrices.

Theorem 2.3 Every perfect reconstruction �lter bank as de�ned in De�nition 2.2 with

FIR analysis and synthesis �lters must have

jR(z)j = z�m and jE(z)j = z�n m;n 2 Z: (2.7)

In other words, the determinants of both analysis and synthesis polyphase matrix of

an FIR PRFB have to be monomials. The proof of Theorem 2.3 can be found in [95]. It

relies on a straightforward implication from De�nition 2.2: jR(z)j jE(z)j = z�M`.

Paraunitary (sometimes loosely called orthogonal) �lter banks are often desired in

practice. The orthogonality of the �lters is a very natural choice. After all, �lters with

ideal brick-wall responses are orthogonal. The de�nition of paraunitary FB below is used

throughout the dissertation.

De�nition 2.4 A �lter bank is said to be paraunitary if its polyphase matrices satisfy

the following relation

R(z) = z�KEy(z�1); (2.8)

where K is the order of E(z). For real-coe�cient paraunitary �lter banks,

R(z) = z�KET (z�1): (2.9)
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Equivalently, the impulse responses of a real-coe�cient paraunitary �lter bank have

to satisfy the following time-domain constraint [95]:

1X
n=�1

hj[n] h
T
k [n� `M ] = �[`] �[j � k]; ` 2 Z: (2.10)

As Eq.(2.10) suggests, paraunitary �lter banks impose very strict constraints on the

�lters' coe�cients. Besides the obvious orthogonality of the impulse responses of the

�lters, their shift-by-M versions (the overlapping tails) must be orthogonal to each other

also. Furthermore, the synthesis �lters are simply time-reversed versions of the analysis

�lters: fi[n] = hi[L � 1 � n]. These are penalties that one has to pay to obtain simple

yet high-performance systems. PU �lter banks avoid the costly procedure of matrix

inversion in the optimization process (synthesis banks can be trivially obtained), and

their orthogonal �lters usually lead to high energy compaction. In the case where E(z)

may not be paraunitary but Eq.(2.6) holds, we say the FB is biorthogonal.

De�nition 2.5 A �lter bank is said to be biorthogonal if its polyphase matrices satisfy

the following relation

R(z) = z�KE�1(z�1); (2.11)

where K is chosen appropriately so that the resulting synthesis �lters are causal.

Remarks. The de�nition of biorthogonality in Eq.(2.11) is equivalent to the de�ni-

tion of perfect reconstruction in Eq.(2.6) with two additional constraints: (i) the syn-

thesis �lters are causal; (ii) the synthesis �lters are FIR. In the case when all analysis

and synthesis �lters have the same length L, K is simply the order of E(z). De�nition
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2.5 does cover orthogonal systems as well (when E�1 is chosen to be ET ). In prac-

tice, high-performance biorthogonal systems are usually close to satisfying Eq.(2.9) and

Eq.(2.10). In this dissertation, biorthogonality and perfect reconstruction are often used

interchangeably.

2.3.4 Lattice Structure

One of the more important theoretical developments in �lter bank design is the concept

of the lattice structure, where the �lter bank is factorized into a cascade of elementary

building blocks. These blocks are parameterized by a set of lattice coe�cients that

completely characterize a given �lter bank. The space of possible lattice parameters

can be used as a design space over which certain secondary FB properties are optimized

for. These lattice factorizations lead to fast and e�cient algorithms for the subband

computations, since they reduce the �lter description to a minimal set of delay elements.

The modular form of a lattice factorization lends itself nicely to VLSI implementations,

and PR property is retained in spite of lattice coe�cient quantization.
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Figure 4: A stage of the lattice structure.
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The essential concept of the lattice structure can be best illustrated in Figure 4.

Suppose we are given a set of �lters fHF;i(z)g with the associated polyphase matrix

F(z) satisfying a certain set of desired properties. We would like to design a low-ordered

structureG(z) to translate fHF;i(z)g into another set of �lters fHE;i(z)g of higher order,

represented by the new polyphase matrixE(z) = G(z)F(z), in such a way that fHE;i(z)g

still possesses the same set of desired properties as fHF;i(z)g. A high-complexity �lter

bank can be designed by cascading a multiple of simple lattice building blocks together

as shown in Figure 5, i.e., E(z) = GK(z)GK�1(z) � � � G1(z) G0(z). It is easy to see

from Eq.(2.6) and Eq.(2.9) that the resulting FB has PR or is PU if each of the building

blocks Gi(z) is invertible or paraunitary, respectively.
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z
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M
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G (z)
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G (z)
1

G (z)
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Figure 5: High-order �lter bank as a cascade of lattice structure stages.

The free parameters, or the degrees of freedom, in each Gi(z) structure are often

called the lattice coe�cients. Thanks to the property propagation (which is mathemat-

ically imposed), the FB still retains its attractive properties when its lattice coe�cients

are varied arbitrarily. This leads to the robustness of the system under coe�cient quan-

tization. To see this more clearly, consider the parameterization of an N �N orthogonal
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matrix (here Gi(z) is simply Ui, propagating orthogonality). It is well-known that any

orthogonal matrix Ui can always be factored into a series of N(N�1)
2

Givens (planar)

rotations [19], [25], [95] as illustrated in Figure 6 (drawn for N = 4), where each rotation

has the following form

U�i =

26664 cos �i sin �i

� sin �i cos �i

37775 : (2.12)

The free parameters, or the lattice coe�cients, in this case are the rotation angles. Any

realization of the set of rotation angles gives rise to an orthogonal matrix. On the

other hand, any orthogonal matrix can be completely characterized by N(N�1)
2 rotation

angles. Under this parameterization, Ui is guaranteed to be orthogonal in spite of any

quantization of the parameters since the quantized rotation

Û�i =

26664 cosQ[�i] sinQ[�i]

� sinQ[�i] cosQ[�i]

37775
is still orthogonal (here Q[:] stands for a generic quantization operator).

U θ1

2θ

3θ
4θ

5θ 6θ

cosθ

cosθ

sinθ
- sinθi

Figure 6: Parameterization of an orthogonal matrix.

Besides robustness, there are two important theoretical concepts associated with the

lattice structure factorization: completeness and minimality [95]. The �rst is concerned

with the generality of the solution, whereas the latter deals with the practicality of the

solution.
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� Completeness: the lattice should cover all possible solutions, i.e., any FB possess-

ing all of the desired properties can always be realized by a certain set of lattice

coe�cients.

� Minimality: the FB implementation based on the lattice employs the least number

of delay elements.

Every novel �lter banks presented in this dissertation are obtained from a certain type of

lattice structure. The aforementioned key concepts of completeness and minimality will

be discussed and proven throughout.

2.4 Two-Channel Filter Banks

The simplest maximally-decimated �lter bank shown in Figure 7 was introduced in the

early 1980's. It has only two channels. These 2-channel PRFBs have been studied and

characterized thoroughly with many di�erent design methods based on spectral factor-

ization [50], [74], [35], lattice structure [96], [53], [101], [97], time-domain optimization

[51], quadratic-constrained least-squares (QCLS) optimization [55], Lagrange multiplier

approaches [26], ect.
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Figure 7: A typical two-channel �lter bank.
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The most popular and also the most successful design method in 2-channel PRFB

design is spectral factorization. This elegant, conceptually simple design procedure can

be explained in a few lines. By examining the transfer function of the �lter bank, one

can derive the relationship between the output X̂(z) and the input X(z):

X̂(z) = 1
2
[ F0(z)H0(z) + F1(z)H1(z) ]X(z)

+ 1
2
[ F0(z)H0(�z) + F1(z)H1(�z) ]X(�z): (2.13)

Perfect reconstruction with ` delays can be obtained with non-ideal �lters if X̂(z) =

z�`X(z), leading to the following intuitive conditions:

F0(z)H0(�z) + F1(z)H1(�z) = 0 Aliasing Cancellation (2.14)

F0(z)H0(z) + F1(z)H1(z) = 2z�` Distortion Elimination: (2.15)

The choices of F0(z) = H1(�z) and F1(z) = �H0(�z) cancel aliasing totally and

reduce Eq.(2.15) to the design of a lowpass halfband �lter P0(z)
4
= F0(z)H0(z) because

the distortion elimination then simpli�es to

P0(z)� P0(�z) = 2z�`: (2.16)

Thus, the design of a 2-channel PR �lter bank can be accomplished in two steps:

1. Design a lowpass �lter P0(z) satisfying Eq.(2.16).

2. Factor P0(z) to obtain H0(z) and F0(z) (thus justi�ed the name | spectral factor-

ization). H1(z) and F1(z) are then chosen to cancel aliasing as described above.

LP �lters can be obtained if the lowpass halfband �lter P0(z) is chosen to have LP

and spectral factorization is carried out appropriately [77].
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2.5 Wavelets and Their Relation to Filter Banks

The wavelet transform is an octave-band representation of signals. The discrete dyadic

wavelet transform can be obtained by iterating a 2-channel PR �lter bank on its lowpass

output as shown in Figure 8. For a true wavelet, one iterates on the lowpass output only,

whereas for a wavelet-packet decomposition, one may iterate on any output. It is easy

to see that as long as the original 2-channel system serving as the basic building block

has perfect reconstruction, x[n] can be recovered losslessly after a �nite delay.
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Figure 8: The discrete dyadic wavelet transform as iteration of a 2-channel �lter bank.

The wavelet transform can also be thought of as a multiresolution decomposition of

a signal into its coarse and detail components. In the case of images, the wavelet rep-

resentation is well-matched to psychovisual models, and compression systems based on

the wavelet transform thus far yield superior objective (mean-square error MSE, peak

signal-to-noise ratio PSNR) and subjective (perceptual quality of the reconstructed im-

ages) performance comparing to other methods at medium and high compression ratios
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[3], [73], [71], [72], [110], [112].

The \wavelet idea" of iterating a �lter bank on its lowpass output has introducedmany

new considerations into the �eld of �lter design. When applying the wavelet transform

to lossy image coding, one is concerned with the smoothness of the iterated lowpass �lter

because any quantization noise will appear in the decompressed image as mainly linear

combinations of the wavelet transform bases called scaling function �(t) and wavelet

function  (t) (see Figure 8). If these basis functions are not smooth, then perceptually

unacceptable artifacts will result. In fact, only around �ve iterations of the �ltering-

and-downsampling operation are needed to obtain the impulse responses resembling the

in�nite limits. A �lter that is not designed with wavelet iteration in mind has its scaling

and wavelet function quickly diverge upon a few iterations [77], [98]. Daubechies has

shown that imposing N vanishing wavelet moments

Z
tk (t)dt = 0; 0 � k � N � 1; (2.17)

is a means of ensuring smoothness [13]. This condition is equivalent to imposing an N -th

order zero (N � L� 1) at ! = � on the lowpass �lter:

X
n

(�1)n nk h0[n] = 0; k 2 Z; 0 � k � N � 1: (2.18)

In frequency domain, the wavelet transform simply mimics an M -band nonuniform

partitioning of the frequency spectrum as depicted in Figure 8. This may lead to low

energy compaction, especially when applying to signals with signi�cant-energy narrow-

bandwidth components at medium to high-frequency band. In this dissertation, we shall
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demonstrate that M -channel uniform �lter banks, when designed and utilized appropri-

ately, prove to be much better alternatives { they consistently o�ers signi�cantly higher

energy compaction over state-of-the-art wavelets.

2.6 M-Channel Filter Banks

M -channel linear phase perfect reconstruction �lter bank is our focus of study. There

are numerous advantages and its potential is tremendous. Some existing M -channel

LPPRFBs with fast algorithms already found success in image coding: the discrete co-

sine transform (DCT), the lapped orthogonal transform (LOT), and its generalized ver-

sion GenLOT. M -channel �lter banks can provide �ner frequency spectrum partitioning

without severe penalties in delay or �lter performance. The considerable increase in the

degrees of freedom allowsM -channel �lter banks to have much more exibility in adapt-

ing to a particular class of signals or a particular application. For examples,M -channel

�lter banks can satisfy both linear phase and paraunitary simultaneously (the DCT and

the LOT are two vivid examples) while 2-channel systems cannot (except the trivial Haar

wavelet, h0[n] =
1p
2
[1 1]; h1[n] =

1p
2
[1 � 1], as shown in [95], [98]). Finally,M -channel

LPPRFBs can give rise to M -band linear phase orthogonal/biorthogonal wavelets as

discussed in a later section.
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2.6.1 Generalization Di�culties

Most works on linear phase FIR perfect reconstruction �lter banks deal with two-channel

systems and all solutions have been found. In the general M -channel case, there are

still many open problems. The challenges are clearly visible once we investigate the

general transfer function of a FB with arbitrarily large number of channels M . De�ne

W
4
= e�j2�=M , the reconstructed signal X̂(z) can be shown [95] to be

X̂(z) =
1

M

M�1X
`=0

X(zW `)
M�1X
i=0

Hi(zW
`)Fi(z): (2.19)

To make an analogy with the 2-channel case, Eq.(2.19) can be rewritten in terms of

the distortion function T (z) and the aliasing functions A`(z)

X̂(z) =
1

M
X(z)

M�1X
i=0

Hi(z)Fi(z) +
1

M

M�1X
`=1

X(zW `)
M�1X
i=0

Hi(zW
`)Fi(z)

= T (z)X(z) +
M�1X
`=1

A`(z)X(zW `); (2.20)

where

T (z)
4
=

1

M

M�1X
i=0

Hi(z)Fi(z); (2.21)

and

A`(z)
4
=

1

M

M�1X
i=0

Hi(zW
`)Fi(z); 1 � ` �M � 1: (2.22)

Spectral factorization is not simple anymore. At this point in time, it is unclear to

FB designers what the general choices of Hi(z) and Fi(z) are such that all aliasing terms

A`(z) are annihilated and the distortion function T (z) becomes a pure delay z�`. Limiting

the discussion to LPPRFB design, one has to rely upon other approaches such as lattice
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structure parameterization [75], [62], time-domain optimization [51], [55], [70], and cosine

modulation [41]. The most attractive amongst these is the lattice structure approach

based on the factorization of the polyphase matrices E(z) and R(z). As aforementioned,

the lattice structure o�ers fast implementation with a minimal number of delay elements,

retains both LP and PR properties regardless of lattice coe�cient quantization, and if

it is general enough, covers a complete class of FB with certain desired properties. The

DCT, the LOT, and the GenLOT are all fast-computable transforms based on the same

lattice structure.

2.6.2 The Discrete Cosine Transform

From a statistical signal processing standpoint, the DCT is a robust approximation to the

optimal discrete-time Karhunen-Lo�eve transform (KLT) of a �rst-order Gauss-Markov

process with a positive correlation coe�cient � when � ! 1 [67]. The KLT is optimal

in the energy compaction sense, i.e, among unitary transforms, the KLT packs signal

energy into the fewest number of coe�cients. However, the KLT is signal-dependent,

therefore, computationally complex and expensive. DCT has proven to be a much better

alternative in practice: it is signal independent, it has linear phase, real coe�cients, and

fast algorithms. The DCT coe�cients X and the input image pixels x are related by the

following equations:

X[m] = �m
M�1X
n=0

x[n] cos
�
�m

2M
(2n + 1)

�
; 0 � m � M � 1; (2.23)
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with

�m =

8>>><>>>:
q
1=M; m = 0q
2=M; 1 � m � M � 1:

From a �lter bank standpoint, DCT is the most basic M -channel LPPUFB. Its

polyphase matrix has order 0 (independent of z) and can be written in the following

form:

E0 =
1p
2

26664 U0 U0J

V0J �V0

37775 = 1p
2

26664 U0 0

0 V0

37775
26664 I J

J �I

37775 : (2.24)

It is clear that E0 is orthogonal if and only if U0 and V0 are orthogonal. For E0 to

represent the DCT, we need two special orthogonal matrices. However, any choice of

orthogonal U0 and V0 does result in an M -channelM -tap LPPUFB. The frequency and

impulse response of the DCT �lters are depicted in Figure 9. Note that all of the DCT's

basis functions have linear phase; half of them are symmetric (ones associated with U0),

the other half antisymmetric (ones associated with V0). We shall later prove that this

is the necessary condition for all even-channel even-length LPPR systems. Besides being

a real-coe�cient transform with fast implementation, the DCT places heavy emphasis

on the lowpass frequency spectrum. Therefore, for real-world image and video signals, it

provides superior energy compaction over other classical transforms such as the FFT.

2.6.3 The Lapped Orthogonal Transform

Despite being the transform of choice in several international standards, the DCT still has

its share of shortcomings. First of all, the DCT's basis functions are not overlapped: each

pixel block is transformed independently. This often creates a loss of compression due
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Figure 9: The DCT's frequency and impulse response.

to existing correlation across the blocks. More importantly, annoying blocking artifacts

due to the discontinuities between block boundaries occurs at high compression ratios.

These problems motivate the development of an overlapped blocking scheme, resulting

in the lapped orthogonal transform (LOT) popularized by Malvar [45], [46], [47].
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Figure 10: The lapped orthogonal transform.

From a FB perspective, the lapped orthogonal transform is simply an even-channel

paraunitary �lter bank with linear phase �lters of length L = 2M: The LOT's polyphase
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transfer matrix is

ELOT (z) = 1
2

26664 U 0

0 V

37775
26664 I I

I �I

37775
26664 I 0

0 z�1I

37775
26664 I I

I �I

37775 EDCT (2.25)

4
= G(z)EDCT ;

where EDCT denotes the DCT's polyphase matrix, and U and V are orthogonal matri-

ces of size M
2
. Hence, U and V can be parameterized by a set of rotation angles as in

Eq.(2.12). As an overlapping block transform, rather than processing one block inde-

pendently from the next, the LOT borrows pixels from a neighboring block to produce

the outputs of the current block. Thanks to overlapping input windows, the LOT can

elegantly solve the DCT's blocking problem: it partly smooths out the block boundaries.

The frequency and impulse responses of the LOT optimized for image coding is shown in

Figure 11. The reader can immediately notice signi�cant improvements in the frequency

responses of the LOT's �lters comparing to the DCT's.
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Figure 11: The LOT's frequency and impulse response.
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2.6.4 The Generalized Lapped Orthogonal Transform

To further reduce blocking e�ect, longer data overlaps might be needed. Besides, there

is no concrete evidence on why one has to restrict the block size to 2M . This leads to

the development of the generalized lapped orthogonal transform (GenLOT) [62]. From

Eq.(2.25), one can quickly observe that the building blockG(z) increases the �lter length

by M and all of its factors are orthogonal. A closer examination reveals that G(z)

propagates the linear phase property of the �lters as well. In other words, G(z) is a

stage of the lattice structure approach introduced in Section 2.3.4 where the propagating

properties are chosen to be linear phase and paraunitary. A cascade of manyGi(z) blocks,

each has exactly the same form as in Eq.(2.25), yields a highly complex LPPU system

that the original authors named GenLOT. The resulting polyphase matrix is given by

EGenLOT (z) = GK�1(z)GK�2(z) � � � G1(z) E0; (2.26)

where

Gi(z) = 1
2

26664 Ui 0

0 Vi

37775
26664 I I

I �I

37775
26664 I 0

0 z�1I

37775
26664 I I

I �I

37775
4
= 1

2 �i W �(z)W; (2.27)

and E0 has the form in Eq.(2.24). The complete GenLOT's lattice structure is presented

in Figure 12 where the initial stage can be chosen to be DCT. Here, all degrees of

freedom reside in the rotation angles of the M
2 � M

2 orthogonal matrices Ui and Vi.

More importantly, Eq.(2.26) has been proven to be a general factorization that covers

all linear phase paraunitary �lter banks with even M and �lter length L = KM [75],
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Figure 12: The generalized lapped orthogonal transform.

[62]. The class of GenLOTs, de�ned this way, allows us to view the DCT and the LOT

as special cases { order-0 GenLOT (K = 1) and order-1 GenLOT (K = 2) respectively.

An 8-channel 40-tap GenLOT design example is depicted in Figure 13. The frequency

responses of the �lters keep on improving at the expense of computational complexity

and transform speed.
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Figure 13: Frequency and impulse response of an 8-channel 40-tap GenLOT.

An M -channel L-tap LPPRFB (L > M) can be implemented as an M � L lapped
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transform as demonstrated in Figure 14 [47]. In the 1D direct implementation, the

input signal can be blocked into sequences of length L, overlapped by (L�M) samples

with adjacent sequences. The M columns of the transform coe�cient matrix P hold

the impulse responses of the analysis �lters hi[n]. The resulting M subbands Xi[n] can

then be quantized, coded, and transmitted to the decoder where the inverse transform

is performed to reconstruct the original signal x[n]. In the 2D case illustrated in Figure

14(b), the transform coe�cients can be evaluated separably: taking the 1D transform

along the rows and then along the columns of an image block xi of size L � L. The

corresponding block Xi of transform coe�cients can be written as Xi = PTxiP, and it

now has sizeM�M . The next block of transform coe�cients are computed by repeating

the process with the spatial window moved away (either vertically or horizontally) by

M samples, thus there is an L � (L �M) overlap in the spatial domain while there is

no overlap in the frequency domain. To reiterate, lapped transform provides an elegant

solution to the elimination of annoying blocking artifacts in traditional block-transform

image coders at a reasonable cost { in both system memory requirement and transform

speed. Lapped transform outperforms the popular non-overlapped DCT [67] on two

counts: (i) from the analysis viewpoint, it takes into account inter-block correlation,

hence, provides better energy compaction; (ii) from the synthesis viewpoint, its basis

functions decay asymptotically to zero at the ends, reducing blocking discontinuities

drastically.
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2.6.5 M-band Wavelets

Fingerprint, seismic, and many landscape images are usually not predominantly lowpass.

Existing textures in these images require �ner frequency partitioning than that of the

dyadic wavelet transform. In other words, M -band wavelet representations o�er higher

performance in tiling the frequency plane. This can be advantageous both in terms of

energy compaction [77] and in providing hierarchical, multiscale access to information.

Applying to the compression of the above types of imagery, 3-band and 4-band wavelets

have been shown to outperform 2-band wavelets, particularly with regard to absolute
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error measures [76], [22]. Moreover, many applications also utilize tree-structured �l-

ter banks (also called wavelet-packet) decomposition to obtain a multiscale/nonuniform-

frequency representation. For instance, instead of the traditional wavelet transform in

Figure 15(a), the FBI's Wavelet Scalar Quantization standard opts for a cascade of 2-

channel �lter banks to achieve an approximation of 4-channel decomposition as in Figure

15(b).

(a) (b)

Figure 15: Frequency partitioning. (a) Dyadic wavelet transform. (b) FBIWavelet Scalar

Quantization standard.

Extending the main concept in 2-band wavelets, the N -vanishing wavelet moments

condition inM -band can be stated as enforcing N -th order atness of the lowpass �lter at

DC, i.e.,N zeroes at ! = �. It has been shown that GenLOTs with one and two vanishing

moments exist and they outperformed the same-order GenLOTs optimized for stopband

rejection in image coding experiments [75], [76]. Furthermore, the authors showed that

vanishing moments can be enforced directly upon GenLOT's lattice coe�cients. The

novel FBs presented in this dissertation can generate various orthogonal/biorthogonal

M -band wavelets.
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2.7 Transform-Based Image Compression

One of the most successful applications of �lter banks is in transform-based image com-

pression. Two dominant techniques in the �eld { block-transform coding and subband

coding { are actually the same in principle. A typical transform-based image coder as

depicted in Figure 16 operates by transforming the data to remove redundancy, then

quantizing the transform coe�cients to reduce the bit rate, and �nally entropy coding

the quantizer's output to achieve even higher compression. Since our focus is at the

transform stage, we shall only present very briey the main concepts in the other two

stages.

DCT, LOT, 
DWT...

Transform Quantizer
Entropy
Coder

Storage
Device

Spectrum 
Estimator

scalar quantizer
vector quantizer
    thresholder

 Huffman coder
arithmetic coder
bit-plane coder

Figure 16: The general paradigm of transform-based coders.

2.7.1 Quantization and Entropy Coding

After the transformation, many transform coe�cients are often large oating-point num-

bers, which may take a lot of bits to represent. In order to achieve compression, we have

to map the coe�cients into a discrete and �nite alphabet. This mapping process is called

quantization. In this dissertation, we shall utilize the simple scalar quantization scheme
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as shown in Figure 17, where each transform coe�cient c is independently mapped to

its corresponding integer output qc. The scalar quantizer is very popular in practice be-

cause of its simplicity and inexpensive implementation. In many image coding schemes

[58], [71], [72], [73], [110, 112], scalar quantizer has shown to be very e�ective. For high-

frequency subbands, a scalar quantizer with variable dead-zone (typically the dead-zone

range Qdz is twice the stepsize Qk elsewhere else as shown in Figure 17) can increase

compression substantially without much loss of visual quality [17]. This is similar to a

combination of thresholding and quantizing.

The spectrum estimator block in Figure 16 serve as a bit allocator for the quantizer.

The bit allocator solves the classic problem: given a bit budget R, how can one distribute

these bits to N transform coe�cients so that a certain cost function D (usually the mean

square error) is minimized? The bit distribution outputs of the bit allocator decide

the quantizer stepsizes Qk. Note that both thresholding and quantization introduce

nonlinearity to the system and result in information loss. If a perfect-reconstruction �lter

bank is used at the transform stage, quantization/thresholding is the lone lossy step in

the entire coding process. Hence, the error analysis can be signi�cantly simpli�ed.

After quantization, entropy coding is used to further compressed the signal. En-

tropy coding is a reversible process; therefore, the quantized coe�cients can be recovered

perfectly. The idea is to �nd another mapping such that the average number of bits

per symbol is minimized. This is equivalent to assigning short codes to more probable

symbols and reserving longer codes to less probable ones. Most popular entropy coding
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Q dz Q k

c

qc

Figure 17: A scalar quantizer with dead-zone.

schemes are Hu�man coding and arithmetic coding. Detailed discussions on bit alloca-

tion, quantization, and entropy coding can be found in [18], [32] and references therein.

Simplistically speaking, the entropy coding step can be thought of as an e�cient method

to encode the positions and the values of the signi�cant (non-zero) transform coe�cients.

2.7.2 Transform Choice and Its Signi�cance

As illustrated in Figure 16, there are many choices in each of the three basic stages

in a generic transform-based image coder. However, the last two stages have a very

strong correlation to the transformation chosen in the initial step. In other words, the

actual transform selected plays a key role in the overall success of the image coder. The

transform choice dictates the quantization and entropy coding strategies in the later

steps.

The objective of any transform is to decorrelate the image pixels as much as possible

by projecting the original image onto its set of basis functions. The resulting coe�cients
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of the transform serve as the means to store the image. In the analysis stage, the more

carefully we choose the basis, the fewer coe�cients we need to keep to represent the

image accurately and the higher the coder's performance gets. In the synthesis stage, a

good basis should result in perceptually-pleasant reconstructed images.

Current popular transforms used in the beginning stage of a transform-based image

coder are the DCT, the LT, and the wavelet transform. The JPEG image compression

standard [58] is based on the 8 � 8 DCT. In this algorithm, the input image is broken

into 8 � 8 blocks, each of which is then transformed via a tensor product of two 8-point

DCT's as demonstrated in Figure 14 (M = 8;L = 8). The transform coe�cients from

each image block are scalar-quantized, arranged in a zig-zag fashion, and then Hu�man

coded. So, JPEG chooses to encode coe�cients from the same spatial locality together.

The JPEG algorithm yields good results for compression ratios around 10:1 and below

(on typical 8-bit gray-scale images), but at higher compression ratios the underlying

block nature of the transform begins to show through the compressed image. At high

compression ratios (24:1 and up), most of the bit budget is spent on the DC (lowest

frequency) coe�cients, and the input image has been approximated by a set of 8 � 8

blocks { this is the common blocking artifacts.

Subband coding has recently emerged as the leading candidate for standardization

in future image compression systems thanks to the development of the wavelet trans-

form. Wavelet representations with implicit overlapping and variable-length basis func-

tions produces smoother and more perceptually pleasant reconstructed images. Early

approaches in subband �lter design are more concerned with high stopband attenuation
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and perfect frequency selectivity. The idea originates from well-known results in infor-

mation theory: �lters with these characteristics produce perfectly decorrelated subband

signals which can be encoded independently (coe�cients at the same frequency locality

are coded together). The performance of such coders approaches optimal coding gain

when the number of subbands approaches in�nity [32]. However, these approaches result

in �lters with long impulse responses. At low bit rates, huge quantization noise can be

spread out to neighboring smooth image regions, causing ringing artifacts.

Latest developments in wavelets and their application in subband coding provoke a

di�erent philosophy. Instead of aiming for exceptional decorrelation between subbands,

wavelet coders look for other �lter properties that still maintain a reasonable level of per-

ceptual quality at low bit rates, and take advantage of the correlation across the subbands

by a judicious combination of quantizer and entropy coder. The embedded zerotree coder

[73] and its improved variations [71], [72], [110] exploit the redundancy across the scales

in the dyadic wavelet transform. The innovation here is to predict the insigni�cance of

the transform coe�cients (the occurrence of zeros) rather than attempt to predict their

signi�cance (the occurrence of nonzero values). The zerotree coder also provides a very

e�cient framework for bit-plane progressive image transmission: ordering the coe�cients

by magnitude, transmitting the most signi�cant bits �rst, and repeating the transmission

process with lower bit planes until the bit budget is full. State-of-the-art wavelet-based

embedded coders yield some of the highest performances in image compression up to

date. However, one major drawback from the wavelet basis is the blurring artifacts due
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to the heavy quantization of image details in high-frequency subbands. In this disser-

tation, we shall show that the same embedded idea can be applied to encode lapped

transform coe�cients as well. In fact, if designed and utilized appropriately, uniform-

band lapped transforms consistently outperform wavelets on all test images at all bit

rates. Our LT-based coders provide a better trade-o� in the suppression of blocking,

ringing, and blurring artifacts.
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Chapter 3

General Theory

3.1 Introduction

This chapter investigates the general theory ofM -channel FIR linear phase perfect recon-

struction �lter banks with analysis and synthesis �lters of lengths Li = KiM + �, where

� 2 Z, 0 � � < M , and Ki 2 Z+. For this large subclass of systems, we �rst investigate

the restriction that the linear phase property imposes on the FB polyphase matrices.

The symmetry property of the polyphase matrices leads to various necessary conditions

for the existence of linear phase perfect reconstruction �lter banks. These fundamental

results can be very helpful in restricting the search space of possible solutions and they

help greatly in the development of general lattice structures in later chapters.

Note that the most general FIR LP system has �lter lengths Li = KiM+�i. However,

it has been proven that all �i have to be the same if one needs to use symmetric extension

in the �lter bank's implementation [8].
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3.2 Polyphase Matrices of a LPFB

Consider an M -channel �lter bank with a set of linear phase analysis �lters Hi(z), i 2 Z,

0 � i �M �1. Let the length of the i-th �lter Hi(z) be Li = KiM +�, where �;Ki 2 Z,

and 0 � � < M , Ki � 1. Since Ki is arbitrary, the �lter length Li is also arbitrary. The

same � is required for all Hi(z) because of the practical usage of symmetric extension

in implementation as previously mentioned [8]. The linear phase property of the �lters

dictates certain symmetry relationships between the components of the FB polyphase

matrices E(z) and R(z).

First, de�ne D as a diagonal matrix whose entry is +1 when the corresponding �lter

is symmetric and �1 when the corresponding �lter is antisymmetric. De�ne Ẑ(z) as the

diagonal matrix

Ẑ(z)
4
= diag [ z�(K0�1) z�(K1�1) ::: z�(KM�1�1) ]; (3.1)

and

Ĵ(z)
4
=

26664 z�1J� 0��(M��)

0(M��)�� JM��

37775 : (3.2)

We can derive the following symmetry property of the polyphase matricesE(z) and R(z).

Theorem 3.6 All analysis �lters of lengths Li = KiM + � in an M-channel FB has

linear phase if and only if the associated polyphase matrix E(z) satis�es the following

condition

E(z) = D Ẑ(z) E(z�1) Ĵ(z): (3.3)
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Analogously, all synthesis �lters of lengths Li = KiM+� in an M-channel FB has linear

phase if and only if the associated polyphase matrix R(z) has the following form

R(z) = Ĵ(z) R(z�1) Ẑ(z) D: (3.4)

Proof.

In order to see why the form of E(z) in Eq.(3.3) is equivalent to the LP property of the

�lters, let us examine the impulse response of an LP �lter hi[n] with length L = KiM+�

and the corresponding polyphase components Ei0(z), Ei1(z), : : : , Ei(M�1)(z). Since the

�lter length is a multiple of M plus �, the �rst � polyphases have one more coe�cient

than the rest:8>>>>><>>>>>:
Ei`(z) =

KiX
k=0

hi[kM + `] z�k; for 0 � ` � � � 1

Ei`(z) =
Ki�1X
k=0

hi[kM + `] z�k; for � � ` � M � 1.

(3.5)

A careful examination of Ei0(z) and Ei(��1)(z) shows that they are time-reversed versions

(denoted by the e notation) of each other:

eEi(��1)(z)
4
= z�Ki Ei(��1)(z

�1)

= hi[KiM + � � 1] + hi[KiM + � � 1 �M ] z�1 + � � � + hi[� � 1] z�K

= �
KiX
k=0

hi[kM ] z�k = � Ei0(z); (3.6)

where we have used the fact that hi[n] has LP: hi(n) = �hi[KiM +�� 1�n]: Similarly,

eEi(M�1)(z) = � Ei�(z) where the � sign is used to denote two separate cases: hi[n]

is either symmetric or antisymmetric. This linear phase property in Eq.(3.6) can be
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generalized to the rest of the polyphase components to obtain the following relationships:8>>><>>>:
Ei`(z) = � eEi(��1�`)(z); for 0 � ` � � � 1

Ei`(z) = � eEi(M+��1�`)(z); for � � ` � M � 1.

(3.7)

Using Eq.(3.7), one can easily verify the LP-equivalent property of E(z) in Eq.(3.3), both

necessarily and su�ciently.

A similar proof can be constructed for the case of the synthesis bank. The lone di�er-

ence is the transpositional relationship between E(z) and R(z): the synthesis polyphase

matrix R(z) stores the synthesis �lters in its columns instead of rows. 2

Example. Suppose there exists a 4-channel LPFB with 2 10-tap symmetric �lters

(h0[n] and h1[n]) and 2 6-tap antisymmetric analysis �lters (h2[n] and h3[n]). In this

example, � = 2. The LP property of the �lters means: h0[n] = h0[9�n], h1[n] = h1[9�n],

h2[n] = �h2[5 � n], and h3[n] = �h3[5 � n]. Thus, the polyphase matrix E(z) of this

system has a highly symmetrical form { the polyphase components Ei0(z) and Ei1(z) are

time-reversedly related, and so are Ei2(z) and Ei3(z):

E(z) =

266666666666664

h0[0] + h0[4]z�1 + h0[1]z�2 h0[1] + h0[4]z�1 + h0[0]z�2 � � �

h1[0] + h1[4]z�1 + h1[1]z�2 h1[1] + h1[4]z�1 + h1[0]z�2 � � �

h2[0]� h2[1]z�1 h2[1]� h2[0]z�1 � � �

h3[0]� h3[1]z�1 h3[1]� h3[0]z�1 � � �
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� � � h0[2] + h0[3]z�1 h0[3] + h0[2]z�1

� � � h1[2] + h1[3]z�1 h1[3] + h1[2]z�1

� � � h2[2] �h2[2]

� � � h3[2] �h3[2]

377777777777775
:

Pre-multiplying E(z�1) by

D =

266666666666664

1 0 0 0

0 1 0 0

0 0 �1 0

0 0 0 �1

377777777777775
;

post-multiplying by

Ĵ(z) =

266666666666664

0 z�1 0 0

z�1 0 0 0

0 0 0 1

0 0 1 0

377777777777775
;

and then pre-multiplying the resulting product by

Ẑ(z) =

266666666666664

z�1 0 0 0

0 z�1 0 0

0 0 1 0

0 0 0 1

377777777777775
give us back E(z) as stated in Theorem 3.6.

Remarks. The matrix Ẑ(z) takes care of the arbitrary lengths of the �lters (with

di�erent Ki), while Ĵ(z) accounts for the fact that the �rst � polyphase components of
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each �lter are one order higher than the rest. Secondly, the trace of D reveals the number

of symmetric and antisymmetric �lters in the system. Here, the trace is zero, i.e., half of

the �lters are symmetric, the other half antisymmetric. Thirdly, we have assumed that

the impulse response of each causal �lter always starts at index 0. In our convention,

if for some reasons that a �lter is delayed (shifted) by n samples, the n padded zeros

are counted as active �lter coe�cients. Hence, the e�ective length of the LP �lter is

now considered to be L + 2n where another n zeros have been padded onto the �lter

tail to retain symmetry. Finally, Eq.(3.3) and Eq.(3.4) are extensions of the linear phase

constraint proposed in [101] and later used extensively in [75] where all analysis and

synthesis �lters have the same length L = KM . In that case, we have the following

corollary.

Corollary 3.7 In the case where all analysis and synthesis �lters having the same length

L = KM , the linear phase property of the �lters is equivalent to

E(z) = z�(K�1) D E(z�1) J (3.8)

R(z) = z�(K�1) J R(z�1) D: (3.9)

Proof.

The proof is rather trivial. When Ki = K, the Ẑ(z) matrix in Eq.(3.1) reduces to

z�(K�1)I. Also, since � = 0, the Ĵ(z) in Eq.(3.2) becomes the z-independent J. Replacing

Ẑ(z) and Ĵ(z) in Eq.(3.3) and Eq.(3.4) by the appropriate simpli�cation immediately

yields the results in Corollary 3.7. 2
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3.3 Permissible Conditions

Using the symmetrical form of E(z) from Theorem 3.6, the trace and the determinant

of D can be manipulated to obtain the permissible lengths and symmetry polarity for

LPPRFB of arbitrary channels and arbitrary lengths.

Theorem 3.8 In an M-channel LPPRFB with �lter lengths Li = KiM + �,

� if M is even and � is even, there are M
2 symmetric and M

2 antisymmetric �lters.

� if M is even and � is odd, there are (M2 +1) symmetric and (M2 �1) antisymmetric

�lters.

� if M is odd, there are (M+1
2 ) symmetric and (M�1

2 ) antisymmetric �lters.

Remarks. This theorem provides the most general constraints for linear phase perfect

reconstruction �lter banks; it holds for both biorthogonal and paraunitary systems. In

other words, Theorem 3.8 requires an LPPRFB (with �lters satisfying the stated length

condition) to have the same number of symmetric and antisymmetric �lters when the

number of channel M is even and all the �lters have even length. If M is even, but all

the �lters are now odd-length, then the system must have two more symmetric �lters.

For odd-channel systems, the number of symmetric �lters always exceeds the number

of antisymmetric �lters by one. This is a useful and powerful result. It allows the FB

designers to narrow down the search for possible solutions. It expands our knowledge and

understanding of LPPRFB by explaining partially why only certain solutions exist. It

also lays a foundation on which complete and minimal lattice structures are developed in
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the later chapters of the dissertation. Before presenting the formal proof of the theorem,

let us �rst introduce a couple of useful lemmas that appear persistently throughout.

Lemma 3.9

tr(Ĵ(z)) =

8>>>>>>>>>>>>><>>>>>>>>>>>>>:

0 if M is even and � is even

1 + z�1 if M is even and � is odd

1 if M is odd and � is even

z�1 if M is odd and � is odd.

(3.10)

Proof.

From Eq.(3.2), we have

tr(Ĵ(z)) = tr

0BBB@
26664 z�1 J� 0��(M��)

0(M��)�� JM��

37775
1CCCA :

There are four cases to consider. When M is even and � is even, (M � �) is also

even, and all of the diagonal elements of the matrix Ĵ(z) are zeros. Thus, its trace is 0.

When M is even and � is odd, (M � �) is odd. Hence, we now pick up two non-zero

elements on the diagonal of Ĵ(z): 1 and z�1. When M is odd, � and (M � �) cannot be

both odd or both even. Therefore, in this case, only one non-zero element can be picked

up: either 1 or z�1 depending on whether � is even or odd, respectively. 2

Lemma 3.10

jĴ(z)j =

���������

26664 z�1J� 0��(M��)

0(M��)�� JM��

37775
��������� =

8>>><>>>:
(�1)(M2 +�) z�� if M is even

(�1)(M�12 ) z�� if M is odd.

(3.11)
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Proof.

Notice that Ĵ(z) is a square block-diagonal matrix, thus its determinant can be fac-

torized as follows [16]:

jĴ(z)j = jz�1J�j jJM��j = z�� jJ�j jJM��j:

With the factorization above, coupling with the facts that jJ4mj = jJ4m+1j = 1 and

jJ4m+2j = jJ4m+3j = �1, m 2 Z+, one can verify that Lemma 3.10 holds by considering

four possible cases: M = 4m;M = 4m + 1;M = 4m+ 2; and M = 4m+ 3: 2

With the help of Lemma 3.9, proving Theorem 3.8 is a trivial task.

Proof of Theorem 3.8.

Since E(z) is invertible, and D�1 = D, Eq.(3.3) can be rewritten as follows:

D = Ẑ(z) E(z�1) Ĵ(z) E�1(z): (3.12)

Taking the trace of both sides, and using the fact that tr(A B) = tr(B A), one can

obtain

tr(D) = tr(Ẑ(z) E(z�1) Ĵ(z) E�1(z)) = tr(E�1(z) Ẑ(z) E(z�1) Ĵ(z)):

T r(D) is a constant, therefore, its value can be obtained by evaluating the right-hand

side of the above equation at a speci�c value of the variable z. Since

E(z�1) Ẑ(z) E�1(z)jz=1 = E(1) I E�1(1) = I;

we have

tr(D) = tr(E�1(z) Ẑ(z) E(z�1) Ĵ(z)) jz=1 = tr(Ĵ(z)) jz=1: (3.13)



50

Again, there are four possible cases. Recall that D is a diagonal matrix whose entry

is +1 when the corresponding �lter is symmetric and �1 when the corresponding �lter is

antisymmetric. When both M and � are even, Lemma 3.9 yields tr(D) = tr(Ĵ(z)) jz=1 =

0. Hence, the system must have an equal number of symmetric and antisymmetric �lters

to satisfy the linear phase and perfect reconstruction properties. When M is even and �

is odd, tr(D) = (1+ z�1) jz=1 = 2: Thus, we need two more symmetric �lters in this case.

The results from the remaining two odd-M cases can be trivially obtained in a similar

manner. One can also choose to evaluate Eq.(3.13) at other values of z, say z = �1, and

arrives at the same result. The proof becomes slightly more tedious. We leave it as an

exercise for interested readers. 2

In time-domain FB designs [51], [70], the symmetry polarity as stated in Theorem 3.8

is not a narrow enough requirement. The �lter lengths are also crucial in achieving perfect

reconstruction. If the designer chooses the wrong �lter lengths, his optimization routine

will not converge. Therefore, besides the necessary LPPR condition for the symmetry

polarity, we also have to obtain the necessary restriction on the �lter lengths as well

(more precisely speaking, the necessary condition for the sum of their lengths).

Theorem 3.11 In an M-channel LPPRFB with �lter lengths Li = KiM + �,

� if M is even and � is even,
M�1X
i=0

Ki is even.

� if M is even and � is odd,
M�1X
i=0

Ki is odd.

� if M is odd and � is even,
M�1X
i=0

Ki is odd.
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� if M is odd and � is odd,
M�1X
i=0

Ki is even.

Proof.

Case 1: M is even and � is even.

The determinant of D can also be manipulated in the same manner as its trace to

prove Theorem 3.11. Taking the determinant of both sides of Eq.(3.3) gives

jE(z)j = jDj jẐ(z)j jE(z�1)j jĴ(z)j = jDj z�(
PM�1

i=0
Ki)+M jE(z�1)j jĴ(z)j; (3.14)

where we have used the fact that the determinant of the product of two square matrices

is equal to the product of the determinants of the factors [16]. Evaluating Eq.(3.14) at

z = 1 gives jDj jĴ(1)j = 1: Using the result from Lemma 3.10 to substitute for jĴ(1)j,

one can see that, for even M and even �, this relation must hold:

jDj jĴ(1)j = jDj (�1)(M2 +�) = jDj (�1)(M2 ) = 1:

This is consistent with the derivation from the trace previously. When M
2 is odd, jDj

must be �1, i.e., there are an odd number of antisymmetric �lters. On the other hand,

when M
2 is even, jDj must be +1 because now there are an even number of antisymmetric

�lters.

So, by evaluating the determinant of D at z = 1, nothing is gained, i.e., one can

only con�rm the validity of result from Theorem 3.8. However, evaluating Eq.(3.14) at

z = �1 gives

(�1)�(
PM�1

i=0
Ki)+M jDj jĴ(�1)j = (�1)�(

PM�1

i=0
Ki) jDj (�1)(M2 +�) (�1)�� = 1; (3.15)
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where the result from Lemma 3.10 is used to substitute for jĴ(�1)j. Note that this is

true for all cases with even M . Since � is also even in this case, Eq.(3.15) simpli�es to

(�1)�(
PM�1

i=0
Ki) jDj (�1)M2 = 1:

For even M , there are two cases to consider: if M = 4m, then M
2
is even, and jDj = 1,

so the sum
PM�1

i=0 Ki has to be even; similarly, ifM = 4m+2, then M
2 is odd; jDj = �1,

and
PM�1

i=0 Ki must be even. 2

Case 2: M is even and � is odd.

At z = 1, following the same derivation as in Case 1, we get

jDj jĴ(1)j = jDj (�1)(M2 +�) = 1;

from which the reader can easily verify that jDj is consistent with result in Theorem 3.8.

At z = �1, with � odd, Eq.(3.15) simpli�es to

(�1)�(
PM�1

i=0
Ki) jDj (�1)(M2 +�) = �1:

Again there are two cases to consider: M = 4m and M = 4m+ 2. When M = 4m, M
2 is

even, and the above equation reduces to

(�1)�(
PM�1

i=0
Ki) jDj = 1:

Also, forM = 4m, Theorem 3.8 requires an odd number of antisymmetric �lters, implying

jDj = �1. Hence, PM�1
i=0 Ki must be odd.

When M = 4m + 2, M
2 is odd, so

(�1)�(
PM�1

i=0
Ki) jDj = �1:
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For M = 4m + 2, Theorem 3.8 establishes that there must be an even number of anti-

symmetric �lters (either 2m or 2m + 2), implying jDj = 1. Then,
PM�1

i=0 Ki has to be

odd. 2

Case 3: M is odd and � is even.

Evaluating Eq.(3.14) at z = �1, and substituting the result from Lemma 3.10 for

jĴ(�1)j, we get

(�1)�(
PM�1

i=0
Ki)+M jDj jĴ(�1)j = (�1)�(

PM�1

i=0
Ki)+M jDj (�1)(M�12

) (�1)�� = 1; (3.16)

Since � is even, Eq.(3.16) simpli�es to

(�1)�(
PM�1

i=0
Ki)+M jDj (�1)(M�12 ) = 1: (3.17)

ForM = 4m+1, M�1
2 is even. So, (�1)(M�12

) = 1. Moreover, the number of antisymmetric

�lters is also even, implying jDj = 1. Therefore, (
PM�1

i=0 Ki � M) must be even for

Eq.(3.17) to hold. It follows that
PM�1

i=0 Ki has to be odd. For M = 4m+3, M�1
2

is odd.

Therefore, jDj = �1, (�1)(M�12
) = �1, and

(�1)�(
PM�1

i=0
Ki)+M jDj (�1)(M�12 ) = (�1)�(

PM�1

i=0
Ki)+M = 1:

This implies that (
PM�1

i=0 Ki �M) must be even, and
PM�1

i=0 Ki has to be odd. 2

Case 4: M is odd and � is odd.

With odd �, Eq.(3.16) can be simpli�ed to

(�1)�(
PM�1

i=0
Ki)+M jDj (�1)(M�12 ) = �1: (3.18)

ForM = 4m+1, M�1
2 is even, and (�1)(M�12 ) = 1. Moreover, the number of antisymmetric

�lters is also even, implying jDj = 1. Thus, (
PM�1

i=0 Ki �M) must be odd for the above
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equation to hold. Therefore,
PM�1

i=0 Ki is even. For M = 4m + 3, M�1
2 is odd. Hence,

jDj = �1, (�1)(M�12 ) = �1, and the same result can be obtained:
PM�1

i=0 Ki is even. 2

From Theorem 3.11, an interesting corollary can be derived on the behavior of the

total length of all the �lters in a LPPRFB.

Corollary 3.12 In an M-channel LPPRFB with �lter lengths Li = KiM +�, m 2 Z+,

� if M is even,
M�1X
i=0

Li = 2mM .

� if M is odd,
M�1X
i=0

Li = (2m+ 1)M .

Proof.

Since Li = KiM + �,
PM�1

i=0 Li = M(� +
PM�1

i=0 Ki): IfM is even and � is also even,

Theorem 3.11 requires
P
Ki to be even. Hence, (� +

PM�1
i=0 Ki) is even. In other words,

any even-channel LPPRFB in the class being considered has its sum of �lter lengths as

an even multiple of the number of channels. If � is now odd, then
P
Ki has to be odd,

so (� +
PM�1

i=0 Ki) is even. For odd value of M , using a similar argument, we arrive at

the conclusion that the total length of all the �lters must be an odd multiple of M . 2

The results from Theorem 3.8, Theorem 3.11 and Corollary 3.12 are summarized

in Table 2. S stands for the number of symmetric �lters; A stands for the number of

antisymmetric �lters. Note that these results hold true for both sets of analysis and

synthesis �lters of any LPPR system satisfying Eq.(3.3) or Eq.(3.4) in Theorem 3.6.

To no surprise, the solutions for the well-studied 2-channel LPPRFB agree with our

result. There are two systems for 2-channel LPFB. A type A system has even-length

�lters with di�erent symmetry polarity while a type B system has odd-length �lters with
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same symmetry [53]. This can be con�rmed using Table 2. Type A systems belong to

the �rst row (M = 2, and � = 0). Therefore, there must be one symmetric and one

antisymmetric �lter. Since they both have even length (and K0 +K1 is even), the sum

of the �lter lengths is a multiple of 4. Similarly, Type B systems satisfy all constraints

in the second row of the table (it belongs to the even-M , odd-� case with M = 2 and

� = 1) [53].

All of theM -channel solutions reported so far also follow the results in our permissible

table as well. For example, the 3-channel LPPRFB in [54] has 2 symmetric �lters and

1 antisymmetric �lter. They have lengths 56, 53, and 56 (M = 3; � = 1). The sum of

the corresponding Ki (18, 17, and 18) is odd. Also, the total length is an odd multiple

of 3. Another 3-channel solution reported in [70] has 2 symmetric and 1 antisymmetric

�lters with lengths 53, 44, and 44 respectively. This system belongs to the case of odd

M and even �. Therefore, the number of symmetric �lters must exceed the number

of antisymmetric ones by one. Moreover, the sum of Ki (17, 14, 14) is odd, which is

consistent with the result in Theorem 3.11. Several LP cosine modulated PR FB with

�lter lengths not equal to KM are reported recently in [41]. All of these FB lengths and

polarity symmetry also fall within our constraints (the zero-value coe�cients resulted

from the optimization process need to be counted as well).



56

Case Symmetry Polarity Length Condition Sum of Lengths

M even, � even
M

2
S &

M

2
A

M�1X
i=0

Ki even 2mM

M even, � odd (
M

2
+ 1) S & (

M

2
� 1) A

M�1X
i=0

Ki odd 2mM

M odd, � even (
M + 1

2
) S & (

M � 1

2
) A

M�1X
i=0

Ki odd (2m+ 1)M

M odd, � odd (
M + 1

2
) S & (

M � 1

2
) A

M�1X
i=0

Ki even (2m+ 1)M

Table 2: Possible solutions for M -channel LPPRFBs with �lter lengths Li = KiM + �.
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3.4 Summary

Several important results in the general theory concerning LPPRFBs with arbitrary

number of channels M and �lters of arbitrary lengths Li = KiM + � are presented in

this chapter. We �rst derive the symmetry condition of the polyphase matrices. This

condition is pivotal to the development of the general LP-propagating structure presented

in the next chapter. Furthermore, the symmetrical property of the polyphase matrices

deepens our understanding of LPPRFBs and proves crucial in identifying the possible

solutions in terms of �lter symmetry polarity and �lter lengths. Prior to the start of

any actual design, we have already eliminated numerous possibilities. The permissible

conditions in Table 2 will be utilized throughout the remaining of the dissertation in

constructing complete and minimal lattice structures in later chapters.
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Chapter 4

LP-Propagating Biorthogonal

Lattice Structures

4.1 Introduction

A lattice structure for LPPRFBs based on the singular value decomposition (SVD) is

introduced in this chapter. The lattice can be proven to use a minimal number of de-

lay elements and to completely span a large class of M -channel linear phase perfect

reconstruction �lter banks: all analysis and synthesis �lters have the same FIR length

L = KM , sharing the same center of symmetry. The lattice also structurally enforces

both linear phase and perfect reconstruction properties, is capable of providing fast and

e�cient implementation, and avoids the costly matrix inversion problem in the optimiza-

tion process. From a block transform perspective, the new lattice represents the family

of generalized lapped biorthogonal transforms (GLBT) with arbitrary number of chan-

nels M and arbitrary large overlapping samples KM . The relaxation of the orthogonal

constraint allows the GLBT to have signi�cantly di�erent analysis and synthesis basis

functions which can then be tailored appropriately to �t a particular application. Several
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design examples are presented to con�rm the validity of the theory.

4.2 General LP-Propagating Structure

4.2.1 Problem Formulation

Throughout this chapter, the class of M -channel FBs under investigation possesses all of

the following properties: (i) the FB has perfect reconstruction as in Eq.(2.6) of De�nition

2.2; (ii) all �lters (both analysis and synthesis) are FIR as in Eq.(2.7) of Theorem 2.3;

(iii) all �lters have the same length L = KM whereK 2 Z+, i.e.,E(z) and R(z) have the

same order; (iv) all analysis and synthesis �lters have real coe�cients and linear phase,

i.e., they are either symmetric h[n] = h[L�1�n] or antisymmetric h[n] = �h[L�1�n]

as discussed in Section 2.3.2.

For this class of LPPRFBs, the problem of permissible conditions on the �lter length

and symmetry polarity has been solved in the previous chapter; the results are summa-

rized in Table 2. In this chapter, we shall exploit the symmetry property of the polyphase

matrices and the necessary conditions for possible LPPR systems to develop the most

general LPPR-propagating lattice structure.

4.2.2 General Structure

Recall the essential concept of the lattice structure as illustrated in Figure 4 of Section

2.3.4: G(z) must be chosen such that both sets of �lters HF;i(z) (represented by F(z))
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and HE;i(z) (represented by E(z)) possess the same desirable properties. The following

theorem introduces a general structure for G(z) where the propagating properties are

chosen to be LP and PR.

Theorem 4.13 Suppose there exists an M-channel FIR LPPRFB with all analysis and

synthesis �lters of length L = KM with the associated polyphase matrix F(z) of order

(K � 1). De�ne the order-(K+N �1) polyphase matrix E(z)
4
= G(z)F(z) where the

propagating structure is the all-zero G(z) of order N , i.e., G(z) =
PN

i=0Aiz
�i. Then,

E(z) has LP and PR if and only if

� G(z) is FIR invertible.

� G(z) takes the form G(z) = z�N D G(z�1) D:

� Ai = D AN�i D:

Proof.

First, E(z) = G(z)F(z), hence jE(z)j = jG(z)j jF(z)j and E�1(z) = F�1(z)G�1(z).

Since F(z) is FIR invertible, it is clear that E�1(z) exists and is FIR if and only if G(z)

is FIR invertible. Next, F(z) represents a LPFB ; therefore, F(z) and its associated

synthesis polyphase matrix R(z) must satisfy the LP property in Corollary 3.7 of the

previous chapter

F(z) = z�(K�1) D F(z�1) J (analysis)

R(z) = z�(K�1) J R(z�1) D (synthesis)

whereD is the diagonal matrix with entries being +1 or �1 depending on the correspond-

ing �lter being symmetric or antisymmetric. For clarity of presentation and without any
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loss of generality, all symmetric �lters are permuted to be on top, i.e.,

D =

26664 IS 0

0 �IA

37775
where S stands for the number of symmetric �lters and A stands for the number of

antisymmetric �lters. S and A have to satisfy the necessary constraints in Table 2:

S = A = M
2
if M is even; S = M+1

2
and A = M�1

2
if M is odd.

Similarly, the LP property of E(z) is equivalent to

E(z) = z�(K+N�1) D E(z�1) J

() E(z) = z�(K+N�1) DG(z�1) F(z�1) J

() E(z) = z�N DG(z�1) z�(K�1) F(z�1) J

() E(z) = z�N DG(z�1) D z�(K�1) D F(z�1) J

() E(z) = z�N DG(z�1) D F(z):

Thus for E(z) to have LP, it is necessary and su�cient that

G(z) = z�N D G(z�1) D: (4.1)

Now, substituting G(z) =
PN

i=0Aiz
�i into the right-hand side of Eq.(4.1) yields

G(z) = z�ND (
PN

i=0Aiz
i) D = D (

PN
i=0Aiz

i�N ) D

= D (
PN

i=0AN�iz�i) D =
PN

i=0(DAN�iD) z�i:

=) Ai = D AN�i D: (4.2)

In other words, the speci�c form of G(z) in Eq.(4.1) imposes interesting symmetric

constraints on the matrices Ai. 2
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Remarks. Theorem 4.13 already presents a strong result. It states that the building

block G(z) with the three aforementioned properties is unique when the propagation of

LP and PR is concerned { there exists no other solution. The reader should also note that

the order N of G(z) is purposely chosen to be arbitrary so that it can cover all classes

of FBs that may not be factorizable with order-1 structures. For example, according to

Table 2, odd-channel even-length LPPR system does not exist. Hence, it is not possible

to construct a lattice with order-1 building blocks when M is odd. The minimum length

increment in this case has to be 2M , and the simplest possible structure must have order

of at least 2. Section 4.3 and Section 4.4 discuss in details more speci�c cases with

order-1 and order-2 LP-propagating structures respectively. Finally, the LP-propagating

structure in Theorem 4.13 has taken into account the number of permissible symmetric

(or antisymmetric) �lters, a crucial element in the existence of LPPR systems, in the

form of the diagonal matrix D.

4.3 Lattice Structure for Even-Channel LPPRFB

Let us assume further that M is even. In this case, possible solutions must have M
2

symmetric and M
2 antisymmetric �lters as indicated in Table 2. Furthermore, we know

that LPPRFB exists for every integer K � 1 [75], [62], [80], [48], i.e., these FBs can be

factorized by order-1 structure. If N = 1 in Eq.(4.2), A1 = DA0D: Then, G(z) takes

the general form of G(z) = A0 + z�1DA0D:

Theorem 4.14 G(z) in Theorem 4.13 is not FIR invertible if A0 has full rank.
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Proof.

Suppose that G(z) is FIR invertible, and without loss of generality, let

G�1(z) = B0 + zDB0D

(keep in mind that the synthesis �lters have LP and the same order as the analysis �lters).

Since G�1(z)G(z) = I, evaluating the equation with like powers of z yields

B0A0 +DB0A0D = I

A0B0 +DA0B0D = I

(4.3)

B0DA0 = 0

A0DB0 = 0

(4.4)

If A0 is full-rank, B0 = 0 and Eq. (4.3) becomes inconsistent. 2

Moreover, according to Sylvester's rank theorem [16], one can easily prove that

�(A0) + �(B0) � M from Eq. (4.4). The proof will become clear to the reader later

in this section. Our interest is in the most general solution and there should be no bias

on a particular bank. Hence, we propose the following solution with �(A0) = �(B0) � M
2
:

A0 =
1

2

26664 U U

V V

37775 ; (4.5)

where U and V are arbitrary M
2 � M

2 matrices. We shall later prove that the choice of

A0 in Eq.(4.5) is indeed the most general solution. Now, G(z) = A0+ z�1DA0D can be

factorized as follows

G(z) = 1
2

26664 U+ z�1U U� z�1U

V � z�1V V + z�1V

37775 = 1
2

26664 U 0

0 V

37775
26664 I I

I �I

37775
26664 I 0

0 z�1I

37775
26664 I I

I �I

37775
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4
= 1

2
�W �(z)W: (4.6)

All of the delays are now contained in�(z), whileW resembles the famous \buttery"

matrix in the FFT implementation. SinceW and �(z) have orthogonal inverses,G(z) is

invertible if and only if � is invertible, i.e.,U and V are invertible. A cascade of (K�1)

blocks Gi =
1
2�iW�(z)W and a zero-order initial block E0 generates the polyphase

matrix of an even-channel LPPRFB with �lter length L = KM :

E(z) = GK�1(z)GK�2(z) � � � G2(z)G1(z)E0 =
1Y

i=K�1
Gi(z)E0: (4.7)

The starting block E0 has no delay element, represents an LPPRFB of length M;

and was often chosen to be the DCT [62], [7], [48]. The most general E0 that satis�es

Eq.(3.8) has the following form:

E0 =
1p
2

26664 U0 U0J

V0J �V0

37775 = 1p
2

26664U0 0

0 V0

37775
26664 I J

J �I

37775 : (4.8)

For E0 to have PR, U0 and V0 again have to be invertible. The corresponding causal

synthesis polyphase matrix is then

R(z) = z�(K�1)E�10 G�1
1 (z)G�1

2 (z) � � �G�1
K�2(z)G

�1
K�1(z) = E�10

K�1Y
i=1

z�1G�1
i (z): (4.9)

The complete lattice for both analysis and synthesis bank is depicted in Figure 18.

Results in Eq.(4.6)-(4.9) should not come as a surprise. The factorization is very similar

to the GenLOT's lattice structure [62] in the more restrictive case of paraunitary FBs.

In that case, the authors obtained PU systems by enforcing orthogonality on Ui and Vi.

Now, we have to show that the proposed factorization does cover all possible solutions in

the Problem Formulation of Section 4.2 by proving the converse of the result in Eq.(4.7).
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Figure 18: General lattice structure for even-channel LPPRFBs. (a) Analysis bank. (b)

Synthesis bank.
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Theorem 4.15 The analysis polyphase matrix E(z) of any even-channel FIR LPPRFB

with analysis and synthesis �lters of length L = KM can always be factored as

E(z) =
1Y

i=K�1
Gi(z) E0

whereGi(z) is as in Eq.(4.6) and E0 is as in Eq.(4.8). The corresponding causal synthesis

polyphase matrix is then

R(z) = E�10
K�1Y
i=1

z�1 G�1
i (z):

The proof of Theorem 4.15 is rather long and extensive. Indi�erent readers may

proceed without any loss of continuity.

Proof.

The proof is inductive. It keys on the existence of a G�1(z) matrix that reduces the

order of E(z) by 1 at a time while retaining all of the desirable properties in the reduced-

order F(z) = G�1(z) E(z). The proof also serves as a guideline for the construction of

the lattice given the transform coe�cient matrix.

Linear phase: Consider a stage of the lattice in Figure 4. Note that E(z) and F(z) now

have order K � 1 and K � 2 respectively while G�1(z) is anticausal with order 1. F(z)

can be shown to satisfy the LP property in Eq.(3.8) in a similar manner to the proof of

Theorem 4.13:

z�(K�2) D F(z�1) J = z�(K�2) D G�1(z�1) E(z�1) J

= z�(K�2) D G�1(z�1) z(K�1) D E(z) J J

= z D G�1(z�1) DG(z) F(z)

= z D G�1(z�1) D z�1 D G(z�1) D F(z) = F(z);
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where we have exploited the facts that E(z) = z�(K�1)DE(z�1)J from Eq.(2.6) and

G(z) = z�1DG(z�1)D from Theorem 4.13. 2

Perfect reconstruction: From Eq.(4.6),

F(z) = G�1(z) E(z) = 1
2
W�(z�1)W ��1 E(z): (4.10)

Since all matrices on the right-hand side of this equation have FIR inverse, F(z) is also

FIR invertible, i.e., it represents a FIR perfect reconstruction system. 2

Causality: The above proofs for F(z) to have LP and PR are actually expected because

we speci�cally design G(z) to propagate these properties. Any choice of

� =

26664U 0

0 V

37775
such that it is invertible will su�ce. The di�cult part is to show that there always exist

invertible matrices U and V that will produce a causal F(z) obtained from Eq.(4.10).

Let

F(z) =
K�2X
i=0

Fi z
�i; FK�2 6= 0 and E(z) =

K�1X
i=0

Ei z
�i; EK�1 6= 0: (4.11)

From Eq.(4.10), one can derive

F(z) = 1
2

26664 I I

I �I

37775
26664 I 0

0 zI

37775
26664 I I

I �I

37775
26664 U

�1 0

0 V�1

37775 E(z)

= 1
2

0BBB@
26664 U

�1 V�1

U�1 V�1

37775 + z

26664 U�1 �V�1

�U�1 V�1

37775
1CCCA (

K�1X
i=0

Ei z
�i ): (4.12)
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We have to show that it is possible to eliminate the noncausal part in Eq.(4.12) by

achieving 26664 U�1 �V�1

�U�1 V�1

37775 E0 = 0 (4.13)

Now, let the polyphase matrix of the corresponding synthesis bank be

R(z) =
K�1X
i=0

Ri z
i; RK�1 6= 0; (4.14)

where the z�` factor in Eq.(2.6) has been absorbed into R(z) to make it anticausal. The

biorthogonal condition is modi�ed to R(z)E(z) = I, leading to the following equivalent

condition in the time domain:

K�1�`X
i=0

RiEi+` = �[`] I; 8 ` s.t. 0 � i+ ` � K � 1: (4.15)

The relationship of interest here is RK�1E0 = 0. Next, the LP properties of E(z) and

R(z) in Eq.(3.8) and Eq.(3.9) yield

K�1X
i=0

Ei z
�i = z�(K�1) D (

K�1X
i=0

Ei z
i) J

K�1X
i=0

Ri z
i = zK�1 J (

K�1X
i=0

Ri z
�i) D;

which imply that

Ei = D EK�i�1 J and Ri = J RK�i�1 D: (4.16)

Hence, we can obtain

RK�1 E0 = J RK�i�1 DE0 = R0DE0 = 0:
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Applying Sylvester's rank inequality [16] to R0 DE0 = 0 produces

�(R0) + �(DE0) � M � �(R0 DE0) = 0

=) �(R0) + �(E0) � M: (4.17)

The proof of causality is accomplished if �(E0) � M
2
, since in that case, the dimen-

sion of the null space of E0 is larger than or equal to M
2
. Hence, it is possible to choose

M
2 linearly independent vectors from E0's null space to serve as [ U�1 � V�1 ]. In

the paraunitary case, this can be achieved easily because Eq.(2.9) immediately implies

�(R0) = �(E0) � M
2 . The biorthogonal case is more troublesome, and we need Lemma

4.16 below, which shows that the condition �(E0) >
M
2 (or �(R0) >

M
2 ) leads to asym-

metrical systems where the �lters of one bank have higher order than the �lters of the

other. More simply stated, in the case where all analysis and synthesis �lters have the

same length L = KM , it is necessary that

�(E0) � M

2
and �(R0) � M

2
:

2

Order Reduction: It can be easily veri�ed that the structure G�1(z) in Eq.(4.10) with

U and V chosen to eliminate noncausality as in Eq.(4.13) also reduces the order of

E(z) by 1. From Eq.(4.12), after one factorization step, the highest-order component of

F(z) = G�1(z)E(z) is 26664 U
�1 V�1

U�1 V�1

37775 EK�1: (4.18)
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Substituting EK�1 = DE0J from Eq.(4.16) into Eq.(4.18) yields26664 U
�1 V�1

U�1 V�1

37775 D E0 J =

26664 U
�1 �V�1

U�1 �V�1

37775 E0 J = 0 J = 0: (4.19)

Therefore, the factorization is guaranteed to terminate after (K � 1) steps. 2

Lemma 4.16 If there exist two polyphase matrices

E(z) =
K�1X
i=0

Ei z
�i and R(z) =

K�1X
i=0

Ri z
i

representing FIR even-channel LPPRFB with all �lters having the same length L = KM ,

then �(E0) � M
2 and �(R0) � M

2 .

Proof.

Note that we consider causal analysis bank and anticausal synthesis bank purely for

the clarity of presentation. Eq.(2.6) now simpli�es to R(z)E(z) = I, whereas jE(z)j =

z�m = 1=jR(z)j and jR(z)j = zm. Indeed, one can manipulate Eq.(3.8) and Eq.(3.9) to

obtain the exact order m of their determinants:

jE(z)j = jz�(K�1)Ij jDj jE(z�1)j jJj = z�M(K�1) 1

jE(z)j =) jE(z)j = z
�M(K�1)

2 :

We shall complete the proof by contradiction. Suppose that �(E0) >
M
2 , thus �(R0) <

M
2
. Consider the possibility of the factorization of the anticausal R(z). Similarly to the

approach described by Eq.(4.12) and Eq.(4.13), we need to obtain

R0

26664 U �U

�V V

37775 = 0 (4.20)
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to eliminate causality. In this case, �(R0) <
M
2 , and it is possible to choose [ U �V ]T

from M
2
linearly independent vectors from the null space of R0. In other words, it is

possible to write R(z) as R(z) = RK�2(z)G�1(z) where both factors are anticausal.

Now, we have

jR(z)j = jRK�2(z)j jG�1(z)j:

Since jG�1(z)j = z
M
2 ,

jRK�2(z)j = z
M(K�1)

2 �M
2 = z

M(K�2)
2 : (4.21)

Therefore, it is easy to show that RK�2(z) represents an FIR LPPR system of order

(K � 2) as in the proof of Theorem 4.15.

On the other hand,

E(z) = R�1(z) = G(z)R�1
K�2(z):

Consider the product

G�1(z)E(z) = R�1
K�2(z):

We can obtain a causal R�1
K�2(z) with determinant z�

M(K�2)
2 in similar fashion to Eq.(4.9).

However, since �(E0) >
M
2 , the null space of E0 has dimension less than M

2 . Therefore,

the anticausal part of G�1(z)E(z) cannot possibly be suppressed, i.e.,26664 U�1 �V�1

�U�1 V�1

37775 E0 6= 0;
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for any invertible matrices U�1 and V�1. Moreover, the highest order of G�1(z) E(z)

still exists 26664 U
�1 V�1

U�1 V�1

37775 EK�1 6= 0;

because �(EK�1) = �(E0) >
M
2
. So, a shift of z leads to a causal system with order

K, contradicting with the fact that R�1
K�2(z) is causal with order (K � 2) as shown in

Eq.(4.21). The case of �(R0) >
M
2
can be proven in a similar fashion. 2

Theorem 4.15 con�rms the generality of our solution. Another major concern as

mentioned in Section 2.3.4 is the e�ciency of the lattice which shall be established by

the following theorem.

Theorem 4.17 The factorization in Eq.(4.7) is minimal, i.e., the resulting lattice struc-

ture employs the minimum number of delays in its implementation.

Proof.

A structure is said to be minimal if the number of delays used is equal to the degree

of the transfer function. For the class of systems in consideration, it can be proven [95]

that

deg(E(z)) = deg(jE(z)j):

Using the symmetry property of the polyphase matrix in Eq.(3.8), we have

deg(E(z)) = deg(jE(z)j) = deg(z�(K�1)jDj jE(z�1)j jJj):

Therefore,

deg(E(z)) = M(K � 1)� deg(E(z));
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which leads to the conclusion that deg(E(z)) = M(K�1)
2 : In our factorization, there are

(K � 1) building blocks Gi(z), each employs M
2
delays. The total number of delays in

use in the lattice is also M(K�1)
2

. Thus, the factorization is minimal. 2

4.4 Lattice Structure for Odd-Channel LPPRFB

Suppose M is now odd. As previously mentioned in Section 4.2, the minimum order of

the propagating structure G(z) is 2, i.e., G(z) = A0 + A1z
�1 + A2z

�2. According to

Theorem 4.13, the following relationships must hold

A2 = D A0 D (4.22)

A1 = D A1 D; (4.23)

where the reader is reminded that in this case

D =

26664 IM+1
2

0

0 �IM�1
2

37775 :

We expect the factorization to be quite similar to the even-channel case. The main di�er-

ence is that the system now has one more symmetric �lter. So, consider the factorization

below

G(z) = 1
4

2666666664

U u1 0

u2 u0 0

0 0 V

3777777775

2666666664

I+ z�1I 0 I� z�1I

0 2 0

I� z�1I 0 I+ z�1I

3777777775



74

�

2666666664

Q q1 0

q2 q0 0

0 0 R

3777777775

2666666664

I+ z�1I 0 I� z�1I

0 2z�1 0

I� z�1I 0 I+ z�1I

3777777775
(4.24)

where matrices U, V, Q, R, and I have size M�1
2
� M�1

2
; u1 and q1 are of size

M�1
2
� 1;

u2 and q2 are of size 1� M�1
2

; u0 and q0 are scalars.

This particular choice of G(z) results in

A0 = 1
4

2666666664

UQ+ 2u1q2 +UR 0 UQ+ 2u1q2 +UR

u2Q+ 2u0q2 + u2R 0 u2Q+ 2u0q2 + u2R

VQ +VR 0 VQ +VR

3777777775
(4.25)

A1 = 1
4

2666666664

2UQ + 2u1q2 � 2UR 2Uq1 + 4u1q0 �2u1q2

2u2Q+ 2u0q2 � 2u2R 2u2q1 + 4u0q0 �2u0q2

0 2Vq1 2VR � 2VQ

3777777775
(4.26)

A2 = 1
4

2666666664

UQ+UR 2Uq1 �UQ�UR

u2Q+ u2R 2u2q1 �u2Q� u2R

�VQ�VR �2Vq1 VQ +VR

3777777775
: (4.27)

For Eq.(4.22) and Eq.(4.23) to hold simultaneously, the general solution is to set both

q1 and q2 to 0. (Another solution is to choose q1, u1, and u0 to be 0. However,

annihilating u1 and u0 automatically eliminates q2 from the set of free parameters.)
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With q1 = qT2 = 0, the simpli�ed factorization takes the following form

G(z) = 1
4

2666666664

U u1 0

u2 u0 0

0 0 V

3777777775

2666666664

I+ z�1I 0 I� z�1I

0 2 0

I� z�1I 0 I+ z�1I

3777777775

�

2666666664

Q 0 0

0 q0 0

0 0 R

3777777775

2666666664

I+ z�1I 0 I� z�1I

0 2z�1 0

I� z�1I 0 I+ z�1I

3777777775
: (4.28)

The two matrices containing delay elements z�1 can be factorized further as follows2666666664

I+ z�1I 0 I� z�1I

0 2 0

I� z�1I 0 I+ z�1I

3777777775
=

2666666664

I 0 I

0
p
2 0

I 0 �I

3777777775

2666666664

I 0 0

0 1 0

0 0 z�1I

3777777775

2666666664

I 0 I

0
p
2 0

I 0 �I

3777777775
4
= Wo �0(z)Wo (4.29)2666666664

I+ z�1I 0 I� z�1I

0 2z�1 0

I� z�1I 0 I+ z�1I

3777777775
=

2666666664

I 0 I

0
p
2 0

I 0 �I

3777777775

2666666664

I 0 0

0 z�1 0

0 0 z�1I

3777777775

2666666664

I 0 I

0
p
2 0

I 0 �I

3777777775
4
= Wo �1(z)Wo: (4.30)

In both Eq.(4.29) and Eq.(4.30), all factors have trivial orthogonal inverses. Hence,

further enforcement of the PR property on G(z) requires

26664 U u1

u2 u0

37775, V, Q, and R to

be invertible while q0 to be a nonzero scalar. Higher order systems can be constructed

by cascading more G(z) stages:

E(z) = GK�1(z)GK�3(z) � � � G3(z)G1(z)E0; K odd; (4.31)
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and the corresponding synthesis polyphase matrix is given by

R(z) = E�10 z�2G�1
1 (z) z�2G�1

3 (z) � � � z�2G�1
K�3(z) z

�2G�1
K�1(z): (4.32)

Again, the starting block E0 of the cascade does not contain any delay; it represents the

simplest LPPRFB with all �lters of length M. The general solution for E0 is

E0 =

2666666664

U0 u01
p
2 U0J

u02 u00
p
2 u02J

�V0J 0 V0

3777777775
= 1p

2

2666666664

U0 u01 0

u02 u00 0

0 0 V0

3777777775

2666666664

I 0 J

0
p
2 0

�J 0 I

3777777775
; (4.33)

where

26664 U0 u01

u02 u00

37775 and V0 need to be invertible. If a fast-computable transform is

desired, E0 can be chosen as the M �M DCT coe�cient matrix.

The full lattice structure for the analysis bank is depicted in Figure 19(a). The

synthesis bank in Figure 19(b) is obtained from Eq.(4.32). In contrast to the even-

channel case, the odd-channel lattice in Figure 19 is not complete; however, it is still

minimal.

Theorem 4.18 The factorization in Eq.(4.31) is minimal in term of the number of delay

elements used in the FB's implementation.

Proof.

This result comes right from the proof of Theorem 4.17. The degree of E(z) is M(K�1)
2

for both odd and even M . In our odd-channel solution, K is always odd; there are K�1
2

\double" building blocks Gi(z), each employsM delays (�0(z) has
M�1
2

while �1(z) has
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Figure 19: Lattice structure for odd-channel LPPRFBs. (a) Analysis bank. (b) Synthesis

bank.

M+1
2 delays). Therefore, the total number of delays employed in the implementation is

M(K�1)
2

. 2

Remarks. There is a couple of interesting side notes on the lattice in Figure 19.

First, to construct odd-channel LPPUFBs (odd-channel GenLOTs), one simply has to

choose all free-parameter matrices

26664 Ui ui1

ui2 ui0

37775, Vi, Qi, Ri, and qi in the propagating

stages Gi(z) and the starting block E0 to be orthogonal. This choice turns out to be an

alternate, but equivalent, form of the factorization presented earlier in [38]. Secondly, the

curious readers will immediately ponder: what happens at the middle of the \double"

structure? To answer that question, let us consider the simplest case where only half of
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stage G(z) is involved, i.e.,

E(z) =

2666666664

Q 0 0

0 q0 0

0 0 R

3777777775

2666666664

I+ z�1I 0 I� z�1I

0 2z�1 0

I� z�1I 0 I+ z�1I

3777777775

2666666664

U0 u01
p
2 U0J

u02 u00
p
2 u02J

�V0J 0 V0

3777777775
(4.34)

The FB's corresponding transposed coe�cient matrix (PT ) is then2666666664

QU0 �QV0J Qu01 QU0J+QV0 QU0 +QV0J Qu01 QU0J�QV0

0 0 0 q0u02 q0u0 q0u02J

RU0 �RV0J Ru01 RU0J+RV0 �RU0 �RV0J �Ru01 �RU0J+RV0

3777777775
:

Interestingly, the FB still has PR because every factor in Eq.(4.34) is invertible. Further-

more, all �lters still have LP as PT indicates. The only trouble comes from the symmetric

�lter in the middle which turns out to have onlyM taps. This type of systems with �lters

of unequal lengths is outside the class of FB in consideration in this chapter.

4.5 Parameterization of Invertible Matrices

Up until this point, we are still evasive on how to parameterize invertible matrices. In

the paraunitary case, each of the N � N orthogonal matrices Ui;Vi containing the

free parameters is completely characterized by N(N�1)
2

Givens rotations [62] as shown

in Figure 6 (drawn for M = 4). This parameterization of the FB by rotation angles

(called lattice coe�cients) structurally enforces the LP and PR properties, i.e., in the

lattice representation both LP and PR properties are retained regardless of coe�cient

quantization. From a design perspective, the lattice structure is a powerful FB design
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tool since the lattice coe�cients can be varied independently and arbitrarily without

a�ecting the most desirable FB properties. Unconstrained optimization can be applied

to obtain secondary features such as coding gain and stopband attenuation. From a

practical perspective, the lattice provides a fast, e�cient, and robust structure which is

perfect for hardware implementation.

The di�culty in the biorthogonal case is obvious: how do we completely characterize

a nonsingular square matrix Ui of size N? One naive solution is to choose Ui's elements

as the lattice coe�cients. However, there are many problems with this solution. First

of all, it is di�cult to guarantee exact reconstruction when the matrix elements are

quantized. Secondly, this \parameterization" method does not provide a fast and e�cient

FB implementation. Furthermore, in order to obtain a high-performance FB, we have to

synthesize the lattice by an optimization process to �nd the set of optimal (may be only

local) lattice coe�cients. This process typically involves thousands of iterative steps, so

we have to face the costly matrix inversion problem. Finally, how can we prevent the

optimization process from encountering singular or near-singular matrices?

To solve the aforementioned problems, we propose a parameterization method of

invertible matrices by their singular value decompositions (SVD). Recall that every in-

vertible matrix has an SVD representation: Ui = Ui0�iUi1; where Ui0 and Ui1 are

orthogonal matrices, and �i is a diagonal matrix with positive elements [25]. Thus, Ui

of size N can be completely characterized by N(N�1) rotation angles �i (from Ui0, Ui1)

and M
2
diagonal multipliers �i (from �i) as illustrated in Figure 20. Invertibility is guar-

anteed structurally under a mild condition { as long as none of the diagonal coe�cients
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�i representing �i is quantized to zero. Moreover, inverting Ui is now very fast, and

singularity can be prevented by a simple cost function in the optimization process where

a penalty is assigned whenever a diagonal coe�cient (or its inverse) ventures too close

to zero.

U θ1

2θ

3θ
4θ

5θ 6θ

θ 7

8θ

9θ
10θ

11θ 12θ

1α
2α
3α
4α

i

Figure 20: Parameterization of an invertible matrix.

In the even-channel case, under the SVD parameterization, �i can be further factor-

ized as

�i =

26664 Ui0 0

0 Vi0

37775
26664 �i 0

0 �i

37775
26664 Ui1 0

0 Vi1

37775 : (4.35)

Again, the M
2 � M

2 orthogonal matrices Ui0, Ui1, Vi0, and Vi1 are parameterized by

M(M�2)
8 rotations each. The diagonal matrices �i and�i are characterized by

M
2 positive

parameters each. The detailed even-channel lattice structure is shown in Figure 21 (drawn

for M = 8). Each of the K cascading blocks in the lattice (including E0) has
M2

2 degrees

of freedom. Thus, the most generalM -channel LPPRFB with �lter length L = KM (i.e.,

M�L GLBT) can be parameterized by KM2

2 = LM
2 parameters as expected from the most

general LP systems. The classical trade-o� between the FB's speed and performance can

be elegantly carried out by setting some of the diagonal multipliers to 1 or some of the

rotation angles to 0.
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Figure 21: Detailed lattice structure for even-channel LPPRFBs. (a) Analysis bank. (b)

Synthesis bank.

It is also very interesting to verify that all previously reported even-channel LPPRFB's

lattice structures are special cases of the new lattice. For examples, the GLT design

example in [7] hasM = 8;K = 2,U00 andV00 from the DCT;U01 = V01 = �0 =�0 = I;

U1 and V1 parameterized as a cascade of block diagonal matrices. The LBT in [48] has

M = 8;K = 2, U00 and V00 from the DCT, U01 = V01 = �0 = I;�0 = diag[
p
2 1 1 1];

and U1, V1 orthogonal. When orthogonality is imposed, we get back GenLOT [62]. The

popular case of M = 2 that leads to biorthogonal wavelets deserves more attention in

Section 4.6.

Needless to mention, the odd-channel case is much more complicated. An order-2

stage Gi(z) contains (
M+1
2

)2 + 3(M�1
2

)2 + 1 = (M2 �M + 2) free parameters whereas
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E0 has (
M+1
2 )2 + (M�1

2 )2 = M2+1
2 . Since there are M+1

2 symmetric �lters, M�1
2 antisym-

metric �lters, and all of them have LP, the most general solution is expected to have

(M+1
2

)(KM+1
2

) + (M�1
2

)(KM�1
2

) = KM2+1
2

free parameters. Subtracting M2+1
2

parameters

which belong to the initial stage E0, each stage Gi(z) (there are K�1
2

of them) should

possess M2 degrees of freedom. In our proposed solution in the previous section, each

stage is o� by (M � 2) parameters.

4.6 2-Channel LPPRFB Revisited

When M = 2; the orthogonal matrices Ui0, Vi0 degenerate to singleton 1 or �1. The

only free parameters come from the diagonal elements �i0 and �i1 from �i and �i. The

resulting lattice for 2-channel LPPRFB is presented in Figure 22.

2

2

-
01α

α0010α

11α

α

- ---

(Κ−1)0

(Κ−1)1α

-1

1

z 1 1

1

1

1

x[n]^

2

2
x[n]

-
01α

α00 10α

11α

α

-- - -

(Κ−1)0

(Κ−1)1α
(a)

(b)

z-1

z-1

z-1 z-1

z-1

Figure 22: Lattice structure for 2-channel LPPRFBs. (a) Analysis bank. (b) Synthesis

bank.

It is a nice, simple exercise to show that the lattice in Figure 22 is a modular and

slightly more general form of the famous Type-A system lattice introduced by Nguyen
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and Vaidyanathan [53]. The propagating property is now linear phase instead of time-

reversal. The coe�cients ki in the type-A lattice can be shown to be simply
�i0 � �i1
�i0 + �i1

.

Moreover, the authors of [53] have chosen to normalize their lattice by enforcing the

condition �i0 + �i1 = 1.

From a casual glance, the four �lters H0(z), H1(z), F0(z), and F1(z) seem not to

follow the classical \alternating sign" properties: F0(z) = H1(�z) and F1(z) = �H0(�z).

However, a more careful examination shows that F0(z) and H1(�z), F1(z) and �H0(�z)

are only o� by a scaling parameter. Hence, the aliasing cancellation condition in Eq.(2.14)

and the distortion elimination condition in Eq.(2.15) are still satis�ed. In fact, it can be

shown that the scaling disappears when we enforce the following condition on the lattice

coe�cients:
QK�1
i=1 �i0 �i1 = 1.

The elegant lattice in Figure 22 lends itself nicely to various practical constraints. For

instance, a nice feature that generates a lot of research interests is that the FB coe�cients

are dyadic rationals [78], [77], [6]. Such FBs can be implemented by pure shift-and-add

operations, leading to low-power, multiplierless systems in VLSI. Furthermore, these

transform can map integers to integers, a crucial requirement for lossless image coding.

Obtaining dyadic-rational coe�cients from the 2-channel lattice in Figure 22 is trivial.

We simply have to pick the lattice coe�cients f �i0; �i1 g from the set of powers of two

f 2i; i 2 Z g. More generally, the lattice can realize rational-coe�cient LPPRFBs by

restricting f �i0; �i1 g as rational numbers.

As another example, arbitrary degrees of regularity (vanishing moments) can be en-

forced directly upon the set of of lattice coe�cients. This is the novel concept of regularity
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robustness, i.e., wavelets in the lattice representation still retains the smoothness of its

scaling and wavelet functions regardless of coe�cient quantization. To illustrate the idea,

let us consider a 2-channel LPPRFB where all �lters have length 4. From Figure 22, one

can easily (but tediously) arrive at the following �lter coe�cients in close forms:

h0[n] = 1
2
p
2
[�10(�00 � �01) �10(�00 + �01) �10(�00 + �01) �10(�00 � �01)]

h1[n] = 1
2
p
2
[��11(�00 � �01) � �11(�00 + �01) �11(�00 + �01) �11(�00 � �01)]

f0[n] = 1
2
p
2
[ 1
�10

( 1
�00

� 1
�01

) 1
�10

( 1
�00

+ 1
�01

) 1
�10

( 1
�00

+ 1
�01

) 1
�10

( 1
�00

� 1
�01

)]

f1[n] = 1
2
p
2
[ 1
�11

( 1
�00

� 1
�01

) 1
�11

( 1
�00

+ 1
�01

) � 1
�11

( 1
�00

+ 1
�01

) � 1
�11

( 1
�00

� 1
�01

)]:

(4.36)

Enforcing three vanishing moments as described in Eq.(2.18) onto the synthesis lowpass

�lter f0[n] leads to the constraint �01 = 2�00. The �lters in Eq.(4.36) then become

h0[n] = 1
2
p
2
[��10�00 3�10�00 3�10�00 � �10�00]

h1[n] = 1
2
p
2
[�11�00 � 3�11�00 3�11�00 � �11�00]

f0[n] = 1
2
p
2
[ 1
2�10�00

3
2�10�00

3
2�10�00

1
2�10�00

]

f1[n] = 1
2
p
2
[ 1
2�11�00

3
2�11�00

� 3
2�11�00

� 1
2�11�00

]:

(4.37)

The synthesis scaling function has three vanishing moments independent of the values of

�00, �10, and �11 (as long as they are not zeros or in�nity). These three lattice coe�cients

can be chosen as dyadic rationals to realize nice integer-coe�cient transforms. This

section once again con�rms the tremendous exibility and generality of the SVD-based

lattice in Figure 21.
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4.7 Design

4.7.1 Filter Bank Optimization

Any realization of the lattice coe�cient set f�i; �ig in the previous two sections results

in an LPPR system. However, for the FB to have high practical value, several other

properties are also needed. High-performance FBs can be obtained using unconstrained

nonlinear optimization where the lattice coe�cients are the free parameters. Some of the

popular criteria in FB optimization are: coding gain, DC leakage, attenuation around

mirror frequencies, and stopband attenuation. In the particular �eld of image compres-

sion, all of these criteria are well-known desired properties in yielding the best recon-

structed image quality [77], [66]. The cost function in the optimization process can be a

weighted linear combination of these measures as follows

Coverall = �1 Ccoding gain + �2 CDC + �3 Cmirror

+ �4 Canalysis stopband + �5 Csynthesis stopband: (4.38)

Coding Gain

The coding gain of a transform is de�ned as the reduction in transform coding mean-

square error over pulse-code modulation (PCM) which simply quantizes the samples of

the signal with the desired number of bits per sample. De�ne �2x as the variance of the

input signal x[n], �2xi as the variance of the i-th subband, and jjfijj2 as the L2 norm of

the i-th synthesis �lter. With several assumptions including scalar quantization and a
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su�cient large bit rate, the generalized coding gain can be formulated as [34], [32]:

Ccoding gain = 10 log10
�2x 

M�1Y
i=0

�2xijjfijj2
! 1

M

: (4.39)

The signal x[n] is the commonly-used AR(1) process with intersample autocorrelation

coe�cient � = 0:95 [47]. The coding gain can be thought of as an approximate measure

of the transform's energy compaction capability. Among the listed criteria, higher coding

gain correlates most consistently with higher objective performance (measured in MSE

or PSNR). Transforms with higher coding gain compact more energy into a fewer number

of coe�cients, and the more signi�cant bits of those coe�cients always get transmitted

�rst in the progressive transmission framework employed in Chapter 7.

Low DC Leakage

The DC leakage cost function measures the amount of DC energy that leaks out to the

bandpass and highpass subbands. The main idea is to concentrate all signal energy at

DC into the DC coe�cients. This proves to be advantageous in both signal decorrelation

and in the prevention of discontinuities in the reconstructed signals. Low DC leakage

can prevent the annoying checkerboard artifact that usually occurs when high frequency

bands are severely quantized [77]. This problem is more troublesome in traditional block

transform coders because high frequency bands are usually more coarsely quantized. The

DC cost function is de�ned as

CDC =
M�1X
i=1

L�1X
n=0

hi[n]: (4.40)
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The readers should note that all antisymmetric �lters have a zero at DC. Therefore, the

above formula only needs to apply to symmetric �lters to reduce the complexity of the

optimization process.

Attenuation at mirror frequencies

The mirror frequency cost function is a generalization of CDC. The concern is now at

every aliasing frequencies !m = 2�m
M
; m 2 Z; 1 � m � M

2 . Ramstad et al show that

frequency attenuation at mirror frequencies are very important in the further reduction

of blocking artifacts: the �lter responses should be small at these mirror frequencies as

well [66]. The corresponding cost function is:

Cmirror =
M�1X
i=0

jHi(e
j!m)j2; !m =

2�m

M
; 1 � m � M

2
: (4.41)

Low DC leakage and high attenuation near the mirror frequencies are not as essential to

the coder's objective performance as coding gain. However, they do improve the visual

quality of the reconstructed image signi�cantly.

Stopband Attenuation

Stopband attenuation of the �lters is a classical performance criterion in �lter design.

In this dissertation, the stopband attenuation criterion measures the sum of all of the

�lters' energy outside the designated passbands:

Canalysis stopband =
M�1X
i=0

Z
!2
stopband

W a
i (e

j!) jHi(e
j!)j2d! (4.42)

Csynthesis stopband =
M�1X
i=0

Z
!2
stopband

W s
i (e

j!) jFi(ej!)j2d!: (4.43)
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In the analysis bank, the stopband attenuation cost helps in improving the signal decor-

relation and decreasing the amount of aliasing. In meaningful images, we know a priori

that most of the energy is concentrated in low frequency region. Hence, high stopband

attenuation in this part of the frequency spectrum becomes extremely desirable. In the

synthesis bank, the reverse is true. Synthesis �lters covering low-frequency bands need

to have high stopband attenuation near and/or at ! = � to enhance their smoothness.

The biased weighting can be enforced using two simple functions W a
i (e

j!) and W a
i (e

j!)

as shown in Eq.(4.43).

Initialization

All design examples presented in this dissertation are obtained from the multi-variable

nonlinear optimization routine simplex [52] in Matlab. To initialize the lattice, we set the

matrices containing the free parameters (Ui and Vi) to either I or �I. More speci�cally,

the rotation angles �i are initialized to either 0 or �, whereas the diagonal multipliers �i

are all initialized to 1.

4.7.2 Design Examples

Figure 23 { 29 present several design examples obtained from nonlinear optimization of

the new lattice coe�cients with various cost functions. Depicted in Figure 23 is design

example I with 4 channels and 8-tap �lters. Figure 24 shows design example II, an 8-

channel LPPRFB with 16-tap �lters (8 � 16 GLBT). In Figure 25 is design example III

with 16 channels and �lter length of 32 (16 � 32 GLBT). All three FBs are DCT-based
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and are obtained from a combinatorial cost function where the coding gain is given the

highest priority. Design examples I{III illustrate the tremendous degree of exibility that

the new biorthogonal class of LTs enjoys over its orthogonal relatives in previous works

[62], [75], [80]. The analysis bank is designed to maximize coding gain, minimize the DC

leakage, and minimize the stopband attenuation in low frequency bands where there is

usually a high concentration of image energy. On the other hand, the synthesis bank

is designed to have its �lters decaying asymptotically to zero to completely eliminate

blocking artifacts. Furthermore, the stopband attenuation in high frequency synthesis

bands is also minimized so that the resulting synthesis �lters are generally smooth, leading

to more visually-pleasant reconstructed images.

The 8� 16 GLBT in design example II, if optimized for pure coding gain, can attain

9.63 dB which equals the coding gain reported on optimal biorthogonal systems in [1].

However, the 8 � 16 LBT in [1] was obtained by a direct constrained optimization on

the �lter coe�cients, so it might only be near-PR and it certainly does not have a fast,

e�cient, and robust implementation. In design example II, 0.01 dB of coding gain has

been sacri�ced for high attenuation at DC, near DC, and at mirror frequencies to ensure

a high level of perceptual performance in image coding. In the 16 � 32 case, our GLBT

in Figure 25 achieves an impressive coding gain of 9.96 dB.

GLBT design examples with longer �lter length are shown in Figure 26 and Figure 27.

While increasing the GLBT length only improves the coding gain marginally (see design

example IV in Figure 26), it helps tremendously in the case of stopband attenuation

(where longer �lters are always bene�cial) as testi�ed by design example V in Figure 27.
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Figure 23: Design example I: M = 4 L = 8 optimized for coding gain, DC attenuation,

mirror frequency attenuation, and stopband attenuation.
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Figure 24: Design example II:M = 8 L = 16 optimized for coding gain, DC attenuation,

mirror frequency attenuation, and stopband attenuation.
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Figure 25: Design example III: M = 16 L = 32 optimized for coding gain, DC attenua-

tion, mirror frequency attenuation, and stopband attenuation.
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Figure 26: Design example IV:M = 8 L = 32 optimized for coding gain, DC attenuation,

mirror frequency attenuation, and stopband attenuation.
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Figure 27: Design example V: M = 8 L = 32 optimized for stopband attenuation of

analysis bank only.

Two odd-channel FBs are presented in Figure 28 and Figure 29. Design example VI

in Figure 28 is a 7-channel 21-tap LPPRFB optimized for maximum coding gain and

high stopband attenuation near DC for the analysis bank and near � for the synthesis

bank. Hence, the synthesis basis functions are much smoother than the analysis. Design

example VII in Figure 29 has 5 channels and �lters of 15 taps, optimized for coding gain

and DC attenuation. Important properties of several high-performance design examples

are compiled in Table 3; the DCT [67], the LOT [47], and the 8 � 40 GenLOT [89] are

included for comparison purposes.

DCT LOT

   Transform
    Property

Transform

Coding Gain (dB)

DC Attenuation (-dB)

8.83

310.62

9.96

8x8 8x16

Stopband Attenuation (-dB)

Mirror Freq. Attenuation (-dB) 322.10

9.22

312.56

19.38

317.24

GLBT (II)
8x16

9.62

327.40

13.50

55.54

GLBT (III)
16x32

9.96

303.32

14.28

302.35

GLBT (IV)
8x32

9.63

327.57

15.43

43.84

GLBT (V)
8x32

9.33

35.92

31.27

23.83

9.50

37.94

11.97

16.45

GenLOT
8x40

9.52

322.10

16.18

317.24

GLBT (VI)
7x21

Table 3: Comparison of transform properties (L = KM).
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Figure 28: Design example VI: M = 7 L = 21 optimized for coding gain and stopband

attenuation.
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Figure 29: Design example VII: M = 5 L = 15 optimized for coding gain and DC

attenuation.
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4.8 Summary

We have presented in this chapter general lattice structures for M -channel LPPRFBs

with all analysis and synthesis �lters of the same length L = KM . The novel lattices

based on the SVD provide fast, robust, modular implementations and a friendly design

procedure for all LP lapped transforms with arbitrary integer overlapping factorK: In the

popular even-channel case, the lattice is proven to completely span the set of all possible

solutions. We also prove that the proposed lattice structures are minimal in term of

the number of delays employed in its implementation for both even and odd number of

channels. The relaxation of the orthogonal constraint gives the novel biorthogonal LPFB

a whole new dimension of exibility: the analysis and the synthesis bank can now be

tailored appropriately to �t a particular application. Especially in image compression

application, the analysis bank can be optimized for maximum energy compaction while

the synthesis �lters are designed to have a high degree of smoothness. In the progressive

image coding example presented later in Chapter 7, we shall demonstrate that the M -

channel LPPRFBs presented in this chapter o�er the highest coding performances up to

date.
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Chapter 5

Lapped Transforms of Arbitrary

Block Size

5.1 Introduction

In Chapter 4, the term \generalized" in the GLBT is somewhat of a misnomer. The

elegant lattices in Figure 18 and Figure 19 can only realize systems with �lter length

KM . They are certainly not as general as claimed. This length restriction may con�ne

to some extent the exibility in the system design and implementation. Extending the

�lter length from KM to KM + � provides more degrees of freedom in �ne-tuning the

�lters to meet certain design speci�cation, stopband attenuation for instance, with the

lowest level of transform complexity. In all of the previous work on lapped transforms

[45], [46], [47], [75], [62] and even in Chapter 4, the step size in increasing the �lter

length is at least M . Hence, the number of overlapping samples is always a multiple of

the number of channels. It is quite natural to ponder whether this is a necessary and/or a

reasonable requirement. What happens if one would like to overlap the blocking window

by one, two, or any arbitrary number of samples?



96

The KM length restriction is also not very convenient when the number of channels

M is large (say, 16 or 32). From a design point of view, a large increase in length

means a higher-dimension non-linear parameter space to be searched and the optimization

program tends to be more easily trapped in local minima. From an implementation

point of view, a large increase in �lter length translates to a much higher computational

complexity. This calls for the development of LPPRFBs with arbitrary-length �lters, or

LTs of arbitrary block size.

A step towards designing the most general LT is taken in this chapter. In other words,

M -channel LPPRFBs with �lter length L = KM+�, � 2 Z, 0 � � < M�1, are studied

in depth. Similarly to the approach in Chapter 4, we shall �rst con�rm the generality

of the LP-propagation structure G(z) in Theorem 4.13 for the subclass of LPPRFB in

consideration. Exploiting this result, we next derive a complete and minimal factorization

for all even-channel solutions. This is the most general LT ever reported in the literature.

Several design examples obtained from the novel lattice structure are presented. They

are compared to the GenLOT [62] and the GLBT [83] in Chapter 4 (both are special

cases when � = 0) in coding gain, stopband attenuation, and attenuation at DC as well

as around mirror frequencies.

5.2 Existence conditions

Throughout this chapter, the class ofM -channel FB under investigation still possesses all

of the properties in the Problem Formulation section of Chapter 4. The only di�erence
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is that all of the �lters now have length L = KM + � instead of L = KM . Most of the

results in this chapter are limited to the popular even-channel case. Before deriving any

lattice structure, let us �rst investigate the possible existence of the solutions.

Theorem 5.19 Even-channel odd-length LPPRFB does not exist. Odd-channel even-

length LPPRFB does not exist.

Proof.

The proof is readily obtained from the permissible conditions in Table 2. If M is

even and all �lters have the same odd length L, then � is odd and Ki = K. Hence,

PM�1
i=0 Ki = MK, which has to be even, contradicting the requirement that

PM�1
i=0 Ki is

odd. We can also use the result of Corollary 3.12 directly: the sum of all �lter lengths

ML is an odd multiple of M , contradicting with the necessary restriction that the sum

of length must be an even multiple of the number of channels for even-channel systems.

Therefore, even-channel LPPRFBs with �lters having the same length L = KM+� only

exist if the �lter length is even. The length increment must be at least two taps at a

time. In the LT language, the number of overlapping samples must be even.

Similarly, for odd-channel LPPRFBs, if all �lters have the same even length, the sum

of length cannot be odd as required. Odd-channel LPPRFBs with �lters having the same

length L = KM + � only exist if the �lter length is odd. 2
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5.3 General Lattice Structure

It can easily be shown that the same approach in Chapter 4 (propagating the LP and PR

properties) can be applied to the new class of LPPRFB to obtain a similar factorization

of the polyphase matrices.

Theorem 5.20 Suppose there exists an M-channel FIR LPPRFB with all analysis and

synthesis �lters of length L = KM +� with the associated polyphase matrix F(z). De�ne

E(z)
4
= G(z)F(z) where the propagating structure is G(z) of order N , i.e., G(z) =

PN
i=0Aiz

�i. Then, E(z) has LP and PR if and only if

� G(z) is FIR invertible.

� G(z) takes the form G(z) = z�N D G(z�1) D:

� Ai = D AN�i D:

Proof.

Theorem 5.20 is a straightforward extension of Theorem 4.13. The condition that

G(z) is FIR invertible can be easily and immediately established. The lone di�erence

between the two theorems lies at the altered form of the polyphase matrices. With the

extra � taps in length, the LP property of F(z) and E(z) in Eq.(3.3) becomes

F(z) = z�(K�1) D F(z�1) Ĵ(z)

E(z) = z�(K+N�1) D E(z�1) Ĵ(z);
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where

Ĵ(z) =

26664 z�1J� 0��(M��)

0(M��)�� JM��

37775 :
However, Ĵ(z) does not a�ect the form of G(z) in Theorem 4.13 as far as propagating

the LP property is concerned

E(z) = z�(K+N�1) D E(z�1) Ĵ(z)

() E(z) = z�(K+N�1) D G(z�1) F(z�1) Ĵ(z)

() E(z) = z�N D G(z�1) z�(K�1) F(z�1) Ĵ(z)

() E(z) = z�N D G(z�1) D z�(K�1) D F(z�1) Ĵ(z)

() E(z) = z�N D G(z�1) D F(z):

Therefore, similarly to what we have discovered in the previous chapter, it is necessary

and su�cient that G(z) = z�N DG(z�1)D for E(z) to have LP. The last condition on

the symmetry of Ai follows trivially from the above form of G(z). 2

With the result from Theorem 5.20, we can construct high-order even-channel LP-

PRFBs analogously to the cascade structure in Eq.(4.7). The polyphase matrix of the

analysis bank is

E(z) = GK�1(z)GK�2(z) � � � G2(z)G1(z)E0(z) =
1Y

i=K�1
Gi(z)E0(z); (5.1)

where each Gi(z) building block has the familiar form in Eq.(4.6)

Gi(z) =
1
2

26664 Ui 0

0 Vi

37775
26664 I I

I �I

37775
26664 I 0

0 z�1I

37775
26664 I I

I �I

37775 :
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The corresponding polyphase matrix of the synthesis bank is then

R(z) = z�(K+��1) E�10 (z)G�1
1 (z) � � � G�1

K�1(z) = z�� E�10 (z)
K�1Y
i=1

z�1 G�1
i (z): (5.2)

The general lattice structure for the analysis bank of an LT of arbitrary block size

is shown in Figure 30. To obtain LPPU systems, the free-parameter matrices in Gi(z)

(Ui and Vi) and Ei(z) are chosen to be orthogonal. To obtain LPPR systems, Gi(z)

and E0(z) are chosen invertible. With each stage Gi(z) added in or peeled out, the

�lter length is increased or decreased by M because of the structure of �(z). In order

to end up with the �nal length L = KM + �, we have to take care of the \extra" �

coe�cients in E0(z), i.e., E0(z) is the polyphase matrix of a LPPR system with �lters'

length (M+�). Of course, the \extra" � coe�cients can be taken care of at the �nal stage

of the factorization in Eq.(5.1) too. However, such structures will not be as modular.

The development of the initial stage E0(z) is not trivial; it deserves a complete section.
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Figure 30: General lattice structure for LTs of arbitrary block size.
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5.4 The initial stage E0(z)

We shall �rst present the orthogonal (PU) solution, and then generalize to the biorthog-

onal case by employing the SVD parameterization presented in Chapter 4.

5.4.1 Orthogonal Case

Since E0(z) must contain M
2
symmetric and M

2
antisymmetric �lters as stated in Table

2, E0(z) has the following form:

E0(z) = 1p
2

26664 S00 + z�1 S00 J S01 S01 J

A00 J� z�1 A00 A01 J �A01

37775 ; (5.3)

where sub-matrices S00 and A00 have size
M
2
� � while S01 and A01 have size

M
2
� M��

2
.

It can be veri�ed that this form of E0(z) allows the �rst � polyphase components to

have one order more than the remainingM � � polyphases, and E0(z) satis�es the LP-

equivalent condition in Theorem 3.6. The corresponding coe�cient matrix P0 with each

�lter's impulse response arranged row-wise is:

P0 = 1p
2

26664 S00 S01 S01J S00J

A00J A01J �A01 �A00

37775 : (5.4)

In order for E0(z) to be PU, P0 has to satisfy the time-domain constraint [95] previ-

ously mention in Chapter 2, with hi[n] being its rows:

1X
n=�1

hj[n] h
T
k [n� `M ] = �[`] �[j � k]; ` 2 Z:
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In matrix notation, it is equivalent to E0(z)ET
0 (z

�1) = I, i.e.,8>>><>>>:
S00 S

T
00 + S01 S

T
01 = 1

2
I

A00 A
T
00 + A01 A

T
01 = 1

2
I

(5.5)

8>>>>>>>><>>>>>>>>:

S00 J S
T
00 = 0

A00 J A
T
00 = 0

S00 A
T
00 = 0:

(5.6)

The �rst two equations are referred to as the orthogonality conditions; the remaining

three are referred to as the shift-orthogonality conditions. A simple solution for Eq.(5.5)

and Eq.(5.6) was proposed in [86] { choosing any arbitrary M
2 � M

2 orthogonal matrixU0

and then inserting �
2
zero column(s) intermittently between the columns of U0 to form

the M
2 � M+�

2 matrix [ S00 S01 ] in Eq.(5.4). The same procedure can be repeated to

obtain [A00 J A01 J ]. More clearly, starting with an M
2 � M

2 orthogonal matrix U0 with

columns ui�: U0 = [ u1� u2� � � � uM
2 � ], we can insert �

2 zero columns alternately

as following to obtain [ S00 S01 ] = [ u1� 0 u2� 0 � � � uM
2 � ]. This solution is

demonstrated in Figure 31.

It can be easily veri�ed that the zero-column-inserting method yields four matrices

S00, S01, A00, and A01 that satisfy both orthogonality in Eq.(5.5) and shift-orthogonality

in Eq.(5.6). However, this solution can only be proven to be general for the case when

� = 2. Let U00 be an arbitrary matrix of size M
2 � �

2 . A more general solution for

shift-orthogonality in Eq.(5.6) is S00 = [U00Tp U00 Tm ], with Tp
4
= (T0 +T1 J) and

Tm
4
= (T0 J �T1) where T0, T1 are any two orthogonal matrices of size �

2 . With the
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forced to be zero

forced to be zero

Figure 31: Demonstration of the simple zero-inserting solution.

above form of S00, we can show that shift-orthogonality is achieved, i.e., S00 J ST00 = 0:

S00 J S
T
00 = [ U00 Tp U00 Tm ] J

26664 TT
p U

T
00

TT
m U

T
00

37775

= [ U00 (T0 +T1 J) U00 (T0 J�T1) ]

26664 J (J T
T
0 � TT

1 )U
T
00

J (TT
0 + J TT

1 )U
T
00

37775
= U00 [ (T0 +T1 J) (T

T
0 � J TT

1 ) + (T0 J�T1) (J T
T
0 +TT

1 ) ] U
T
00

= U00 [ T0 T
T
0 � T0 J T

T
1 + T1 J T

T
0 � T1 T

T
1

+T0 T
T
0 + T0 J T

T
1 � T1 J T

T
0 � T1 T

T
1 ]UT

00

= U00 0 U
T
00 = 0: (5.7)

The remaining shift-orthogonality conditions can be obtained similarly. In particular,

by choosing A00 = [V00 J Tp V00 J Tm ], we can easily show that the remaining two

shift-orthogonal equations in Eq.(5.6) also hold. For any arbitrary M
2
� �

2
matrixU00 and
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any arbitrary M
2 � M��

2 matrix U01 (these matrix sizes guarantee the �rst � polyphase

components to have an extra order), the proposed solutions above lead to the following

factorization of E0(z) as follows

E0(z) = 1p
2

26664 U00Tp + z�1U00TmJ U00Tm + z�1U00TpJ U01 U01J

V00JTp � z�1V00JTmJ V00JTm � z�1V00JTpJ V01J �V01

37775

= 1p
2

26664 U00 U01 U01 J z�1 U00

V00 J V01 J �V01 �z�1 V00 J

37775

266666666666664

Tp Tm 0 0

0 0 IM��
2

0

0 0 0 IM��
2

Tm J Tp J 0 0

377777777777775

= 1p
2

26664 U00 U01 U01 J U00

V00 J V01 J �V01 �V00 J

37775

266666666666664

I�
2

0 0 0

0 IM��
2

0 0

0 0 IM��
2

0

0 0 0 z�1 I�
2

377777777777775

�

266666666666664

Tp Tm 0 0

0 0 IM��
2

0 0 0 IM��
2

Tm J Tp J 0 0

377777777777775
4
= �0 �0(z)T: (5.8)

At this point, our proposed factorization has only guaranteed shift-orthogonality. In

order for E0(z) to be paraunitary, orthogonality needs to be imposed on �0 and T as

well. (Note that �0(z) is already paraunitary). First of all, notice that �0 resembles the
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�rst block of the GLBT in the previous chapter; it can be factorized further as

�0 = 1p
2

26664 U00 U01 U01 J U00

V00 J V01 J �V01 �V00 J

37775

= 1p
2

26664 U00 U01 U01 J U00 J

V00 J V01 J �V01 V00

37775

266666666666664

I�
2

0 0 0

0 IM��
2

0 0

0 0 IM��
2

0

0 0 0 J�

2

377777777777775

= 1p
2

26664 U0 0

0 V0

37775
26664 IM

2
JM

2

JM
2

�IM
2

37775
26664 IM��

2
0

0 J�

2

37775 ; (5.9)

where we have de�ned U0
4
= [U00 U01 ] and V0

4
= [V01 V00 ]. Thus, it is clear that

�0 is orthogonal if and only if U0 and V0 are orthogonal.

Next, for clarity of presentation, we permute T into

eT =

2666666664

Tp Tm 0

Tm J Tp J 0

0 0 IM��

3777777775
=

2666666664

T0 +T1 J T0 J�T1 0

T0 �T1 J T0 J+T1 0

0 0 IM��

3777777775
:

Then, eT can be further factorized as

eT =

2666666664

I�
2

I�
2

0

I�
2
�I�

2
0

0 0 IM��

3777777775

2666666664

T0 0 0

0 T1 0

0 0 IM��

3777777775

2666666664

I�
2

J�

2
0

J�

2
�I�

2
0

0 0 IM��

3777777775
: (5.10)

Again, eT is orthogonal as long as T0 and T1 are chosen orthogonal. Combining Eq.(5.8),

Eq.(5.9), and Eq.(5.10), we have a factorization for the paraunitary initial stage E0(z).
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The corresponding coe�cient matrix P̂0 can be shown to be:

P̂0 = 1p
2

26664 U00 Tp U00 Tm U01 U01 J U00 Tm J U00 Tp J

V00 J Tp V00 J Tm V01 J �V01 �V00 J Tm J �V00 J Tp J

37775 :
(5.11)

By inspection, E0(z) produces a linear phase system. Furthermore, since all factors

in Eq.(5.8) are orthogonal, E0(z) is paraunitary. Thus, the complete system E(z) in

Eq.(5.1) is LPPU. The detailed structure of the initial E0(z) block is depicted in Figure

32 (drawn for M = 8 and � = 4). The degrees of freedom reside in the four matrices

T0, T1, U0, and V0. The �rst two �
2
� �

2
orthogonal matrices are parameterized by

�(��2)
8 rotation angles each, whereas each of the latter two M

2 � M
2 orthogonal matrices

is parameterized by M(M�2)
8

rotation angles. For an even faster implementation, the

transfer function matrix

1p
2

26664 U0 0

0 V0

37775
26664 IM

2
JM

2

JM
2

�IM
2

37775
can be chosen to be the M �M DCT.
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Figure 32: The initial stage E0(z) in details.
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Remarks. When � decreases to zero, the transfer function from the beginning of

E0(z) to the matrix 26664 IM
2

JM
2

JM
2

�IM
2

37775
in �0 disappears, and we are left with the familiar zero-order E0 in Eq.(2.24), i.e., the

simple lattice reduces to the traditional DCT form. On the other hand, when � increases

to M , T0 and T1 become M
2 � M

2 orthogonal matrices, the two \butteries" to their left

and to their right become full-grown, �0(z) extends to �(z) in Eq.(2.27), and

26664 IM
2

JM
2

JM
2

�IM
2

37775
26664 IM��

2
0

0 J�

2

37775 �!

26664 IM
2

JM
2

JM
2

�IM
2

37775
26664 IM2 0

0 JM
2

37775 =

26664 IM2 IM
2

IM
2

�IM
2

37775 :

The initial stage E0(z) now grows to the complete LOT lattice in Eq.(2.25). Finally,

when � = 2, there is no degree of freedom: T0 and T1 degenerate to singleton 1's. This

con�rms the comment we have made earlier that inserting two columns of zeros into the

E0 matrix is the only solution in the case � = 2.

5.4.2 Biorthogonal Case

The extension to the biorthogonal solution is straightforward. As one may have observed

from the main results in in Chapter 4, biorthogonal transform can be obtained from its

orthogonal relative by simply relaxing the orthogonal constraint on the matrices contain-

ing the free parameters. More speci�cally, if we now choose T0, T1, U0, and V1 to be

invertible (instead of orthogonal), E0(z) can be easily veri�ed to satisfy biorthogonality
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as de�ned in De�nition 2.5. The four aforementioned matrices can be completely pa-

rameterized by the SVD decomposition as described in Section 4.5. When � decreases

to zero or increases to M , our proposed initial stage E0(z) reduces to E0 in Eq.(4.8) or

extends to a full GLBT of order 2 as shown in Figure 21.

5.5 Completeness and Minimality

The full lattice structure covering M -channel LPPRFB with �lter length L = KM + �

is shown in Figure 33 (drawn for M = 8 and � = 4 here). In the orthogonal case, the

lattice coe�cients are the rotation angles of the orthogonal matrices T0, T1, Ui, and

Vi; i = 0; 1; : : : ;K � 1: Hence, the total number of lattice coe�cients (free parameters

to �ne-tune the transform) is KM(M�2)
4

+ �(��2)
4

. When � decreases to 0 or increases to

M , the number of parameters changes consistently with those previously reported [62],

[75] (peeling out a stage or adding in a stage, respectively).
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Figure 33: Complete lattice structure for LTs of arbitrary block size.

In the biorthogonal case, the lattice coe�cients reside in the invertible matrices T0,
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T1, Ui, and Vi; i = 0; 1; : : : ;K � 1. The total number of free parameters now increases

to p = KM2

2
+ �2

2
. Again, p varies consistently with the degrees of freedom stated

in Section 4.5, i.e., when � �! 0, p �! KM2

2
; when � �! M , p �! (K+1)M2

2
. As a

reminder, we have shown in Section 5.2 that solutions only exist when � is even: it is

not possible to design any even-channel odd-length LPPRFB.

To guarantee that no solution can be missed using this cascade design procedure,

the converse of this result, stated in the following theorem, has to be proven. In other

words, the proposed solution does cover all even-channel LPPRFBs with �lter length

L = KM + �.

Theorem 5.21 The polyphase matrix E(z) of any even-channel LPPRFB with �lter

length L = KM + � can always be factored as Eq.(5.1) where its factors are given by

Eq.(4.6) and Eq.(5.8).

Proof.

Theorem 5.21 can be rephrased as following: suppose there exists an arbitrary FIR

LPPRFB with the associated analysis polyphase matrix E(z) satisfying Eq.(3.3) then:

� E(z) can always be factored as in Eq.(5.1).

� E0(z) can always be factored as in Eq.(5.8).

The former is achieved by performing the order reduction process resembling the

procedure presented in the proof of Theorem 4.15. In a straightforward similar manner,

we can always construct an order-1 structure, namely G(z) in Eq.(4.6), such that the
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the linear phase property, the perfect reconstruction property, and the causal property

are all retained. Furthermore, the order of E(z) is reduced by 1 after each stage G(z)

is peeled o�. Given a polyphase matrix with �lters of length L = KM + �, after K � 1

reduction steps performed by Gi(z); i = 1; 2; : : : ;K � 1, the remainder is the LPPRFB

E0(z) as shown in Eq.(5.3). Now, all what is left to prove is the latter part of the lemma:

E0(z) can always be factored as in Eq.(5.8).

We shall �rst present the proof for the paraunitary case since the notations are sim-

pli�ed signi�cantly. Given an LPPU starting block E0(z) as in Eq.(5.3), Eq.(5.4) shows

that the corresponding coe�cient matrix P0 will take the form in Eq.(5.4) where S00,

S01, A00, and A01 must satisfy the shift-orthogonality and orthogonality condition in

Eq.(5.5). respectively. On the other hand, from the proposed factorization of E0(z), the

corresponding coe�cient matrix P̂0 takes the form in Eq.(5.11).

We have to prove that there exists orthogonal matrices U0
4
= [U00 U01], V0

4
=

[V00 V01] of size
M
2 � M

2 , and T0, T1 of size
�
2 � �

2 such that:

U01 = S01; [U00 (T0 +T1 J) U00 (T0 J�T1)] = S00;

and similarly,

V01 = A01; [V00 (T0 +T1 J) V00 (T0 J�T1)] = A00:

The proof for existence of U01 and V01 is not di�cult. By imposing the paraunitary

constraint on E0(z) in Eq.(5.3): ET
0 (z) E0(z) = I, it can be shown that the columns of

S01 must be orthonormal, i.e., ST01 S01 = IM��
2
. Since U01 includes

M��
2

columns of an
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arbitrary orthogonal M
2 � M

2 matrix U0, U01 surely spans the space of all possible S01.

In other words, we can obtain U01 from the columns of the given matrix S01. Similar

procedures can be carried out in the construction of V01 from A01.

The proof of existence for the remaining building blocks is a little more tricky. We

have to show that [U00 (T0 + T1 J) U00 (T0 J � T1)] spans the space of all possible

S00. Since

S00 S
T
00 + S01 S

T
01 = 1

2
IM

2
;

[S00 S01] has rank
M
2
, i.e., the matrix has M

2
independent columns out of its M+�

2
columns.

Moreover, shift-orthogonality must also be satis�ed, i.e., S00 J ST00 = 0M
2
. This means

that the columns of J ST00 lie in the nullspace of S00. Moreover,

�(J ST00) = �(ST00) = �(S00) = dimension of nullspace of S00:

Also, for any M
2
� � matrix S00,

dimension of column space + dimension of nullspace = �:

Hence, the dimension of the column space of S00 must be �
2 , or in other words, S00 must

have �
2
independent columns. As a result, all M��

2
columns of S01 must be independent.

This agrees with our result. Recall that U0
4
= [U00 U01] is an

M
2 � M

2 orthogonal matrix

with U00 containing the �rst
�
2 columns and U01 containing the last

M��
2 columns. Since

the columns of any orthogonal matrix are independent,

�(U01) =
M � �

2
= �(S01);
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or U01 spans the space of all possible S01. Similarly, since �(U00) = �
2 ,

�([U00 (T0 +T1 J) U00 (T0 J�T1) ]) =
�

2
= �(S00);

leading to the same conclusion that [ U00 (T0 + T1 J) U00 (T0 J � T1) ] spans the

space of all possible S00. It is always possible to construct U00, T0, and T1 from the

�
2
linearly-independent columns of S00. The same proof can be conducted for the case

involved V0, A00, and A01.

The generalization to biorthogonality is straightforward: the relationship between the

analysis and the synthesis bank is no longer transpositional. We now have two coe�cient

matrices: PA for the analysis bank and PS for the synthesis bank. Their relationship is

dictated by the following time-domain constraint for biorthogonal systems [77]

1X
n=�1

hj[n] g
T
k [n� `M ] = �[`] �[j � k]; ` 2 Z:

where gk[n] stands for the impulse response of the k-th synthesis �lter. The so-called

orthogonal and shift-orthogonal constraint in Eq.(5.5) and Eq.(5.6) are still true if the

matrices in transposed format are replaced by the appropriate matrices representing the

synthesis bank.

From this observation, it is easy to show that the theorem still holds when orthogonal

matrices in the proof of the orthogonal case above are replaced by invertible ones (the

synthesis bank is not identical to the analysis bank anymore), and orthogonal columns

(or rows) are replaced by linearly independent ones. In other words, the elements of PA

can always be used to construct the matrices T0, T1, U0, and V0, whereas T
�1
0 , T�11 ,

U�1
0 , and V�1

0 can always be constructed from PS. 2
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Next, we should establish the minimality of the resulting lattice structure from

Eq.(5.1).

Theorem 5.22 The proposed factorization of E(z) as in Eq.(5.1), where E0(z) is given

as in Eq.(5.8), is minimal, i.e., it employs the fewest number of delays in the implemen-

tation of the polyphase matrix.

Proof.

Similarly to the proof of Theorem 4.17, we have to prove that the number of delays

employed should not exceed the degree of the transfer function, or equivalently, the degree

of the transfer function's determinant in lossless systems.

Using the symmetry property of the polyphase matrix in Eq.(3.3) of Theorem 3.6, we

have

deg(E(z)) = deg(jE(z)j) = deg(jDj jz�(K�1)j jE(z�1)j jĴ(z)j):

Therefore,

deg(E(z)) = M(K � 1)� deg(E(z)) + �;

which leads to deg(E(z)) = M(K�1)+�
2 : In our factorization, we use M

2 delays for each

propagation block Gi(z) and
�
2
delays for the starting block E0(z), totaling the same

number of M(K�1)+�
2 delays. Hence, the factorization is minimal. 2
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5.6 Design Examples

The lattice structure described in the previous sections provides a familiar design proce-

dure because it �ts perfectly in the GLBT framework in Chapter 4. The lone di�erence

is in the implementation of the initial stage E0(z). The optimization process and its

various cost functions in Section 4.7 can be applied directly in the design of the new LTs

without any changes. As described in Section 4.7.1, all matrices containing the lattice

coe�cients are initialized to either I or �I.

Figure 34(a) shows design example I: a 6-channel LPPUFB with all �lters having

length 14 (K = 2; � = 2, or 6 � 14 GenLOT) optimized for stopband attenuation.

Design example II in Figure 34(b) is an 8-channel LPPUFB with all �lters having length

12 (K = 1; � = 4, or 8� 12 GenLOT). The polyphase matrix is simply the initial stage

E0(z). Refer to Figure 32 for the implementation of this system. As previously advertised,

this novel FB can be thought of as a GenLOT with non-integer overlap; in design example

II, we have an overlap factor of 1
2
(or half-block overlap). Interestingly enough, with only

two more parameters to optimize and two more delays in the implementation, we are

able to obtain a much improved transform comparing to the DCT.

Several other orthogonal design examples are presented in Figure 35 and Figure 36.

Both of these examples presented are obtained with a general initial stage. If employing

the DCT is desired, the number of parameters is reduced by M(M�2)
4 , leading to narrower

searches and more convenient implementations, but possibly sub-optimal systems.

Two biorthogonal design examples are presented in Figure 37 and Figure 38 where
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Figure 34: GenLOTs of arbitrary block size. (a) Design example I: M = 6 L = 14

optimized for stopband attenuation. (b) Design example II:M = 8 L = 12 optimized for

coding gain, DC attenuation, mirror frequency attenuation, and stopband attenuation.
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Figure 35: GenLOTs of arbitrary block size. (a) Design example III: M = 8 L = 20

optimized for coding gain, DC attenuation, mirror frequency attenuation, and stopband

attenuation. (b) Design example IV:M = 8 L = 28 optimized for stopband attenuation,

coding gain, and mirror frequency attenuation.
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Figure 36: GenLOTs of arbitrary block size. (a) Design example V: M = 8 L = 34

optimized for coding gain, DC attenuation, mirror frequency attenuation, and stopband

attenuation. (b) Design example VI: M = 8 L = 38 optimized for coding gain, DC

attenuation, mirror frequency attenuation, and stopband attenuation.

both analysis and synthesis bank are shown. Design example VII is an 8-channel 12-tap

LPPRFB (8 � 12 GLBT) optimized for coding gain and attenuation at DC frequency.

Design example VIII is also an 8 � 12 GLBT; however, it is optimized to have low

stopband attenuation in the analysis bank only. This FB is intended to show the new

dimension of exibility that biorthogonal systems possess over orthogonal ones. Several

important properties of selective transforms are tabulated in Table 4. Again, the DCT

[67] and the LOT [47] are included to serve as benchmarks.

5.7 Summary

In this chapter, the theory, structure, design, and implementation of lapped transforms

with arbitrary block size are presented. These new transforms are LPPRFBs where all
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Figure 37: GLBTs of arbitrary block size. Design example VII:M = 8 L = 12 optimized

for coding gain and DC attenuation.
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Figure 38: GLBTs of arbitrary block size. Design example VIII: M = 8 L = 12

optimized for stopband attenuation of analysis bank.

DCT LOT

   Transform
     Property

Transform

Coding Gain (dB)

DC Attenuation (-dB)

8.83

310.62

9.96

8x8 8x16

Stopband Attenuation (-dB)

Mirror Freq. Attenuation (-dB) 322.10

9.22

312.56

19.38

317.24

GenLOT (III)
8x20

9.23

322.10

18.92

317.24

GLBT (VII)
8x12

9.11

190.32

16.38

14.17

8.99

29.19

18.19

13.53

GenLOT (II)
8x12

9.02

318.58

12.22

311.86

GLBT (VIII)
8x12

GenLOT (V)
8x34

9.31

324.60

20.78

316.08

GenLOT (VI)
8x38

9.36

328.12

22.52

314.14

Table 4: Comparison of transform properties (L = KM + �).
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�lters have length L = KM+�. Section 5.2 restricts the search space of possible solutions.

Section 5.3 then shows that the same LPPR-propagating building blockG(z) in Chapter

4 can be employed in the derivation of a modular lattice structure for the more general

class of LPPRFBs. The subtle generalization lies at the cascade's initial stage E0(z)

whose derivation is described in details in Section 5.4. The resulting lattice structure is

proven to cover all possible even-channel linear phase paraunitary �lter banks , i.e., any

even-channel linear phase paraunitary systems can be realized by some combination of

these lattice coe�cients. We also prove that the proposed structure is minimal in term

of the number of delays used in the FB implementation.

The lattice is then generalized further to covers biorthogonal systems by the param-

eterization of the free-parameter invertible matrices by their SVD representations. This

is the true generalized lapped transform where the amount of overlap is not constrained

to be a multiple of the number of channels. The permissible length constraint presented

earlier in the dissertation also yields an elegant proof that the overlap has to be an even

number of samples, i.e., odd-length even-channel LT does not exist. The design exam-

ples are comparable in term of FB performance with those in previous works [75], [62]

and the GLBT in Chapter 4, i.e., the proposed cascade structure can provide as good

FBs as those reported previously in the literature. The novel modular lattice in this

chapter still guarantees linear phase and perfect reconstruction properties inherently as

its predecessos: the systems still have LPPR in spite of the quantization of the lattice

coe�cients (the rotation angles of the orthogonal matrices and the multipliers in the

diagonal matrices).



119

Chapter 6

Linear Phase Perfect Reconstruction

Filter Banks with Variable-Length

Filters

6.1 Introduction

This chapter is devoted to the theory, structure, design, and implementation ofM -channel

FIR linear phase perfect reconstruction �lter banks with �lters of di�erent length. This

class of LPPRFBs can be viewed as the generalized lapped orthogonal/biorthogonal

transform with variable-length basis functions that we label VLLOT and VLGLBT

respectively. The main motivation of the new transform is its application in block-

transform-based image coding. Besides having all of the attractive properties of other

FBs presented earlier, the new transform takes advantage of its long basis functions to

represent smooth signal and to reduce blocking artifacts, while reserves its short basis

functions to represent high-frequency signal components like edges and texture to reduce

ringing artifacts. Two design methods are presented, each with its own set of advantages:
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the �rst is based on a direct lattice factorization and the second enforces certain relation-

ships between the lattice coe�cients to obtain variable length �lters. Various necessary

conditions for the existence of meaningful solutions are derived and discussed in both

cases. Many design examples are presented.

There are numerous motivations in studying FBs with �lters of variable length. First

of all, it is quite natural to represent slowly-changing signals by long basis functions. On

the other hand, fast-changing, high-frequency components such as edges and textures

in images are better captured by short basis functions. The wavelet transform serves

as a wonderful illustration of this intuitive concept. Back to the GLBT in Chapter 4

and 5, the GLBT lattice structure imposes a very strict restriction on both analysis and

synthesis �lters: all of them must have the same length L = KM + �. The length

constraint should be relaxed further to Li = KiM + �. This is the most general class of

practical FIR LPPRFBs whose theory has been studied in depth in Chapter 3.

From a lapped transform perspective, it is advantageous for the transforms to have a

set of VL bases. Long basis functions mean larger overlaps of input data and smoother

impulse responses, leading to a reduction of blocking artifacts in the reconstructed im-

ages. Unfortunately, long basis functions are also the main contributors to severe ringing

around strong edges, where huge quantization errors are spread out to smoother neigh-

borhood regions. The remedy to this situation is obvious: developing a class of lapped

transforms with basis functions of variable length. The longer basis functions help pre-

vent blocking, while the remaining of the basis functions have shorter length to help

minimize ringing.
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Viewed from another practical angle, blocking is most noticeable in smooth image

regions. Therefore, in order to reduce blocking artifacts, high-frequency �lters do not

need long overlap windows. In fact, they may not have to be overlapped at all. Care-

ful examination of the impulse responses of the high-frequency bandpass �lters in the

design examples in Figure 23 { 29 and Figure 34 { 38 con�rms this statement: the

tail-end coe�cients of these �lters are rather small in magnitude. If the �lter length is

restricted mathematically, i.e., these coe�cients are structurally enforced to exact zeros,

the complexity of the resulting FB can be reduced signi�cantly. As in the previous chap-

ters, paraunitary solution is considered �rst, followed closely by the direct extension to

biorthogonality.

6.2 Lattice Structure

6.2.1 Problem Formulation and Existence Conditions

Let us �rst consider the simplest multi-band LPPRFB with variable-length �lters: a

system with N long �lters of length MK and (M �N) short �lters of length M(K � 1).

The following theorem describes the class of possible solutions in terms of the FB's

symmetry polarity and �lter length.

Theorem 6.23 For the class of linear phase perfect reconstruction �lter banks described

above where M is even, the number of long �lters N and the number of short �lters

(M �N) must both be even.
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Proof.

The sum of all the lengths of the �lters is

M�1X
i=0

Li = NMK + (M �N)M(K � 1)

= M(NK +MK �NK �M +N)

= M(MK �M +N):

From Table 2, for evenM , (MK�M+N) has to be even. SinceM is even,MK�M

is even for any K. Therefore, N has to be even, and so is (M � N), i.e., there are an

even number of long, as well as short, �lters. 2

Remarks. First of all, Theorem 6.23 holds for both orthogonal and biorthogonal

systems. Secondly, it can be easily derived that, with the further assumption that K is

odd, Theorem 6.23 holds true for odd-channel systems as well. Thirdly, recall that the

long �lters have M extra taps only. In the case where N of the �lters are arbitrarily

longer, the theorem becomes inconclusive. In fact, if the long �lters have 2M extra taps,

it will be clear later in the chapter that we can easily construct a system with an odd

number of long �lters by combining the lattices in Figure 18 and Figure 19.

Theorem 6.24 In an M-channel linear phase paraunitary �lter bank with M even, N

�lters of length MK and (M �N) �lters of length M(K � 1), half of the long �lters are

symmetric, and half of the short �lters are symmetric.

Proof.

Let EL(z) be the N �M polyphase matrix of order (K � 1), representing the longer

�lters, and ES(z) be the (M �N)�M polyphase matrix of order (K � 2), representing
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the shorter �lters. Without any loss of generality, the long �lters are permuted to be on

top. Since E(z) is paraunitary, we can obtain directly from De�nition 2.4 the following

results

E(z)ET (z�1) =

26664 EL(z)

ES(z)

37775 h ET
L(z

�1) ET
S (z

�1)
i

=

26664 EL(z)E
T
L(z

�1) EL(z)E
T
S (z

�1)

ES(z)ET
L(z

�1) ES(z)ET
S (z

�1)

37775 = IM; (6.1)

and

ET (z�1)E(z) =
h
ET
L(z

�1) ET
S (z

�1)
i 26664 EL(z)

ES(z)

37775
= ET

L(z
�1)EL(z) +ET

S (z
�1)ES(z) = IM: (6.2)

Furthermore, E(z) also has to satisfy the LP property in Eq.(3.8) of Corollary 3.726664 EL(z)

ES(z)

37775 =

26664 z
�(K�1)IN 0

0 z�(K�2)IM�N

37775
26664 DL 0

0 DS

37775
26664 EL(z�1)

ES(z�1)

37775
26664 0 J

J 0

37775 ; (6.3)

where N � N DL and (M � N) � (M � N) DS are diagonal matrices whose entry is

+1 when the corresponding �lter is symmetric and �1 when the corresponding �lter is

antisymmetric. The traces of these two matrices hold the key to the number of long (as

well as short) symmetric and antisymmetric �lters.

From Eq.(6.3), we can obtain the following relationships8>>><>>>:
EL(z) = z�(K�1) DL EL(z�1) JM

ES(z) = z�(K�2) DS ES(z�1) JM :

(6.4)
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Since EL(z)ET
L(z

�1) = IN and ES(z)ET
S (z

�1) = IM�N from Eq.(6.1), solving for DL and

DS yields 8>>><>>>:
DL = z�(K�1) EL(z�1) JM ET

L(z
�1)

DS = z�(K�2) ES(z�1) JM ET
S (z

�1):

(6.5)

Taking the trace of both sides and using the fact that tr(AB) = tr(BA); we have8>>><>>>:
tr(DL) = tr(z�(K�1)EL(z�1)JMET

L(z
�1)) = tr(z�(K�1)ET

L(z
�1)EL(z�1)JM)

tr(DS) = tr(z�(K�2)ES(z�1)JMET
S (z

�1)) = tr(z�(K�2)ET
S (z

�1)ES(z�1)JM ):

(6.6)

Tr(DL) and tr(DS) are constants, therefore, their values can be obtained by evalu-

ating the right-hand sides of the above equation at any speci�c value of z. First, let us

consider the case of even K. Evaluating Eq.(6.6) at z = 1 yields8>>><>>>:
tr(DL) = tr(ET

L(1) EL(1) JM)

tr(DS) = tr(ET
S (1) ES(1) JM ):

(6.7)

On the other hand, evaluating Eq.(6.6) at z = �1 yields8>>><>>>:
tr(DL) = � tr(ET

L(�1) EL(�1) JM )

tr(DS) = tr(ET
S (�1) ES(�1) JM):

(6.8)

From Eq.(6.2), we also have8>>><>>>:
ET
L(1) EL(1) JM +ET

S (1) ES(1) JM = JM

ET
L(�1) EL(�1) JM +ET

S (�1) ES(�1) JM = JM :

(6.9)

Hence, since tr(JM) = 0, Eq.(6.7) and Eq.(6.9) provide

tr(DL) = tr(ET
L(1) EL(1) JM) = tr(JM � ET

S (1) ES(1) JM)

= tr(JM ) � tr(ET
S (1) ES(1) JM) = � tr(ET

S (1) ES(1) JM):
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Also, from Eq.(6.8) and Eq.(6.9),

tr(DL) = � tr(ET
L(�1) EL(�1) JM) = � tr(JM � ET

S (�1) ES(�1) JM )

= � tr(JM) + tr(ET
S (�1) ES(�1) JM) = tr(ET

S (1) ES(1) JM ):

Therefore, tr(ET
S (1) ES(1) JM ) = 0; leading to the desired result that

tr(DL) = 0 and tr(DS) = 0:

In other words, half of the longer �lters are symmetric while the remaining half are anti-

symmetric. Similarly, half of the short �lters are symmetric, the rest are antisymmetric.

It is a simple exercise to verify that the same conclusion can be reached for the case of

odd K: 2

Theorem 6.25 In an M-channel linear phase perfect reconstruction �lter bank with M

even, N �lters of length MK, (M �N) �lters of length M(K � 1), each analysis �lter

hi[n] and the corresponding synthesis �lter fi[n] have the same length Li; 0 � i �M � 1,

then half of the long analysis �lters are symmetric, and half of the short analysis �lters

are symmetric. So are the synthesis �lters.

Proof.

The proof of Theorem 6.25 can be modeled closely after the proof of Theorem 6.24.

The polyphase matrix of the synthesis bank R(z) is no longer the delayed transpose of

the analysis bank's polyphase matrix E(z). As in Theorem 4.15 and Lemma 4.16, we

consider a causal E(z) and an anticausal R(z�1) for clarity of presentation only. The
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relationship between the two polyphase matrices now becomes

R(z�1)E(z) = E(z)R(z�1) = I:

Now, let EL(z) be the � �M polyphase matrix of order (K � 1), representing the

long analysis �lters, and ES(z) be the (M ��)�M polyphase matrix of order (K � 2),

representing the shorter analysis �lters. Similarly, let RL(z) and RS(z) represent the

long and the short synthesis �lters respectively. Without any loss of generality, the long

analysis �lters are permuted to be on top. Consequently, all long synthesis �lters are

permuted to the left because hi[n] and fi[n] have the same length Li. We can now obtain

E(z)R(z�1) =

26664 EL(z)

ES(z)

37775 h RL(z
�1) RS(z

�1)
i

=

26664 EL(z)RL(z�1) EL(z)RS(z�1)

ES(z)RL(z
�1) ES(z)RS(z

�1)

37775 = I; (6.10)

and

R(z�1)E(z) =
h
RL(z

�1) RS(z
�1)

i 26664 EL(z)

ES(z)

37775
= RL(z

�1)EL(z) +RS(z
�1)ES(z) = I: (6.11)

From here on, the remainder of the proof is identical to the counterpart in Theorem 6.24

by replacing ET
L(z) and E

T
S (z) by RL(z�1) and RS(z�1), respectively. 2
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6.2.2 Orthogonal Lattice Structure

From Theorem 6.24, there are N
2
long symmetric �lters and N

2
long antisymmetric �lters.

If the long symmetric �lters are permuted to be on top, i.e.,

DL =

26664
IN
2

0N
2

0N
2
�IN

2

37775 ;
they now form a remarkably similar system to an N -channel LPPUFB where all �lters

have the same length KM

EL(z) = z�(K�1)DLEL(z
�1)JM (6.12)

From [62] (and the more general results in Chapter 4), there exists a factorization

similar to the one shown in Eq.(2.26) that reduces the order of the polyphase matrix

EL(z) by one. Hence, the VLLOT's polyphase matrix E(z) can always be factorized as

follows

E(z) = Ĝ0(z) EK�2(z) = �̂0 Ŵ �̂(z) Ŵ P̂0 EK�2(z); (6.13)

where

Ŵ =

2666666664

IN
2

IN
2

0

IN
2

�IN
2

0

0 0 IM�N

3777777775
; �̂(z) =

2666666664

IN
2

0 0

0 z�1IN
2

0

0 0 IM�N

3777777775
; (6.14)

and

�̂0 =

2666666664

Û0 0 0

0 V̂0 0

0 0 IM�N

3777777775
: (6.15)
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P̂0 is the permutation matrix that arranges the longer �lters on top, i.e.,

P̂0 =

266666666666664

IN
2

0 0 0

0 0 IN
2

0

0 I (M�N)
2

0 0

0 0 0 I (M�N)
2

377777777777775
;

and it is added to simplify the presentation only. The reader should note that the above

factorization leaves ES(z) untouched, it reduces the length of the longer �lters by M , so

all �lters now have the same length ofM(K�1). EK�2(z) is the familiar polyphase matrix

of an order-(K � 2) GenLOT. The rotation angles of N
2
� N

2
orthogonal matrices Û0 and

V̂0 are the VL stage's free parameters that can be varied independently and arbitrarily to

optimize the VLLOT. Comparing to the traditional order-(K � 1) GenLOT, the number

of free parameters is reduced by M(M�2)
4 � N(N�2)

4 . The reduction can be quite signi�cant

if the number of channels M is large and the number of long �lters N is small. In the

case that N = 2, the number of free parameters comes from EK�2(z) only: Û0 and V̂0

become singletons 1's. We shall see in a later section that the biorthogonal generalization

results in two free parameters.

As aforementioned, with Ĝ0(z) peeled o�, EK�2(z) becomes the familiar polyphase

matrix of an order-(K � 2) GenLOT, and it can be factorized into the familiar cascade

structure in Eq.(2.26) where each cascading block Gi(z) has the form in Eq.(2.27). The

complete factorization is given by

E(z) = Ĝ0(z) EK�2(z) = �̂0 Ŵ �̂(z) Ŵ P̂0

1Y
i=K�2

Gi(z)E0: (6.16)
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A detailed example of the complete lattice is illustrated in Figure 39.
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Figure 39: Detailed lattice structure for the VLLOT (drawn for M = 8 and N = 4).

Theorem 6.26 The proposed factorization of E(z) in Eq.(6.16) is minimal, i.e., the

lattice structure uses a minimal number of delays in the VLLOT implementation.

Proof.

Recall that a structure is de�ned to be minimal when the required number of delays

is equal to the degree of the transfer function [95]. For lossless systems, it can be proven

[95] that deg(E(z)) = deg(jE(z)j).

Exploiting the LP property of the FB polyphase matrix in Eq.(6.3), we have

deg(E(z)) = deg(jE(z)j)

= deg

0BBB@
���������
z�(K�1)IN 0

0 z�(K�2)IM�N

���������

���������
DL 0

0 DS

���������

���������
EL(z�1)

ES(z�1)

���������

���������
0 J

J 0

���������

1CCCA
= N(K � 1) + (M �N)(K � 2) � deg(E(z)):

Hence,

deg(E(z)) =
N(K � 1) + (M �N)(K � 2)

2
=

M(K � 2)

2
+
N

2
:
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In the proposed factorization, we use M(K�2)
2 delays for EK�2(z) and N

2 for Ĝ0(z), totaling

the same number of delays as the degree of E(z). Therefore, the factorization is minimal.

2

It is interesting to note that when N increases to M or decreases to 0, the VLLOT's

required number of delay elements increases to M(K�1)
2

or decreases to M(K�2)
2

{ consistent

with the delays needed in the GenLOT's implementation [62]. Table 5 provides a com-

parison in implementation complexity of the popular DCT, LOT, and several low-order

VLLOT.

DCT VLLOT LOT
Transform

Complexity

     Number of
Lattice Coefficients

   Number of
Delay Elements

12

0

VLLOT VLLOT

24

41 2 3

12 14 18

8x8 8x162x16 6x8 4x16 4x8 6x16 2x8 4x24 4x8
VLLOT

16

4

Table 5: Complexity comparison between the DCT, the LOT, and various VLLOTs.

More general and complicated VLLOT can be constructed by a cascade of building

blocks Ĝi as follows

E(z) = Ĝ`�1(z) � � � Ĝ1(z) Ĝ0(z)GK�1(z) � � � G1(z)G0(z); (6.17)

where N0 � N1 � � � � � N`�1 and each Ni is even. The longest �lters have length

M(K + `) whereas the shortest �lters have length MK. The general lattice structure is

depicted in Figure 40.
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Figure 40: General lattice structure for the VLLOT.

Design Examples

Several VLLOT design examples are presented. Some of them are obtained from un-

constrained nonlinear optimization where the lattice coe�cients are the free parameters.

In an alternative (and faster) design procedure, the �lters are �rst obtained using the

iterative method based on time-domain constraints [27]. Then, the lattice coe�cients

can be calculated from the resulting FB coe�cients. In both optimization procedures,

the cost function is the familiar combination of coding gain, DC leakage and attenuation

around mirror frequencies as described in Section 4.7. The magnitude responses and

the impulse responses of several new VLLOTs are depicted in Figure 41 { 43. Refer to

Table 6 for a comparison of several objective properties of the design examples. Given

the same order K, the VLLOT cannot match GenLOT in term of objective performance

(coding gain and stopband attenuation for example) because it belongs to a subclass

of GenLOT. However, VLLOT's variable-length basis functions make it an attractive

transform candidate for perceptually-tuned image coders: reconstructed VLLOT images

are more visually pleasant as testi�ed in Chapter 7. Since the application we have in

mind is image compression, all presented FB examples have high-frequency-band �lters

chosen to be short. The lattice structure does allow one to shorten other �lters if he or
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she desires to.
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Figure 41: VLLOTs optimized for coding gain, DC attenuation, mirror frequency at-

tenuation, and stopband attenuation. (a) Design example I: 2 � 16 6 � 8. (b) Design

example II: 4 � 16 4 � 8.

6.2.3 Biorthogonal Lattice Structure

Obtaining the biorthogonal lattice structure for LPPRFB with VL �lters from its or-

thogonal relative in the previous section is rather straightforward { the transpositional

relationship between the polyphase matrices now becomes invertible. The orthogonal

matrices Ûi, V̂i, Ui, and Vi in the lattices in Figure 39 and 40 can be chosen to be

invertible instead. These invertible matrices can then be completely parameterized by a

set of rotation angles f�ig and diagonal multipliers f�ig from their SVD representations

as illustrated in Figure 20 of Section 4.5. The resulting biorthogonal lattice is called the

variable-length generalized lapped biorthogonal transform (VLGLBT).

A more interesting discussion is on how we can exploit the newly-found exibility of
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Figure 42: VLLOTs optimized for coding gain, DC attenuation, mirror frequency atten-

uation, and stopband attenuation. (a) Design example III: 4 � 24 4 � 8. (b) Design

example IV: 4� 40 4� 8.
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Figure 43: VLLOTs optimized for coding gain, DC attenuation, mirror frequency atten-

uation, and stopband attenuation. (a) Design example V: 2 � 24 4 � 16 2 � 8. (b)

Design example VI: 4 � 24 2 � 16 2� 8.
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the VLGLBT to our advantage. Despite signi�cant performance improvements, lapped

transforms have not yet been able to dislodge the DCT in practical systems [98]. The

most obvious reason is the increase in computational complexity. The rest of this section

is devoted to the design of a high-performance, yet low-complexity, lapped transform to

replace the DCT in the near future.

The VL structure Ĝi(z) = �̂i Ŵ �̂(z) Ŵ where

�̂i =

2666666664

Ûi 0 0

0 V̂i 0

0 0 IM�N

3777777775
increases the length of N �lters by M and leaves the rest intact. To minimize the

transform's complexity, we choose N = 2 and the initial stage to be the DCT itself.

In the orthogonal case, only trivial solution can be obtained (see Figure 41(a)) since

the matrices Ûi and V̂i degenerate to singleton 1 or �1, and we do not have any free

parameters for further transform optimization. In the more general biorthogonal case,

nontrivial solutions exist. In fact, an example of such system has been presented earlier

in Section 4.6. The invertible matrices Ûi and V̂i now becomes the lattice coe�cients

�i0 and �i1 as shown in the 2-channel PR lattice in Figure 22.

The transform's variable-length property allows us to design fast, low-complexity

lapped transforms. The detailed lattice structure of the fast VLGLBT is depicted in

Figure 44. Comparing to the DCT, the fast VLGLBT only requires 6 more multiplica-

tions, 8 more additions, and 2 more delays. An equivalent interpretation is to perform

the DCT on the whole input signal, then 2 lowest-frequency coe�cients from each of the
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two neighboring blocks (one to the left and the other to the right) and 2 lowest-frequency

coe�cients from the current block are combined to produce the VLGLBT's transform

coe�cients. Despite its simplicity, the VLGLBT provides a signi�cant improvement in

image quality over the traditional DCT { little blocking and ringing artifacts at medium

and high compression ratios. The coding results are presented in Chapter 7.
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Figure 44: Detailed lattice structure of the fast VLGLBT. (a) Analysis bank. (b) Syn-

thesis bank.

Design Examples

The fast VLGLBT optimized for image coding purpose is obtained using unconstrained

nonlinear optimization where the lattice coe�cients f�00; �01; �10; �11; �20; �21g are the

free parameters. Again, the cost function is a weighted combination of coding gain, DC
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leakage, stopband attenuation, and mirror frequency attenuation. The frequency and

impulse response of the fast VLGLBT's analysis and the synthesis bank are depicted in

Figure 45(a) and Figure 45(b) respectively. Note that the last six �lters of the VLGLBT

come straight form the DCT's. Various properties of this VLGLBT can be found in

Table 6.
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Figure 45: Fast VLGLBT. Design example VII: 2� 24 6� 8 optimized for coding gain,

DC attenuation, mirror frequency attenuation, and stopband attenuation.

6.3 VLLOT via Orthogonal Complement Subspaces

In the lattice structure design method presented in the previous section, the �lters'

centers of symmetry are not aligned. The alignment of the bases is sometimes desired

since it provides more accurate correlation between subband signals, and it can simplify

the signal's symmetric extension [61], [63], [8] signi�cantly. Only in cases that the length

di�erence between the long and the short �lters are even multiples of M , the alignment

of the centers of symmetry can be obtained by shifting the short �lters (at the cost of
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adding more delay elements of course).

6.3.1 Problem Formulation and Existence Condition

In this section, a di�erent design approach for VLLOTs whose �lters all share the same

center of symmetry is presented. These FB can be thought of as a subclass of GenLOT

where the tail-end coe�cients of some �lters are forced to be zero. More speci�cally, given

an M -channel GenLOT of length MK with M even, what are the relationships between

the building blocks Ui, Vi in Eq.(2.26) such that the resulting M �MK coe�cients

matrix PK (storing the impulse responses row-rise) satis�es the following variable-length

condition:

PK =

26664 XN�M
2

XN�M
2

� � � XN�M
2

XN�M
2

0(M�N)�M
2

X(M�N)�M
2

� � � X(M�N)�M
2

0(M�N)�M
2

37775 ; (6.18)

where the rows of PK might have been permuted so that the long �lters are arranged on

top. Simply speaking, we are studyingM -channel LPPUFB where all of the �lters share

the same center of symmetry, N �lters have length MK, and the remaining (M � N)

�lters have length M(K � 1).

Theorem 6.27 It is impossible to construct a VLLOT described in the problem formu-

lation above with all symmetric (or all antisymmetric) �lters being shortened by M taps.

Proof.
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It is a straightforward but tedious exercise to show that the left tail end of the

GenLOT coe�cient matrix turns out to be [62]

PK =

2666664
UK�1

0Y
i=K�2

(Ui �Vi) UK�1
1Y

i=K�2
(Ui �Vi) (U0 +V0) J � � �

VK�1
0Y

i=K�2
(Ui �Vi) VK�1

1Y
i=K�2

(Ui �Vi) (U0 +V0) J � � �

3777775 : (6.19)

Suppose that all antisymmetric �lters are short, then VK�1
0Y

i=K�2
(Ui �Vi) = 0M

2
,

() VT
K�1VK�1

0Y
i=K�2

(Ui �Vi) = VT
K�10M

2

()
0Y

i=K�2
(Ui �Vi) = 0M

2

() UK�1
0Y

i=K�2
(Ui �Vi) = 0M

2
:

This means that all symmetric �lters have to be short as well, and we are left with an

order-(K � 2) GenLOT. On the other hand, if all symmetric �lters are short, so are all

antisymmetric �lters. 2

In the next subsection, we shall show that it is possible to construct various VLLOT

if not all of the symmetric (or antisymmetric) �lters are short. Equivalently, it is possible

to obtain

UK�1
0Y

i=K�2
(Ui �Vi) =

26664 XN�M
2

0(M2 �N)�M
2

37775 or VK�1
0Y

i=K�2
(Ui �Vi) =

26664 XN�M
2

0(M2 �N)�M
2

37775 ;
(6.20)

or even both.
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6.3.2 Design Procedure

Let us �rst consider the case with (M
2
�N) short symmetric �lters of length M(K � 1).

De�ne the product Tu
4
= UK�1

Q1
i=K�2(Ui �Vi). It is possible to split Tu's row space

into �
4
= SftuT1�; tuT2�; : : : ; tuTN �g and the corresponding orthogonal complement �? [95].

Now, if we choose (U0�V0) such that all of its columns lie in �, then UK�1
Q0
i=K�2(Ui�

Vi) = Tu(U0 �V0) will take the desired form

26664 XN�M
2

0(M2 �N)�M
2

37775 : Following is an ordered

outline of the designing steps:

� Choose arbitrary M
2 �M

2 orthogonal matricesUK�1;B; andUi;Vi; i = 1; 2; : : : ;K�

2.

� Obtain the product Tu = UK�1
1Y

i=K�2
(Ui �Vi):

� Find an orthonormal basis for the �rst N rows of Tu. Find an orthonormal basis for

the corresponding orthogonal complement. From these orthonormal row vectors,

form the unitary matrix T.

� Obtain the �rst stage's building blocks by choosing

U0 = T

26664 Q1 0N�(M2 �N)

0(M2 �N)�N Q3

37775B and V0 = T

26664 Q2 0N�(M2 �N)

0(M2 �N)�N Q3

37775B;

whereQ1;Q2 are any N�N orthogonal matrices, and Q3 is any (
M
2 �N)�(M2 �N)

orthogonal matrix.
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With these particular choices of U0 and V0, the columns of the di�erence matrix

(U0 �V0) can be easily veri�ed to belong to the prede�ned subspace �:

U0 �V0 = T

26664 Q1 0

0 Q3

37775B�T

26664 Q2 0

0 Q3

37775B = T

0BBB@
26664 Q1 �Q2 0

0 0

37775
1CCCAB:

The rotation angles of the arbitrary orthogonal matrices are the free parameters that

can be tuned to optimize the VLLOT for any further desired criterion. Note that we

only have to put constraints on the �rst and last stage of GenLOT's lattice structure to

obtain VLLOT of the same order. These two stages control the orthogonality between

rows and columns of the building blocks to reduce the length of (M
2
�N) �lters byM . The

constraints added to obtain VL reduce the total number of free parameters to optimized

by 0BBB@M=2
2

1CCCA �
266642
0BBB@ N

2

1CCCA +

0BBB@M=2 �N

2

1CCCA
37775 :

The reduction is independent of the order K and can be signi�cant for large M .

The same method can be applied to shorten any N antisymmetric �lters as long as N

is less than M
2 . If only N antisymmetric �lters and N symmetric �lters are desired to be

long, we have to ensure that the matrix Tv
4
= VK�1

Q1
i=K�2(Ui �Vi) is appropriately

chosen such that its row space can be split into the same two orthogonal subspaces � and

�?. We propose the following solution

� Choose VK�1 =

26664 Q4 0N�(M
2 �N)

0(M2 �N)�N Q5

37775 UK�1; where Q4, Q5 are, respectively,

arbitrary N �N and (M2 �N)� (M2 �N) orthogonal matrices.



141

With this particular choice of VK�1, both of the VL properties in Eq.(6.20) can be

satis�ed simultaneously:

VK�1
0Y

i=K�2
(Ui �Vi) =

26664 Q4 0N�(M2 �N)

0(M2 �N)�N Q5

37775UK�1
0Y

i=K�2
(Ui �Vi)

=

26664 Q4 0N�(M2 �N)

0(M
2 �N)�N Q5

37775
26664 XN�M

2

0(M
2 �N)�M

2

37775

=

26664 Q4 XN�M
2

0(M2 �N)�M
2

37775 :

In this case, VK�1 contains N(N�1)
2

+ (M�2N)(M�2N�2)
8

degrees of freedom instead of

M(M�2)
4 . Again, the reduction in the amount of free rotation angles is signi�cant for large

M .

This design method using orthogonal complement subspaces keys on the relationship

between the GenLOT's building blocks Ui and Vi to obtain the coe�cient matrix P

directly. Hence, it can be classi�ed as a time-domain design method. The resulted

system is guaranteed to have LP as well as PR. Furthermore, the �lters can have di�erent

lengths, yet all centers of symmetry are aligned. The FB can still be represented by a

lattice structure. However, the VL property is not robust under the quantization of

lattice coe�cients.
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6.3.3 Design Examples

Several VLLOT design examples using the orthogonal complement subspace method are

presented in Figure 46 and Figure 47. Notice that the �lters have the same center of

symmetry in all design examples. Refer to Section 4.7 for a description of the design

procedure and various design aspects. Transform properties of Design example VIII and

Design example IX can be found in Table 6.
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Figure 46: VLLOTs designed by the orthogonal complement subspace method. (a)

Design example VIII: 4 � 16 4 � 8 optimized for coding gain and DC attenuation. (b)

Design example IX: 4� 24 4� 16 optimized for coding gain, stopband attenuation, DC

and mirror frequency attenuation.

DCT LOT

   Transform
     Property

Transform

Coding Gain (dB)

DC Attenuation (-dB)

8.83

310.62

9.96

8x8 8x16

Stopband Attenuation (-dB)

Mirror Freq. Attenuation (-dB) 322.10

9.22

312.56

19.38

317.24

VLLOT (III)
4x24 4x8

9.15

325.11

7.47

319.09

VLLOT (IX)
4x24 4x16

9.10

292.30

12.54

295.93

9.23

314.38

8.05

309.76

VLLOT (I)
2x16 6x8

8.95

334.10

8.84

316.10

VLGLBT
2x24 6x8

VLLOT (VI)
4x24 2x16 2x8

9.35

320.20

7.08

312.60

VLLOT (VIII)
4x16 4x8

8.98

322.12

8.24

318.60

Table 6: Comparison of VLLOT and VLGLBT properties.
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Figure 47: VLLOTs designed by the orthogonal complement subspace method. (a)

Design example X: 4 � 24 4 � 16 optimized primarily for coding gain. (b) Design

example XI: 4� 24 4� 16 optimized primarily for stopband attenuation.

6.4 Summary

In this chapter, the theory, design, and lattice structure of LPPRFBs with �lters of

di�erent lengths have been presented and analyzed. The proposed lattice structure is

robust under coe�cient quantization: it retains all attractive properties of the new FBs

(LP, PR, and variable-length), and it is minimal resulting in a fast and e�cient imple-

mentation. The lattice is proven to span the complete class of permissible solutions: the

number of long �lters must be even; half of the long �lters are symmetric and the other

half are anti-symmetric, and so are the short �lters. An alternate design method that

keys on the relationship between the lattice coe�cients to obtain variable-length �lters

is also discussed.

The new family of FBs can be interpreted as a class of general lapped orthogo-

nal/biorthogonal transforms with basis functions of variable lengths, called VLLOT and
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VLGLBT. The initial stage of these transforms can be chosen to be the DCT so that

existing fast software and hardware implementation can be retained. The VL subclass of

LPPRFBs �nds application in transform-based image compression since it relies on its

long basis functions to reconstruct smooth signal components while uses its short basis

functions to represent edges and textures. Experimental results presented in the next

chapter show the great promise of the proposed transform: blocking artifact is avoided

while ringing artifact is suppressed. It is certainly a step towards a better understanding

of how to design �lter banks that are most suited to the human visual system.
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Chapter 7

Application in Image Coding

7.1 Introduction

As previously mentioned in Chapter 2, one of the most popular and successful FB ap-

plication is in image coding. Block transform coding and subband coding have been

two dominant techniques in existing image compression standards and implementations.

Both methods actually exhibit many similarities: relying on a certain FB to convert the

input image to a more decorrelated representation, then utilizing the same basic building

blocks such as bit allocators, quantizers, and entropy coders to achieve compression.

This chapter serves one single purpose: to demonstrate the tremendous potential

of the novel multi-band LPPRFBs presented earlier in Chapter 4{6. Given a �xed

quantization and entropy coding framework, new FBs in this dissertation consistently

o�er signi�cant improvements over current popular transforms such as the wavelet trans-

form, the DCT, and the LOT. Extensive coding comparisons are carried out with two

next-generation image coding schemes: progressive transmission coding and and its

perceptually-tuned version. This chapter also attempts to shed some light onto a deeper

understanding of wavelets, lapped transforms, their relation, and their performance in
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image compression from a multirate �lter bank perspective.

7.2 Progressive Image Transmission

7.2.1 A New Philosophy

Block transform coders enjoyed early successes in image compression due to their low

complexity in implementation and their reasonable performance. The most popular block

transform coder is the current image compression standard JPEG [58] which utilizes the

8 � 8 DCT at its transformation stage. At high bit rates (1 bpp and up), JPEG o�ers

almost visually lossless reconstruction image quality. However, when more compression

is needed (i.e., at lower bit rates), annoying blocking artifacts show up because of two

reasons: (i) the DCT bases are short, non-overlapped, and have discontinuities at the

ends; (ii) JPEG processes each image block independently. So, inter-block correlation

has been completely abandoned.

The development of the lapped orthogonal transform [47] and various generalized

versions presented throughout this dissertation help solve the blocking problem to a

certain extent by borrowing pixels from the adjacent blocks to produce the transform

coe�cients of the current block. The lapped transform outperforms the DCT on two

counts: (i) from the analysis viewpoint, it takes into account inter-block correlation,

hence, provides better energy compaction that leads to more e�cient entropy coding of

the coe�cients; (ii) from the synthesis viewpoint, its basis functions decay asymptotically
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to zero at the ends, reducing blocking discontinuities drastically. However, earlier lapped-

transform-based image coders [47], [62], [94] have not utilized global information to their

full advantage: the quantization and the entropy coding of transform coe�cients are still

independent from block to block.

Recently, subband coding has emerged as the leading standardization candidate in

future image compression systems thanks to the development of the discrete wavelet

transform. Wavelet representation with implicit overlapping and variable-length ba-

sis functions produces smoother and more perceptually pleasant reconstructed images.

Moreover, wavelet's multiresolution characteristics have created an intuitive foundation

on which simple, yet sophisticated, methods of encoding the transform coe�cients are

developed. Exploiting the relationship between the parent and the o�spring coe�cients

in a wavelet tree, progressive wavelet coders [73], [71], [110] can e�ectively order the

coe�cients by bit planes and transmit more signi�cant bits �rst. This coding scheme

results in an embedded bit stream along with many other advantages such as exact bit

rate control and near-idempotency (perfect idempotency is obtained when the transform

maps integers to integers). In these subband coders, global information is taken into

account fully.

From a frequency domain point of view, the wavelet transform simply provides an

octave-band representation of signals. The dyadic wavelet transform is analogous to

a non-uniform-band lapped transform. It can su�ciently decorrelate smooth images;

however, it has problems with images with well-localized high frequency components,
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leading to low energy compaction. In this chapter, we shall demonstrate that the em-

bedded framework is not only limited to the wavelet transform; it can be utilized with

uniform-band lapped transforms as well. In fact, some of the lapped transforms presented

in previous chapters can provide much �ner frequency spectrum partitioning and supe-

rior energy compaction over the wavelet transform, leading to signi�cant improvements

in embedded image coding.

7.2.2 The Wavelet Transform and Progressive Image Transmis-

sion

Progressive image transmission is perfect for the recent explosion of the internet. The

wavelet-based progressive image coding approach �rst introduced by Shapiro [73] relies

on the fundamental idea that more important information (de�ned here as what de-

creases a certain distortion measure the most) should be transmitted �rst. Assume that

the distortion measure is the mean-squared error (MSE), the transform is paraunitary,

and transform coe�cients ci;j are transmitted one by one, it can be proven that the mean

squared error decreases by
jci;jj
N

, where N is the total number of pixels [15]. Therefore,

larger coe�cients should be transmitted �rst. If one bit is transmitted at a time, this

approach can be generalized to ranking the coe�cients by bit planes and the most sig-

ni�cant bits are transmitted �rst [64]. The progressive transmission scheme results in an

embedded bit stream (i.e., it can be truncated at any point by the decoder to yield the

best corresponding reconstructed image). The algorithm can be thought of as an elegant
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combination of a scalar quantizer with power-of-two stepsizes and an entropy coder to

encode wavelet coe�cients.

Embedded algorithm relies on the hierarchal coe�cients' tree structure that we called

a wavelet tree, de�ned as a set of wavelet coe�cients from di�erent scales that belong in

the same spatial locality as demonstrated in Figure 48(a), where the tree in the vertical

direction is circled. All of the coe�cients in the lowest frequency band make up the

DC band or the reference signal (located at the upper left corner). Besides these DC

coe�cients, in a wavelet tree of a particular direction, each lower-frequency parent node

has four corresponding higher-frequency o�spring nodes. All coe�cients below a parent

node in the same spatial locality is de�ned as its descendents. Also, de�ne a coe�cient

ci;j to be signi�cant with respect to a given threshold T if jci;jj � T , and insigni�cant

otherwise. Meaningful image statistics have shown that if a coe�cient is insigni�cant, it

is very likely that its o�spring and descendents are insigni�cant as well. Exploiting this

fact, the most sophisticated embedded wavelet coder SPIHT can output a single binary

marker to represent very e�ciently a large, smooth image area (an insigni�cant tree).

For more details on the algorithm, the reader is referred to [71].

Although the wavelet tree provides an elegant hierarchical data structure which fa-

cilitates quantization and entropy coding of the coe�cients, the e�ciency of the coder

still heavily depends on the transform's ability in generating insigni�cant trees. For non-

smooth images that contain a lot of texture, the wavelet transform is not as e�cient in

signal decorrelation comparing to transforms with �ner frequency selectivity and superior

energy compaction. Multi-band lapped transforms hold the edge in this area.



150

x x

x x

x x
x x

x x
x x

x x
x x

x x
x x

x x
x x

x x
x x

x x
x x

x x
x x

x x
x x

x x
x x

x x
x x

x x
x x

x x
x x

x x
x x

x x
x x

x x
x x

x x
x x

x x
x x

x x
x x

x x
x x

x x
x x

x x
x x

x x
x x

x x
x x

x x
x x

x x
x x

x x
x x

x x
x x

x x
x x

x x
x x

x x
x x

parent offspring descendents

(a) (b)

Figure 48: Wavelet and block transform analogy.

7.2.3 Wavelet and block transform analogy

Instead of obtaining an octave-band signal decomposition, one can have a �ner uniform-

band partitioning as depicted in Figure 49 (drawn for M = 8). The �ner frequency

partitioning compacts more signal energy into a fewer number of coe�cients and generates

more insigni�cant ones, leading to an enhancement in the performance of the zerotree

algorithm. However, uniform �lter bank also has uniform downsampling (all subbands

now have the same size). A parent node does not have four o�spring nodes as in the case

of the wavelet representation. How would one come up with a new tree structure that still

takes full advantage of the inter-scale correlation between block-transform coe�cients?

The above question can be answered by investigating an analogy between the wavelet

and block transform as illustrated in Figure 48. The parent, the o�spring, and the

descendents in a wavelet tree cover the same spatial locality, and so are the coe�cients of
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Figure 49: Frequency spectrum partitioning. (a) M -channel uniform-band transform.

(b) Dyadic wavelet transform.

a transform block. In fact, a wavelet tree in an L-level decomposition is analogous to a 2L-

channel transform's coe�cient block. The di�erence lies at the bases that generate these

coe�cients. It can be shown that a 1D L-level wavelet decomposition, if implemented as

a lapped transform, has the following coe�cient matrix:

PL =

266666666666666666666666666666666666664

h0[n] � h0[n2 ] � � � � � h0[ n
2L�2

] � h0[ n
2L�1

]

h0[n] � h0[n2 ] � � � � � h0[ n
2L�2

] � h1[ n
2L�1

]

h0[n] � h0[n2 ] � � � � � h1[ n
2L�2 ]

h0[n] � h0[n2 ] � � � � � h1[ n
2L�2

]

...

h1[n]

h1[n]

h1[n]

h1[n]

377777777777777777777777777777777777775

: (7.1)

From the coe�cient matrix PL, we can observe several interesting and important

characteristics of the wavelet transform through the block transform's prism:

� The wavelet transform can be viewed as a lapped transform with �lters of variable
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lengths. For an L-level decomposition, there are 2L �lters.

� Each basis function has linear phase; however, they do not share the same center

of symmetry.

� The block size is de�ned by the length of the longest �lter. If h0[n] is longer and has

length N0, the top �lter covering the DC component turns out to be the longest,

and it has a length of (2L � 1)(N0 � 1) + 1. For the biorthogonal wavelet pair with

h0[n] of length 9 and h1[n] of length 7 and three levels of decomposition, the eight

resulting basis functions have respective lengths of 57; 49; 21; 21; 7; 7; 7; and 7:

� For a 6-level decomposition using the same 9�7 pair, the length of the longest basis

function grows to 505! The huge amount of overlapped pixels explains the smooth-

ness of the reconstructed images where blocking artifacts have been completely

eliminated.

Each block of lapped transform coe�cients represents a spatial locality similarly to

a tree of wavelet coe�cients. Let O(i; j) be the set of coordinates of all o�spring of the

node (i; j) in an M -channel block transform (0 � i; j � M � 1), then O(i; j) can be

represented as follows:

O(i; j) = f(2i; 2j); (2i; 2j + 1); (2i+ 1; 2j); (2i + 1; 2j + 1)g: (7.2)

All (0; 0) coe�cients from all transform blocks form the DC band, which is similar to the

wavelet transform's reference signal, and each of these nodes has only three o�springs:

(0; 1), (1; 0), and (1; 1): This is a straightforward generalization of the structure �rst

proposed in [107]. The only requirement here is that the number of channel M has to
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be a power of two. Figure 50 demonstrates through a simple rearrangement of the block

transform coe�cients that the rede�ned tree structure above does possess a wavelet-like

multiscale representation. The quadtree grouping of the coe�cients is far from optimal in

the rate-distortion sense; however, other parent-o�spring relationships for uniform-band

transform such as the one mentioned in [73] do not facilitate the further usage of various

entropy coders to increase the coding e�ciency.

Figure 50: Demonstration of the analogy between M -channel uniform-band transform

and wavelet representation.

Figure 50 shows that there still exists correlation between DC coe�cients. To decor-

relate the DC band even more, several levels of wavelet decomposition can be used de-

pending on the input image size. Besides the obvious increase in the coding e�ciency of

DC coe�cients thanks to a deeper coe�cient trees, wavelets provide variably longer bases

for the signal's DC component, leading to smoother reconstructed images, i.e., blocking

artifacts are further reduced. Regularity objective can be added in the transform design

process to produceM -band wavelets, and a wavelet-like iteration can be carried out using

uniform-band transforms as well. The complete coder's diagram is depicted in Figure 51.
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Figure 51: The LT-based progressive coder's diagram.

7.2.4 Coding Results

The objective coding results (PSNR in dB) for standard 512 � 512 Lena, Barbara, and

Goldhill test images are tabulated in Table 7. The transforms in comparison are

� 9=7-tap biorthogonal wavelet [3].

� 8� 8 DCT [67] shown in Figure 9.

� 8� 16 LOT [45] shown in Figure 11.

� 8� 40 GenLOT [89] shown in Figure 13.

� 4� 24 4� 8 VLLOT in Figure 42(a) of Chapter 6.

� 2� 24 6� 8 VLGLBT in Figure 45 of Chapter 6.

� 8� 16 GLBT in Figure 24 of Chapter 4.

� 16 � 32 GLBT in Figure 25 of Chapter 4.

Except the 9=7-tap biorthogonal wavelet, all of the transforms listed are multi-band

uniform LPPRFB, and their transform coe�cients are encoded as described in Section
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Figure 52: Rate-distortion curves of image coding examples. (a) Lena. (b) Goldhill. (c)

Barbara.
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LOTDCT

40.41

Lena

(9/7 WL)

Progressive Transmission Image Coders

Comp.
Ratio

SPIHT 8 x 8 8 x 16

37.21

34.11

31.10

29.35

1:8

1:16

1:32

1:64

1:100

1:128 28.38 27.61

40.05

36.72

33.56

30.48

28.62

39.91

36.38

32.90

29.67

27.80

26.91

VLGLBT
2x24 6x8

39.89

36.51

33.25

30.15

28.31

27.48

36.41

Barbara

Comp.
Ratio

31.40

27.58

24.86

23.76

1:8

1:16

1:32

1:64

1:100

1:128 23.35

36.31

31.11

27.28

24.58

23.42

22.68

36.22

31.12

27.42

24.86

23.74

23.23

Progressive Transmission Image Coders

GenLOTDCT(9/7 WL)
SPIHT 8 x 8 8 x 40

VLGLBT
2x24 6x8

38.08

33.47

29.53

26.37

24.95

24.01

Goldhill

Comp.
Ratio

1:8

1:16

1:32

1:64

1:100

1:128 26.73

36.55

33.13

30.56

28.48

27.38

36.25

32.76

30.07
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26.01
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Progressive Transmission Image Coders

SPIHT 8 x 8 8 x 40

36.80
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(b)
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16 x 32
GLBT

28.39

40.43

37.33

34.27

31.18

29.38

40.35

37.28

34.14

31.04

29.14

28.19

8 x 16
GLBTGenLOT

8 x 40

28.35

40.43

37.32

34.23

31.16

29.31

VLLOT
4x24 4x8

27.64

40.18

36.85

33.61

30.48

28.62

36.78

33.42

30.84

28.74

27.62

26.9626.71

36.69

33.31

30.70

28.58

27.33

16 x 32
GLBT

8 x 16
GLBT

36.22

32.76

30.25

28.17

27.06

26.36

VLGLBT
2x24 6x8

36.49

33.06

30.51

28.35

27.10

26.46

VLLOT
4x24 4x8

LOT
8 x 16

36.63

33.18

30.56

28.36

27.09

26.48

37.84

33.02

29.04

26.00

24.55

23.49 24.56

38.43

33.94

30.18

27.13

25.39

16 x 32
GLBT

8 x 16
GLBT

36.83

31.86

27.99

25.10

23.96

23.24

VLLOT
4x24 4x8

37.43

32.70

28.80

25.70

24.34

23.37

LOT
8 x 16

Table 7: Objective coding results (PSNR in dB). (a) Lena. (b) Goldhill. (c) Barbara.
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7.2.3. All computed PSNR quotes in dB are obtained from a real compressed bit stream

with all overheads included. The rate-distortion curves in Figure 52 and the tabulated

coding results in Table 7 clearly demonstrate the superiority of the GLBT over current

transforms of choice. For a smooth image like Lena where the wavelet transform can

su�ciently decorrelate, SPIHT o�ers a comparable performance. However, for a highly-

textured image like Barbara, the 8 � 40 GenLOT, the 8 � 16 GLBT, and the 16 � 32

GLBT coder can provide a PSNR gain of more than 2 dB over a wide range of bit rates.

Unlike other block transform coders whose performance dramatically drops at very high

compression ratios, the new LT-based progressive coders are consistent throughout as

illustrated in Figure 52. Lastly, better decorrelation of the DC band provides around

0:3� 0:5 dB improvement over an earlier DCT embedded coder [107].

Figure 53 - 56 con�rm the superiority of the new lapped transforms in reconstructed

image quality as well. Figure 53 shows reconstructed Barbara images at 1:32 using

various block transforms. Comparing to JPEG, blocking artifacts are already remarkably

reduced in the DCT-based coder in Figure 53(a). Blocking is completely eliminated when

the DCT is replaced by appropriately-designed lapped transforms as shown in Figure

53(c)-(d) and Figure 54. A closer look in Figure 55(a)-(c) (where only 256 � 256 image

portions are shown so that artifacts can be more easily seen) reveals that besides blocking

elimination, the 8 � 16 GLBT can preserve texture beautifully (the table cloth and the

clothes pattern in the Barbara image) while keeping the edges relatively clean. Comparing

to SPIHT, the reconstructed images have an overall sharper and more natural look with

more de�ning edges and more evenly reconstructed texture regions. Although the PSNR
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di�erence is not as striking in the Goldhill image, the improvement in perceptual quality is

rather signi�cant as shown in Figure 55(d)-(f). Even at 1:100, the reconstructed Goldhill

image in Figure 54(d) is still visually pleasant: no blocking and not much ringing.

Figure 56 demonstrates the impressive performance of the fast VLGLBT in Section

6.2.3. As expected, the VLGLBT o�ers a 0:3 � 0:5 dB improvement over the DCT

at medium and low bit rates. It is inferior to much more complex transforms like the

9=7-tap wavelet and the 8�16 GLBT. However, we stress that the VLGLBT is designed

mainly to improve the reconstructed image quality. Zoom-in portions of the reconstructed

images in Figure 56 con�rms the VLGLBT's high potential in this most crucial criterion:

blocking is avoided while ringing is suppressed. In fact, the low-complexity VLGLBT is

even better than the \optimal" LOT [45] in blocking elimination. More objective and

subjective evaluation of block-transform-based progressive coding can be found at the

web site

http://saigon.ece.wisc.edu/~waveweb/Coder/index.html.

As previously mentioned, the improvement over wavelets keys on the lapped trans-

form's ability to capture and separate localized signal components in the frequency do-

main. In the spatial domain, this corresponds to images with directional repetitive tex-

ture patterns. To illustrate this point, the lapped-transform-based coder is compared

against the FBI Wavelet Scalar Quantization (WSQ) standard [112]. When the original

768 � 768 gray-scale �ngerprint image shown in Figure 57(a) is compressed at 1 : 13:6

(43366 bytes) by the WSQ coder, Bradley et al reported a PSNR of 36:05 dB. Using the

16�32 GLBT in Figure 25, a PSNR of 38:09 dB can be achieved at the same compression
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(a)

(c)

(b)

(d)

Figure 53: Barbara coded at 1:32 using various transforms. (a) 8 � 8 DCT. (b) 8 � 16

LOT. (c) 8 � 16 GLBT. (d) 16 � 32 GLBT.
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(a) (b)

(c) (d)

Figure 54: Goldhill coded by the 16 � 32 GLBT. (a) 1:16, 33.42 dB. (b) 1:32, 30.84 dB.

(c) 1:64, 28.74 dB. (d) 1:100, 27.62 dB.
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(d) (e) (f)

(a) (b) (c)

Figure 55: Perceptual comparison between the wavelet and the LT embedded coder.

Enlarged portions. (a) Original Barbara image. (b) SPIHT at 1:32. (c) 8 � 16 GLBT

embedded coder at 1:32. (d) Original Goldhill. (e) SPIHT at 1:32. (f) 8 � 16 GLBT

embedded coder at 1:32.
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(a) (b) (c)

(d) (e) (f)

Figure 56: Perceptual comparison between various transforms at 1:32 compression ratio.

Enlarged portions. (a) Original Lena image. (b) 8� 8 DCT. (c) 2� 24 6� 8 VLGLBT.

(d) 8 � 16 LOT. (e) 8� 16 GLBT. (f) 9=7-tap wavelet.
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ratio. At the same level of PSNR, the GLBT coder can compress the image down to

1 : 20 where the reconstructed image is shown in Figure 57(b). To put this in perspective,

the wavelet-packet-based SFQ coder in [109] reported a PSNR of only 37:30 dB at 1:13.6

compression ratio. At 1 : 18:036 (32702 bytes), the WSQ's reconstructed image shown in

Figure 57(c) has a PSNR of 34:42 dB while the GLBT coder produces 36:57 dB. At the

same distortion level, the GLBT coder can compress the image down to a compression

ratio of 1:27 (21845 bytes) as shown in Figure 57(d). Notice the high visual quality of

the reconstructed images in Figure 57(b) and (d): no disturbing blocking and ringing

artifacts.

7.3 Progressive Perceptual Image Coding

7.3.1 Motivation

The embedded image coder presented in the previous section yields excellent performance

in the mean-square sense. However, one important aspect that it has not taken into ac-

count is the perceptual quality of the reconstructed images. It has been widely known

that PSNR is not the ultimate judge in image quality [31]. Although some improve-

ments in this aspect can be addressed at the transform stage as discussed throughout the

dissertation, taking another step forward requires much more sophisticated perceptually-

tuned coders { the main motivation and objective of this section. Instead of aiming for

the highest PSNR between the original and the coded image, we propose a progressive
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(a) (b)

(c) (d)

Figure 57: Fingerprint compression example. (a) Original Fingerprint image (589824

bytes). (b) Coded by the 16�32 GLBT coder at 1:20 (29490 bytes), 36.05 dB. (c) Coded

by the WSQ coder at 1:18.036 (32702 bytes), 34.42 dB. (d) Coded by the 16� 32 GLBT

coder at 1:27 (21845 bytes), 34.42 dB.
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coder that incorporates many prominent properties of the Human Visual System (HVS)

to yield visually pleasant reconstructed images.

7.3.2 Approach

The novel embedded coder features a locally adaptive perceptual masking thresholder

that computes, based on the contents of the original image, the maximum amount of

noise energy that can be injected at each transform coe�cient such that the recon-

structed image is still perceptually distortion-free. The adaptive thresholder is used as

a pre-processor to a block-based embedded image coder. Perceptually normalized block-

transform coe�cients less than their corresponding masking thresholds can be set to

zero before the normal embedded quantization and bit plane coding step. The result is a

visually-tuned embedded coder which is capable of transparent coding when all bit planes

are encoded. Visually insigni�cant coe�cients are never included in the compressed bit-

stream. If lower bit rates are desired, the decoder and possibly the encoder simply deal

with the higher bit planes of the visually signi�cant coe�cients. Excellent reconstructed

image quality without annoying blocking and ringing artifacts can still be obtained at

low bit rates.

The perceptually-tuned embedded coder can be divided into the following stages: the

transform stage, the perceptual pre-quantization stage, the texture masking thresholding

stage, and the embedded coding stage. The new components added on top of the em-

bedded transform coder in Section 7.2 are the perceptual pre-quantizer and the texture
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masking thresholder.

7.3.3 The Perceptual Pre-Quantizer

The pre-quantizer accounts for the HVS's frequency and luminance sensitivity. It is

implemented from the DCT detection model presented in [59] and the LOT model in

[60]. The JND step sizes are measured and modeled from the visible sensitivity of the

transform's basis functions, taking into account di�erent pixel sizes, di�erent viewing

distances, and also di�erent display luminance. In other words, the JND pro�le provides

a quantization table Q (that is dependent on the viewing conditions and the transform)

for coe�cient normalization. The higher the JND, the less visually sensitive the coe�cient

is. This is similar to the quantization stage in JPEG. In fact, the familiar quantization

tables in JPEG [58] can be used here without any signi�cant loss in perceptual quality.

7.3.4 Texture Masking Thresholder

In the perceptual normalization process, local image statistics have not been exploited.

The image-dependent texture masking thresholder here employs a similar idea to the

masking model presented in [87] where the authors use a mapping of the DCT frequency

responses onto the Cortex transform space to estimate the texture energy, i.e., the amount

of spatial details in each HVS's critical band of each image block. A threshold elevation

factor for each DCT coe�cient of that particular block can then be computed from the

amount of texture energy. More simply stated, the threshold elevation model provides
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a more \aggressive" quantization table with larger quantization stepsizes for coe�cients

in an image locality containing signi�cant texture energy. Since the HVS cannot detect

quantization noise in highly textured image regions as well as in smooth background

regions [31], [10], [69], appropriate elevation of the quantization stepsizes will improve

the coding e�ciency of these textured regions without any loss in perceptual quality.

+
-

input
image

Cortex
baseband

Cortex
critical 
bands

+

+

+

+

-

-

-

-

Figure 58: Implementation of the Cortex �lter bank.

The Cortex transform shown in Figure 58 is a 2D non-maximally decimated �lter

bank which has been proven to be a rather accurate model of the HVS's critical bands

[31]. It is a combination of octave-band ring �lters and directional fan �lters. Instead of

mapping the block transform onto the Cortex transform [87] as depicted in Figure 59, we

propose a fast and simple, yet still e�ective, approximation of this process by replacing
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Cortex FB’s frequency spectrum partitioning

Uniform-band FB’s frequency spectrum partitioning

DC

Figure 59: Transform mapping to estimate texture energy in each Cortex band.
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the ring �lters by square separable ones and employing three stair-case fan �lters: one

vertical, one horizontal, and one diagonal. The Cortex band approximation is illustrated

in Figure 60 where the darker lines mark the boundaries between critical bands and

coe�cients belonging to one vertical critical band are labeled X. Note that the frequency

partitioning of the approximated HVS critical bands is very similar to the dyadic wavelet

representation known to be well-matched to psychovisual HVS models.

DC X X

X X

Figure 60: Approximation of the HVS critical bands.

For each Cortex band Ci in an image block, the variance �i of all coe�cient members

is calculated with the zero-mean assumption. The variance is then used to calculate the

threshold elevation factor as shown in Figure 61 where the parametersmin, max, low, high

are tuned by subjective testing. The product of the elevation factor and the corresponding

quantization table Q entry from the pre-quantizer is the coe�cient's masking threshold.

If a coe�cient's absolute value is smaller than its masking threshold, it is labeled \visually
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insigni�cant" and set to zero.
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Figure 61: A Typical Threshold Elevation Model.

7.3.5 Complete Coder

The complete perceptual coder diagram is shown in Figure 62. Without the perceptual

normalizer and the texture masking thresholder, the coder is reduced to the PSNR-tuned

lapped-transform-based progressive image coder presented in the previous section. With-

out the thresholder and if the encoding process is terminated at the end of a certain bit

plane, the coder simply provides a method of encoding the transform coe�cients quan-

tized with a quantization table scaled by a power of two. If the two perceptual modules

are designed appropriately and all bit planes are encoded as in [72], the reconstructed

image is visually lossless. As other embedded coding schemes [73], [71], [110], the new

coder has exact bit rate control. Moreover, it also has robust perceptual control { only

coe�cients pre-determined to be visually signi�cant are involved in the coding process.

If the user wishes to compress an image with a bit budget lower than the transparent
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level, only higher bit planes of the visually signi�cant coe�cients are encoded. The scal-

ing of the quantization matrix is performed implicitly and automatically to �t the given

budget.
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Figure 62: The complete perceptual coder diagram.

7.3.6 Coding Results

Coding results clearly con�rm the superiority of the perceptually-tuned coder in term of

the visual quality of reconstructed images. On the standard 512�512 test image Barbara

at a compression ratio of 30:1, the standard baseline JPEG's reconstructed image has a

PSNR of 24.84 dB. The image quality is unacceptable as expected: annoying blocking

artifact shows up everywhere as illustrated in Figure 63(a). Our DCT-based coder yields

a much more perceptually pleasant coded image despite having a lower PSNR of 24.73

dB. Figure 63(b) shows the reconstructed image where blocking is reduced signi�cantly,

especially in smooth image regions. Blocking is more severe in texture regions; however,

it is partially masked. It takes JPEG nearly twice the bit budget to yield a compressed

image of comparable quality.
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If the DCT is replaced by the high-performance 8� 16 GLBT in Chapter 4, blocking

artifact is completely eliminated whereas ringing is still kept at a minimum level. Notice

the astounding PSNR di�erence between the PSNR-tuned and the perception-tuned ver-

sion: almost 4 dB! The objectively tuned coder in Section 7.2 o�ers an excellent PSNR

of 29.77 dB. (The wavelet-based embedded coder SPIHT [71] in this case only yields

28.52 dB.) However, as noted in Figure 63(d), aiming for PSNR has the coder spending

many unnecessary bits in the texture regions, leaving some ringing at strong edges. The

perceptually-tuned coder spends its bit budget more judiciously: bits that are normally

used on heavy textured regions (the table cloth, the clothes, the chairs behind) are now

allocated to visually sensitive features, like the face, the elbows, and the table edges

as shown in Figure 63(c) { (d). For more in-depth subjective evaluation of perceptual

block-transform-based progressive image coding, the reader is again referred to the url

address http://saigon.ece.wisc.edu/~waveweb/Coder/index.html.

7.4 Summary

This chapter presents two high-performance image coding frameworks, both based onM -

channel uniform-band LPPRFBs and zerotree entropy coding. Image coding examples

show that the novel M -channel LPPRFBs, when appropriately designed and utilized,

o�er the highest objective performances up to date, easily outdistance state-of-the-art

wavelets by a signi�cant margin. On the other hand, the perceptually-tuned embedded

image coder yields remarkably high visual-quality performance despite its simplicity.



173

(a) (b)

(c) (d)

Figure 63: Coding results of Barbara image at 30:1 compression ratio. (a) Standard

baseline JPEG, 24.84 dB (b) Perceptually coded by DCT, 24.73 dB. (c) Perceptually

coded by 8 � 16 GLBT, 25.88 dB (d) Coded by 8 � 16 GLBT, PSNR-tuned, 29.77 dB.
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Both coding framework o�ers many advantages:

� They are both fast and relatively simple.

� They do not need any kind of training, optimization, segmentation, and classi�ca-

tion.

� Both of them employ block transforms at the transformation stage, facilitating and

increasing the e�ciency of local texture masking.

� The transforms have fast, robust, e�cient, and modular structures, ideal for VLSI

implementations.

� The block-based nature of the transforms also increases the parallelism of compu-

tation.

� The coder has progressive image transmission and nearly all of its attractive char-

acteristics, such as embedded quantization and exact bit rate control. Only idem-

potency is sacri�ced in the perceptually-tuned coder.
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Chapter 8

Conclusion

8.1 Summary

This dissertation focuses on the theory, structure, design, implementation, and applica-

tion in image compression of discrete-time FIR linear phase perfect reconstruction �lter

banks with arbitrary M channels and arbitrary-length �lters. This class of FBs is pur-

posely chosen to have high practical values: linear phase, FIR, real (sometimes even

rational and integer) �lter coe�cients, and exact reconstruction.

The approach consistently taken throughout the dissertation is to parameterize the

FBs by various lattice structures based on the factorization of the analysis and synthesis

polyphase transfer matrices. From a slightly di�erent point of view, the factorization

allows the construction of a highly complex system from a cascade of identical low-order

building blocks, each is carefully designed to propagate structurally the most desired

properties, namely linear phase and perfect reconstruction. In other words, in the lattice

representation, both of these crucial properties are retained regardless of the quantization

of lattice coe�cients to any desired level. The lattice structure o�ers a powerful charac-

terization in both FB design and implementation. From a design perspective, the lattice
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coe�cients can be varied independently and arbitrarily without a�ecting the LP and PR

properties. Secondary FB properties such as high coding gain and low stopband atten-

uation can be further achieved using unconstrained optimization techniques. From an

implementation perspective, the cascading construction provides a fast, e�cient, robust,

and modular structure which lends itself nicely to hardware realization in VLSI.

In the particular application of image coding, M -channel LPPRFBs in this disserta-

tion can be interpreted as lapped transforms which elegantly solve the annoying blocking

artifact problem in widely-used block-transform-based image coders. Borrowing image

pixels from the neighboring blocks to produce the transform coe�cients of the current

block, the lapped transform takes into account inter-block correlation, provides higher en-

ergy compaction, and is capable of eliminating completely discontinuities between block

boundaries on the reconstruction stage. Image compression demonstrations show that our

novel transforms o�er signi�cant improvements in coding performance, both objectively

and subjectively, over the popular DCT, LOT, and even state-of-the-art wavelets in the

current literature. Coding performance aside, the block-based nature of the transforms

also provide several other advantages:

� capable of processing large signals under limited memory constraint

� increasing computational parallelism

� facilitating region-of-interest coding/decoding.

The speci�c results of the dissertation are summarized below.
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8.1.1 Necessary Existence Conditions for LPPRFBs

The LP property of the �lters imposes certain symmetry constraints on the components

of the FB's polyphase matrices. Manipulating the symmetrical forms of these transfer

functions, we are able to obtain in Chapter 3 a restrictive set of permissible conditions

on the �lter lengths and symmetry polarity (symmetric/antisymmetric) for LPPRFBs

in general. The symmetry of the polyphase matrices and the necessary conditions for

existence play key roles in the derivation of complete and minimal lattice structures in

later chapters.

8.1.2 The Generalized Lapped Biorthogonal Transform

Chapter 4 introduces the �rst complete and minimal lattice structure for a large class

of M -channel FIR LPPRFBs: all analysis and synthesis �lters have the same length

L = KM . The novel SVD-based lattice can be viewed as an e�cient and robust rep-

resentation of the generalized lapped biorthogonal transforms (GLBT) with arbitrarily

large overlapped samples KM . The lattice actually covers all solutions (both orthogo-

nal and biorthogonal) in the class of practical FBs under consideration. The relaxation

of the orthogonal constraint allows the FB to have signi�cantly di�erent analysis and

synthesis basis functions which can then be tailored to �t a particular class of signals or

applications. For a �xed quantization and entropy coding scheme, this class of FBs yields

the highest coding performance comparing to other sate-of-the-art transforms reported

in previous works.
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8.1.3 Lapped Transforms of Arbitrary Block Size

Conceptually, the result in Chapter 5 is a simple, straightforward step towards unifying

the �eld of LPPRFB design: the length constraint L = KM in the GLBT's lattice is

now relaxed to L = KM + �. The derivation of the general solution is not trivial in any

standard. In the lapped transform language, the amount of overlap is not constrained to

be a multiple of the number of channels anymore. The window size of the transform can

be chosen arbitrarily.

8.1.4 Most General Solution: LPPRFB with Filters of Variable

Length

Chapter 6 presents our most general LPPRFB solution: the �lters can be chosen to

have variable lengths Li = KiM + �. Besides having all of the attractive properties of

previously-introduced transforms, this new class of FBs can take advantage of its VL

property: the long overlapping basis functions are used to represent slowly-changing

signal components and to avoid blocking artifacts, while the short basis functions are re-

served for high-frequency signal components to limit ringing artifacts. These transforms

named VLLOT and VLGLBT also provide a trade-o� between performance and complex-

ity. Extremely fast transforms (taking only several more additions and multiplications

comparing to the DCT) with impressive subjective performance can be obtained.
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8.1.5 Completeness and Minimality

Most of the lattice structures in this dissertation are proven to completely span the set

of all possible solutions and to employ the least number of delay elements in the FB's

implementation. This shows that the results are both general and practical.

8.1.6 Design Aspects

Numerous design examples obtained from standard nonlinear optimization programs are

presented throughout Chapter 4 { 6. Many design criteria, secondary FB's properties,

and their connection to image coding performance are considered and investigated: cod-

ing gain, attenuation at DC, attenuation around mirror frequencies, stopband attenuation

of both analysis and synthesis �lters, etc.

8.1.7 Application in image coding

Chapter 7 demonstrates that multi-band LPPRFBs are capable of providing signi�cant

improvements over current popular transforms such as the wavelet transform, the DCT,

and the LOT. Extensive coding comparison are carried out with two next-generation im-

age coding schemes: multiple-pass embedded coding and perceptually-tuned progressive

coding. The embedded coder based on our new FBs outperforms some of the best image

coders published recently in the literature. The improvement in PSNR over SPIHT, one

of the highest performance wavelet-based embedded coder, can reach up to an astounding

2.6 dB. The perceptually-tuned coder which gears towards the human perception instead
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of PSNR yields exceptional reconstructed image quality.

8.2 Future Research Directions

Despite tremendous successes mentioned above, much more work remains to be done in

the �eld of �lter banks, multirate systems, and their applications. In fact, the dissertation

raises more new questions and reveals more open problems for future research than it

actually resolves. A list of future research directions as well as open problems, some

speci�c, others general, is compiled below. Some of the items in the list are already

works in progress [29], [30], [23], [57].

8.2.1 Integer-Coe�cient Transforms

M -channel LPPRFB with dyadic rational coe�cients can lead to faster, more e�cient,

multiplierless, and low-powered systems [29], [30]. This highly practical class of trans-

forms can also give rise to a unifying framework for both lossy and lossless image coding.

8.2.2 M-band Wavelets

Imposing regularity constraints (vanishing moments) on the lowpass �lter of LPPRFBs

leads to orthogonal/biorthogonal M -band wavelets. Moreover, direct mathematical im-

position of regularity on the lattice coe�cients results in M -band wavelets with fast,

e�cient, and robust implementation. The simple example in Section 4.6 demonstrates

the feasibility of the idea.
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8.2.3 Asymmetrical Systems

The analysis and synthesis polyphase matrices of all FBs presented in this dissertation

have the same order. We have not biased one bank over the other: both have the same

level of complexity. In many practical systems { for instance archiving or systemswith low

memory and limited resources like mobile phones, inexpensive printers { it is desirable to

have extremely fast and low-complexity synthesis bank. This calls for asymmetrical FB

design where the synthesis bank may have much lower order than the analysis. Another

possible approach is to relax the PR constraint and to try to approximate the analysis

bank by the fewest number of operations in the synthesis bank.

8.2.4 Filter Banks in Higher Dimension

Various other generalization to higher dimension can be taken: nonseparable multi-

dimensional LPPRFB to handle multi-dimensional signals [57]; multi-FBs and multi-

wavelets to better adapt to signals that are vector-valued in nature, i.e., color images,

video, etc. The same factorization approach can be applied in straightforward manners.

8.2.5 Application in Image Compression

On image compression, high-order context modeling [106], [9], better quantization scheme

[108], better rate-distortion optimizations and estimation [42], and subband classi�cation

methods [33] can be applied to the GLBT's transform coe�cients to push the rate-

distortion performance even further. Similarly, a more general data structure that better
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�ts the uniform-band nature of the transforms should also improve the coding e�ciency

[23] as well.

8.2.6 Other Potential Applications

The new transforms can bene�t numerous other applications. The most obvious is the

application in video coding. Since the LT prove to be a much better alternative than the

DCT in still image coding, it is also capable of replacing the DCT in MPEG video coder

[39], [111] as well. Its close relationship with the DCT and its low complexity facilitate

the modi�cation in both hardware and software. Other potential applications include

speech and audio coding; processing, analysis, and compression of medical signals (ECG,

MRI, mammograms...); transmultiplexers in communication; robust signal transmission

over wireless and lossy channels [24].

In short, the results in this thesis deepen our understanding of multirate systems and

�lter banks, have a rich mathematical foundation, o�er a unique blend of theory and

practice, and provide many new, powerful tools for signal processing, understanding, and

communication.
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