1. Consider a modified SR-FF as depicted in the figure below.

(a) Sketch a typical set of timing diagrams that can demonstrate the operational behavior of the flip-flop. Describe the difference between this modified SR-FF and the original one described in lecture.

(b) Draw the finite state machine for the modified SR-FF.

(c) Figure 1 shows another extension of the SR-FF, called the data latch. Sketch the timing diagram for the output Q of the data latch given that $Q = 1$ initially.

2. Consider the design of a multiplier which accepts two 2-bit non-negative binary numbers – A_1A_0 and B_1B_0 – as inputs and yields the 4-bit output $Y_3Y_2Y_1Y_0$. Assume that the stock room has an ample supply of basic gates as well as full adders.

(a) Draw the circuit that performs the partial product of B_0 and A_1A_0. How about the product of B_1 and A_1A_0?
(b) Use your result in Part (a) to implement the multiplier. *Hint:* use a cascade of full adders and beware of the shift.

(c) Find the logic function for Y_3, the multiplication overflow bit.

3. The stock room has an ample supply of basic gates and toggle flip-flops.

 (a) Design a 2-bit modulo-4 counter that counts **backward**. Suppose that your counter’s initial display is 3 in decimal, it should show $3 \rightarrow 2 \rightarrow 1 \rightarrow 0 \rightarrow 3 \rightarrow 2 \rightarrow 1 \rightarrow 0 \rightarrow 3 \rightarrow 2 \rightarrow ...$

 (b) Sketch the finite state machine describing the operation of your reverse counter in Part (a). *Hint:* You may need more than two states here!

 (c) We would like to add another input signal labeled **RESET** to clear the display of the counter to 11 whenever it is activated. Draw the modified counter circuit with the additional **RESET** input.

4. Consider the **JK flip-flop** with inputs {J, K, CLK} and outputs {Q, \overline{Q}}, operating according to the following rules:

 - When both J and K are low, the flip-flop stays put (no change at output Q).
 - When $J = 0$ and $K = 1$, the flip-flop resets ($Q = 0$).
 - When $J = 1$ and $K = 0$, the flip-flop sets ($Q = 1$).
 - When both J and K are high, the flip-flop will toggle its output Q at every falling edge of the clock input.

 (a) Show how to use the JK flip-flops to design a Modulo-8 counter.

 (b) Draw timing diagrams of your counter’s outputs {Q_2, Q_1, Q_0} along with a clock CLK signal to demonstrate its operations.

 (c) Draw the finite state machine for your Modulo-8 counter.

 (d) Design a Modulo-6 counter, again using the JK flip-flops and basic gates.

 (e) Can we use the JK flip-flops as memory cells to store binary data? Justify why or why not.

Due date: **October 12** in class