Department of Electrical and Computer Engineering The Johns Hopkins University 520.643 Digital Multimedia Coding and Processing – Spring 2003

Homework Assignment III

1. (10 points) Parseval's relation for orthonormal basis. Consider the space $\mathcal{V} = \mathcal{R}^n$ and an orthonormal basis $\{\phi_i\}$. Prove that for every $\mathbf{v} \in V$,

$$\|\mathbf{v}\|^2 = \sum_{i=0}^{n-1} |\langle \phi_i, \mathbf{v} \rangle|^2.$$

2. (30 points) Parseval's relation for nonorthogonal basis. Consider the same space $\mathcal{V} = \mathcal{R}^n$ with a biorthogonal basis, that is, two sets $\{\alpha_i\}$ and $\{\beta_i\}$ such that

$$<\alpha_i, \beta_j> = \delta[i-j], \quad i, j = 0, 1, \dots, n-1.$$

a. Show that any vector $\mathbf{v} \in V$ can be written in the following two ways:

$$\mathbf{v} = \sum_{i=0}^{n-1} \langle \alpha_i, \mathbf{v} \rangle \beta_i = \sum_{i=0}^{n-1} \langle \beta_i, \mathbf{v} \rangle \alpha_i.$$

b. Call \mathbf{v}_{α} the vector with entries $\langle \alpha_i, \mathbf{v} \rangle$ and \mathbf{v}_{β} the vector with entries $\langle \beta_i, \mathbf{v} \rangle$. Given $\|\mathbf{v}\|$, what can you say about $\|\mathbf{v}_{\alpha}\|$ and $\|\mathbf{v}_{\beta}\|$?

c. Show that the generalization of Parseval's identity to biorthogonal systems is

$$\|\mathbf{v}\|^2 = |\langle \mathbf{v}, \mathbf{v} \rangle| = |\langle \mathbf{v}_{\alpha}, \mathbf{v}_{\beta} \rangle|.$$

and

$$<\mathbf{u},\mathbf{v}>=<\mathbf{u}_{\alpha},\mathbf{v}_{\beta}>.$$

- 3. (20 points) Find the autocorrelation matrix of a zero-mean WSS AR(1) process with auto-correlation coefficient ρ .
- 4. Computer Assignment (40 points). Implement a closed-loop DPCM video coder with uniform scalar quantizer. Use the Huffman coder to encode the quantized predicted sample. You should also provide a lossless mode where there is no quantization at all.

Test your simple video coder on the *glasgow* sequence. How much compression can you achieve losslessly? Report the PSNR's at several lossy compression ratios.

Due date: Mar 21 in class