Problem Set I

1. Problem 2.4 Haykin

2. Problem 2.8 Haykin

 Use Matlab to plot the time, frequency, and phase response of the MA-generated LTI filter as well as your approximations.

3. Problem 2.1 a, c, d Diniz

 Supposing the input signal vector is composed by a delay line with a single input signal. Compute the correlation matrix for the following input signals:

 a. \(x[k] = \sin(\frac{\pi}{4} k) + \cos(\frac{\pi}{3} k) + n[k]. \)

 c. \(x[k] = a_n[k] \sin(\omega_0 k + n_2[k]). \)

 d. \(x[k] = -a_1 x[k - 1] - a_2 x[k - 2] + n[k]. \)

 In all cases, \(n[k], n_1[k], \) and \(n_2[k] \) are white noise with uniform distribution, with zero mean and with variances \(\sigma_n^2, \sigma_{n_1}^2, \) and \(\sigma_{n_2}^2, \) respectively. These random signals are considered independent.

4. Problem 4.5 Haykin

5. Problem 2.3 Diniz

 For the correlation matrix below, find its eigenvalues, eigenvectors, and the matrix \(Q. \)

 \[
 R_{xx} = \frac{1}{2} \begin{bmatrix} a_1 & a_2 \\ a_2 & a_1 \end{bmatrix}
 \]

Due date: **September 21** in class