Homework Assignment I

Reading Assignment: lecture notes, Strang-Nguyen Sections 2.1 – 2.3, 3.1 – 3.3

1. An input signal \(x[n] \) with triangular frequency spectrum is passed through a 2-channel maximally-decimated filter bank with ideal filters as depicted in Figure 1.

 Sketch the signal spectrum at every node. Show graphically that perfect reconstruction can be achieved.

 ![Figure 1: Two-channel filter bank with ideal filters.](image)

2. Let \(G(z) = \sum_{n=0}^{N} g[n] z^{-n} \) be a real-coefficient order-\(N \) FIR low-pass filter whose impulse response is \(g[n] \) and \(g[0], g[N] \neq 0 \). Define the following three filters:

 \[
 H_1(z) = z^{-N} G(z^{-1}); \quad H_2(z) = G(-z); \quad H_3(z) = z^{-N} G(-z^{-1}).
 \]

 (a) Find the impulse responses \(h_1[n], h_2[n], \) and \(h_3[n] \) in term of \(g[n] \).
 (b) If \(g[n] \) is even-length and symmetric, which type of filter is \(h_1[n], h_2[n], \) and \(h_3[n] \)?
 (c) Find the magnitude responses of \(h_1[n], h_2[n], \) and \(h_3[n] \) in term of \(|G(e^{j\omega})| \). If \(G(z) \) is the perfect low-pass filter with cut-off frequency \(\omega_C \), sketch the frequency responses of \(H_1(z), H_2(z), \) and \(H_3(z) \).
 (d) If \(z_0 \) is a zero of \(G(z) \), find the corresponding zeros of \(H_1(z), H_2(z), \) and \(H_3(z) \).

3. Prove that an FIR filter \(H(z) \) of order \(N \) has real coefficients \(h[n] \) if and only if its roots are either real or appear in conjugate pairs. More precisely, the right-hand side means that: if \(z_n \) is a root of \(H(z) \), then either \(z_n \) is real or \(z_n^* \) is also a root of \(H(z) \).

Due date: **Friday September 19** in class