
834 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 50, NO. 4, APRIL 2002

A Family of Lapped Regular Transforms With Integer
Coefficients
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Abstract—Invertible transforms with integer coefficients are
highly desirable because of their fast, efficient, VLSI-suitable
implementations and their lossless coding capability. In this paper,
a large class of lapped regular transforms with integer coefficients
(ILT) is presented. Regularity constraints are also taken into ac-
count to provide smoother reconstructed signals. In other words,
this ILT family can be considered to be an -band biorthogonal
wavelet with integer coefficients. The ILT also possesses a fast
and efficient lattice that structurally enforces both linear-phase
and exact reconstruction properties. Preliminary image coding
experiments show that the ILT yields comparable objective
and subjective performance to those of popular state-of-the-art
transforms with floating-point coefficients.

Index Terms—Image coding, integer transform, lapped trans-
form.

I. INTRODUCTION

W ITH integer-coefficient transforms, the coefficients
representing the signal can be obtained very efficiently

by shift-and-add operations, leading to multiplierless systems.
Transforms with integer coefficients not only lead to fast,
low-powered VLSI implementations but also yield integer
output, which is a necessary condition for lossless transform
coding. In the two-channel case, there are extensive works
in this area, and most solutions have been found (see [4],
[5], and references therein). On the other hand, research on
integer-coefficient -channel systems is still at an early stage.
It has been shown recently that multiband transforms with
floating-point coefficients, when appropriately designed and
utilized, can outperform state-of-the-art wavelets by significant
margins [6], [7], [9], [11]. The overlapping basis functions of
these transforms can eliminate annoying blocking artifacts just
as efficiently as any wavelet. However, the wavelet transform
requires many more operations per output coefficient, and it
may need a large memory buffer in its implementation. LTs
are more advantageous than wavelets because they can be
implemented as block transforms.
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The simplest example of an -channel transform with in-
teger coefficients is the Walsh–Hadamard transform (WHT) [3],
whose coefficients consist of either 1 or without normaliza-
tion factor. The eight-point DWT is defined by

In addition, the discrete WHTs for a size are given non-
recursively. This is an orthogonal matrix. However, the WHT is
too simple to achieve good coding performances (analogously
to the comparison between the Haar and other high-performance
wavelets), and its basis functions are not overlapped. In image
coding, the synthesis lowpass filter should be long and smooth
to avoid blocking and checkerboarding. To obtain smooth syn-
thesis function, the synthesis lowpass filter is required to have
as many vanishing moments as possible. To achieve this, we can
utilize the maximally flat th-band filter as our synthesis low-
pass filter.

In this paper, we present a nontrivial -channel lapped
biorthogonal transforms with integer coefficients, where the
synthesis lowpass filter of the WHT is replaced by a factorizable
maximally flat th-band filter. The replacement increases the
transform’s efficiency in representing smooth signal compo-
nents to avoid blocking artifacts. Next, we show that the length
of the lowpass filter can be traded off between the analysis and
synthesis side by applying balancing [2]. As result, the ILT with
arbitrary regularities can be designed. Several lifting steps or a
ladder structure can then be applied to improve the transform
further. The resulting ILT is biorthogonal, has linear-phase
basis functions of variable lengths, and, most importantly, has
integer coefficients. The ILT can also be thought of as a class
of -band biorthogonal wavelets with integer coefficients and
a fast implementation.

A. Review of Lapped Transform

In this paper, we limit the discussions on lapped transforms
to -channel uniform linear phase perfect reconstruction filter-
banks (LPPRFBs). The generalized paraunitary LPPRFBs are
called GenLOT and are presented in [8]. The most general lat-
tice for -channnel linear phase lapped biorthogonal trans-
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forms (GLBTs) is presented in [9] and [10]. The polyphase ma-
trix can be factorized as [9]

(1)

(2)

and

(3)

This lattice results in all filters having length .
is often called the overlapping factor. Each cascading structure

increases the filter length by . All and
are arbitrary invertible ma-

trices, and they can be completely parameterized by their sin-
gular value decomposition (SVD), i.e., and

, where and are diagonal matrices with
positive elements.

B. Outline of the Paper

The paper begins with the th-band filter. Section II
shows the basic ILT structure, using the factorization of the
maximally flat th-band filter. Section III presents balancing
method for -channel filterbanks, which is well known for the
two-channel case. Section IV gives the lifting steps based on
the basic ILT to improve the coding performance while keeping
the regularities. Finally, Section V investigates the application
of the new transform in image coding.

Notations: Boldfaced letters indicate vectors and matrices.
Superscript denotes transposition, and denotes the
identity matrix.

II. BASIC ILT STRUCTURE

In this paper, we restrict the class of lapped transforms in the
discussion to -channel uniform linear phase perfect recon-
struction filterbanks (LPPRFBs) whose polyphase representa-
tion is depicted in Fig. 1 [1]. The neccesary and sufficient con-
dition for perfect reconstruction of the GLBT is expressed by

(4)

Now, the analysis and synthesis filters are expressed by
and ,

respectively, where
, and

. In the GenLOT [8], the synthesis fil-
ters are time-reversed versions of the analysis filter and

. GenLOT can be constructed by lattice
structures that consist of the orthogonal matrices and the
diagonal matices with delays. On the other hand, the lattice
matrices of the GLBT are not restricted to be orthogonal. With
the added degrees of freedom, GLBT outperforms GenLOT in
image coding.

Fig. 1. Polyphase representation of an LPPRFB.

A. Maximally Flat th-Band Filters

One way to construct GLBT is to use a spectral factor of
the th-band filter as the analysis and synthesis filters. The

th-band filter satisfies Nyquist’s condition, which is de-
fined as in the time domain and is ex-
pressed as in the frequency domain. On
the other hand, the perfect reconstruction condition (PR) of LP-
PRFB is expressed by

(5)

where and are the analysis and synthesis filter, re-
spectively. If the analysis and synthesis filter pair of and

are the spectral factors of -the band filter, one condition
of PR is satisfied. Then, the maximally flat th-band filter is
useful to construct ITL.

Definition: A filter is said to be a maximally flat
th-band filter if it has the following form [13]:

(6)

where

and

and its first derivatives vanish for
. When

is said to be -regular -band unitary
scaling filter [13]. Since has the binomial and symmetric
coefficient, this is clearly a factorizable polynomial with integer
coefficients, and is a polynomial of degree
in and has linear phase. Thus, the maximally flatth-band
filter all have binominal coefficients that are integers that are
divisible by 2 and have the maximum number of vanishing
moments.
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Fig. 2. Analysis bank using lifting scheme.

B. Basic ILT

Since is an th-band filter, its impulse responce
has the following characteristic:

integer,
(7)

If is expressed by the polyphase representation, it has the
following form:

(8)

We construct the ILT’s polyphase matrices and
from a simple modification of the WHT and a series of lifting
steps based on the maximally flatth-band filter.

Theorem: Let the synthesis bank be WHT . If the WHT’s
synthesis lowpass filters that correspond to the first column of

are replaced by the following filter , which is a factors
of

(9)

then the synthesis polyphase matrix form a perfect recon-
struction FIR system, and the resulting analysis polyphase ma-
trix is FIR with linear phase and has binomial coefficients.

Proof: With the proposed synthesis filter , the
polyphase matrix of the synthesis bank now becomes

(10)

where , and is
the WHT matrix with the first column deleted. To achieve PR
in the filterbanks, the analysis lowpass filter is expressed
by

(11)

From (9) and (11), we obtain

(12)
Since in (8) corresponds to the case
is expressed by

Therefore, it can be easily shown that

(13)

where the vector is the polyphase component of
corresponding to the first row of the WHT. Next, we have

to prove that the determinant of must be a monomial, i.e.,
the filterbank achieves PR and is FIR.

Multiplying to on the left yields

Hence, . In addition, notice that is
factorizable. Therefore, the synthesis bank can be implemented
by lifting the submatrix following the WHT. The
corresponding analysis polyphase matrix is then given by

The analysis bank is also implementable using lifting, as illus-
trated in Fig. 2. It is noted that the lifting filters have
integer coefficients. We label the combination of and
above as the basic ILT.

The basic ILT is constructed by WHT and a series of lifting
steps, as shown in Fig. 2. As result, the analysis lowpass filter
has length , and other filters have length . In-
versely, the synthesis lowpass filter has length and
is regular. It is noted that the total length of the anal-
ysis and corresponding synthesis filters is .

III. B ALANCING

The lowpass analysis filter in the basic ILT is one-regular,
and the lowpass synthesis filter is -regular. However,
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changing the filter length and regularities are required in some
applications [2]. Since the length of the analysis lowpass filter
is very short compared with the synthesis lowpass filter, one
wants to trade the length between the analysis and synthesis side
while keeping the integer coefficients and PR. Then, some of
the factor in the synthesis
bank should be moved to the analysis bank while keeping some
regularities. This operation is called balancing, and it is easy to
move in the two-channel filterbank [2]. We extend
balancing to -channel basic ILT.

Moving from to
maintains integer coefficients and symmetry.

(14)

The product equals and the
maximally flat th-band filter . However, this operation
destroys the perfect reconstruction in the filterbank. Then, we
apply this operation to all analysis and synthesis filters.

Multiplying by is
expressed in the polyphase representation

...
...

...
...

(15)

Dividing by is expressed
in the polyphase representation

...
...

...
...

(16)

Because the determinant of is
is the rational matrix polynomial. If we use this form

as it is, the synthesis filters are not FIR but IIR. Then, the
polyphase matrices are transformed such that the determinant
of the new polyphase matrix is a monomial, and the lowpass
filter is invariable.

...
...

...

...
. . .

...
(17)

It is noted that and still have PR. As a result,
the synthesis filters are expressed by

for

(18)

Thus all synthesis filters have binomial coefficients. Similar to
the synthesis bank, the analysis filters are expressed by

for

(19)

Thus, is the rational function. Since the frequency re-
sponse of the scaling filter corresponding to has a zero
order at the th roots of unity, all moments up to
order of the wavelet corresponding to vanish
[13]. That is, has zeros at . Therefore,
the denominator of is cancelled by the numerator, and

is the FIR transfer function and still has binomial co-
efficients. By recursively applying this algorithm times,
we can obtain kinds of filterbanks with integer coefficients.
When this balancing algorithm is appliedtimes, which means

, the resulting
analysis lowpass filter has length , and the other
analysis filter has length . The total length of
the analysis and corresponding synthesis filters is still .
Similarly to the two-channel case, the balancing operation may
make the frequency response poor; however, we can show the
balancing for -channel, which has never known.

Example 1: A basic eight-channel ILT with in (9)
is designed. The analysis lowpass filter has length 8, and other
bandpass filters have length 24. In the synthesis bank, the low-
pass filter has length 24, and the rest have length 8. Then, a

is moved from to .
In the resulting ILT, the analysis lowpass filter has length 15, and
other bandpass filters have length 23. In the synthesis bank of
the resulting ILT, the lowpass filter has length 17, and the rest
have length 9. It is noted that the total length of the resulting ILT
is unchanged even if the balancing is applied. Fig. 3(a) and (b)
shows the magnitude response of the resulting balanced ILT.

IV. FURTHER LIFTING STEPS

A. Lifting

When we consider image coding application, the resulting
ILT is not enough to achieve good coding performances be-
cause the frequency response is poor. Then, several lifting steps
or ladder structure are applied to the basic ILT to improve the
transform further. Fig. 4(a) and (b) show the magnitude and
impulse responses of the analysis and synthesis filters in the
eight-channel basic ILT with . All filters have integer
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(a) (b)

Fig. 3. Magnitude responses of (a) the balanced ILTs analysis bank. (b) Balanced ILTs synthesis bank.

(a) (b)

(c) (d)

Fig. 4. Magnitude and impulse responses of (a) basic ILTs analysis bank, (b) basic ILT’s synthesis bank, (c) lifted ILTs analysis bank, and (d) lifted ILTs synthesis
bank.

coefficients so far. Since the synthesis lowpass filter has length
24 and three-regularities, this can eliminate the blocking arti-
facts. Since the other bandpass filters have length 8, these fil-
ters can also avoid the ringing artifacts. Therefore, a basic ILT
is suitable for image compression. However, the analysis bank
does not have high enough attenuation and coding gain. We can
improve our basic ILT further by applying the following lifting
steps while keeping the filter length and symmetric polarity.

1) For .
2) Since the analysis filters with odd indices are

antisymmetric and have the same length , each

analysis filter with odd index is lifted by only scaled odd
index ones to keep antisymmetry and length.

(20)

In the synthesis bank, each synthesis filter is lifted in-
versely:

for
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TABLE I
COMPARISON OFTRANSFORMCOMPLEXITY: NUMBER OF OPERATIONSPER 8 TRANSFORMCOEFFICIENTS

TABLE II
OBJECTIVECODING RESULT (PSNRIN DECIBELS) USING DIFFERENTTRANSFORMS ONTEST IMAGES LENA, GOLDHILL , AND BARBARA

3) Since the analysis filters with even indices are
symmetric, each analysis filter, except for the lowpass
filter, is lifted by only even index ones. Since the anal-
ysis lowpass filter has length and other anal-
ysis filters has length , the difference
between and is . Therefore,

is lifted after multiplying the symmetry polyno-
mial with order to make the length same
and keep symmetry.

where

for

(21)

Since is length and is length
, the length of is kept.

4) end

Note that the analysis filters with even and odd indices are
lifted by only the even and odd filter, respectively. Fig. 2 shows
the analysis bank using the lifting scheme. One can select arbi-
trarily symmetric polynomials with order . How-
ever, the synthesis lowpass filter should be kept long and
have some degrees of regularity to avoid blocking and checker-
bord distortion. Since the synthesis lowpass filter of the basic
ILT is regular, and are -regular as well,
the resulting synthesis lowpass filter is guanranteed to be at least

-regular. If one does not need higher regularities, one
can select as arbitrarily symmetric polynomials.

B. Optimization

The lifted ILT can be designed such that the bandpass and
highpass filters in the analysis bank have enough stopband at-
tenuation in the low-frequency region and the coding gain of the
transform is maximized since we are interested mainly in image
coding applications. There are free parame-
ters for lifting. The cost function used in this paper is a weighted
linear combination of coding gain and stopband attenuation.

(22)

Generally, dc leakage and attenuation around mirror frequen-
cies are added to the cost function for image coding applica-
tion [12]. However, we do not take care of these cost functins
because ILT already has some reguralities. The set of con-
trols the tradeoff between various filter bank characteristics. We
found that the set works well for image coding. The
resulting lifting coefficients are rounded to become binary. This
may influence the optimized frequency response and the coding
gain. However, we can ignore these effects since the basic ILT
already has good responses. Fig. 4(c) and (d) shows the magni-
tude and impulse responses of the lifted analysis and synthesis
filters with binary lifting coefficients.

C. Comparison

The comparison of computational complexity between the
ILT and other popular transforms are tabulated in Table I. It is
noted that the lifted ILT(LILT) is implemented by shift-and-add
operations because all multiplications in ILT are binary. Thus,
LILT is faster than various popular transforms in spite of the fact
that the coding performance is comparable.

V. APPLICATION IN IMAGE CODING

The coding performance of the new ILT is evaluated through
an image coding comparison. To be fair, the same transform-
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(a) (b)

(c) (d)

Fig. 5. Coding results of Barbara at 1:32 compression ratio. (a) SPIHT,9=7-tap biorthogonal wavelet. (b) Embedded 8� 8 DCT. (c) Embedded 8� 16 GLBT.
(d) Embedded 8� 24 LILT.

based progressive image coder SPIHT [14] is used in all cases.
The difference lies at the transform stage, where the transforms
in comparison are the following:

• -tap biorthogonal wavelet;
• DCT, eight filters, all 8-tap;
• GLBT, eight filters, all 16-tap [9];
• lifted ILT(LILT), eight filters, only lowpass filter has

8-tap, others have 24-tap.
It is noted that the total filter length of the lifted ILT are

the same as that of GLBT. In the latter three uniform-band
block-transform cases, we used a modified zerotree structure,
where the transform coefficients are grouped in wavelet-like
quad trees, and the dc band can have several levels of wavelet
decomposition, depending on the image size. For more details
on the embedded coding algorithms, see [7], [11], and [14].

Compared with other popular transforms, our lifted ILT per-
forms well on all test images (Lena, Barbara, and Goldhill), as
shown by the objective coding results in Table II and the recon-
structed images in Fig. 5(a)–(d). Despite having only one long
filter of 24 taps, the lifted ILT proves to be very efficient in elim-
inating blocking artifacts. Ringing is also minimal.

VI. CONCLUSION

This paper introduces a class of lapped biorthogonal trans-
forms with integer coefficients and variable-length basis func-
tions known as ILT. The ILT is built on a simple modifica-
tion of the WHT and a series of lifting steps. Hence, it is fast
computable via only shift-and-add operations. Image coding
examples show that the new integer-coefficient transform con-
sistently yields comparable coding performance with those of
state-of-the-art transforms with much higher complexity.
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