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1. INTRODUCTION

The importance of image compression may be illustrated by
the following examples. For TV-quality color image that is
512 x 512 with 24-bit color, it takes 6 million bits to rep-
resent the image. For 14 x 17 inch radiograph scanned at
70 micrometer with 12-bit gray scale, it takes about 1200
million bits. If one uses a telephone line with 28,800 baud
rate to transmit 1 frame of TV image without compression,
it will take 4 minutes, and it will take 11.5 hours to trans-
mit a frame of radiograph. Commonly used image compres-
sion approaches such as JPEG use discrete-cosine-transform
(DCT)-based transform which introduces annoying block
artifacts, especially at high compression ratio, making such
approaches undesirable for applications such as target recog-
nition and medical diagnosis.

The main objective in this research is to achieve high
compression ratios for still images, such as SAR, and color
images, without suffering from the annoying blocking ar-
tifacts from a JPEG-like coder (DCT-based) or ringing ar-
tifacts from wavelet-based codecs (JPEG-2000, e.g.). We
aim at building a complete codec that can provide similar

perceptual quality as other algorithms but with a higher com-
pression ratio. Additionally, we also want to provide the flex-
ibility in image transmission with embedded bit streams and
the region-of-interest enhancement that is often of interest
in many applications.

The objective was achieved mainly by using the over-
lapped block transform wavelet coder (OBTWC). OBTWC
transforms a set of overlapped blocks (e.g., 40 X 40 pix-
els) into 8 x 8 blocks in the frequency domain. By using
a bank of filters with carefully designed coefficients in per-
forming the image transformation, the coder retains the sim-
plicity of block transform and, at the same time, does not
have blocking artifacts in high compression ratios due to the
presence of overlapped block transform. Meanwhile, com-
pared with zero-tree wavelet transform, the OBTWC offers
more flexibility in frequency spectrum partitioning, higher
energy compaction, and parallel processing for fast imple-
mentation. OBTWC also maps the transformed image into a
multiresolution representation that resembles the zero-tree
wavelet transform, and thus embedded stream is a reality.
In addition to adopting the OBTWC, we also propose two
post-processing techniques that aim at improving the visual
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quality by eliminating some ringing artifacts at very high
compression ratio. Reference [1] summarized the application
of OBTWC to SAR image compression. However, in [1], we
did not give details of our algorithm, the post-processing al-
gorithms, the tool for region-of-interest selection, and com-
pression results of other images.

The rest of the paper is organized as follows. In Section 2,
we review the background and theory of OBTWC. Section 3
summarizes our results. The still image compression results
include benchmark images (Lena and Barbara), SAR im-
ages, and color images. Since degradation in high compres-
sion ratio images is unavoidable, two post-processing tech-
niques were developed in this research to enhance the per-
ceptual performance of reconstructed images. A novel tech-
nique to enhance a small region of an image was also de-
veloped here which could be useful for target recognition.
Extensive comparative studies have been carried out with
a wavelet coder from commercial market, a baseline JPEG
coder (DCT-based), and a JPEG-2000 coder (wavelet-based).
Our coder performs consistently better in almost all the im-
ages that we used in this study. A computational complexity
analysis is also carried out in this section. Finally, Section 4
concludes the paper with some suggestions for future re-
search.

2. THEORETICAL BACKGROUND ON THE OBTWC
ALGORITHM

2.1. Background

Popular image compression schemes such as JPEG [2] use
DCT as the core technology. DCT suffers from the blocking
artifacts in high compression ratio, and hence it is not suit-
able for high compression ratio applications. The develop-
ment of the lapped orthogonal transform [3-5] and its gen-
eralized version GenLOT [6, 7] helps to solve the annoying
blocking artifact problem to a certain extent by borrowing
pixels from the adjacent blocks to produce the transform co-
efficients of the current block. However, global information
has not been taken to its full advantage in most cases, the
quantization and the entropy coding of the transform coeffi-
cients are still done independently from block to block.
Subband coding has been used in JPEG-2000 thanks to
the development of the discrete wavelet transform [8, 9].
Wavelet representations with implicit overlapping and var-
iable-length basis functions produce smoother and more
perceptually pleasant reconstructed images. Moreover, wa-
velet’s multiresolution characteristics have created an intu-
itive foundation on which simple, yet sophisticated, methods
of encoding the transform coefficients are developed.
Instead of aiming for exceptional decorrelation between
subbands, current state-of-the-art wavelet coders [10—12]
look for other filter properties that still maintain perceptual
quality at low bit rates, and then exploit the correlation across
the subbands by an elegant combination of scalar quantizers
and bit-plane entropy coders. Global information is taken
into account at every stage. Nevertheless, in frequency do-
main, the conventional wavelet transform simply provides

an octave-band representation of signals. The conventional
dyadic wavelet transform performs a nonuniform M-band
partition of the frequency spectrum. This may lead to low
energy compaction, especially when applying to medium-
to high-frequency signals, or signals with well-localized fre-
quency components. In such cases, M-channel uniform filter
banks may be better alternatives.

From a filter bank viewpoint, the dyadic wavelet trans-
form is simply an octave-band representation for signals; the
discrete dyadic wavelet transform can be obtained by iterat-
ing on the lowpass output of a PR (perfect reconstruction)
two-channel filter bank with enough regularity [13-15]. For
a true wavelet decomposition, one iterates on the lowpass
output only, whereas for a wavelet-packet decomposition,
one may iterate on any output.

Progressive image transmission scheme is perfect for the
recent explosion of the World Wide Web. This coding ap-
proach first introduced by [10] relies on the fundamen-
tal idea that more important information (defined here as
what decreases a certain distortion measure the most) should
be transmitted first. Assume that the distortion measure is
mean-squared error (MSE), the transform is paraunitary,
and transform coefficients ¢;; are transmitted one by one,
it can be proven that the mean-squared error decreases by
[cij]/N, where N is the total number of pixels. Therefore,
larger coefficients should be transmitted first [16]. If one bit
is transmitted at a time, this approach can be generalized to
ranking the coefficients by bit planes and the most significant
bits are transmitted first [10-12]. The most sophisticated
wavelet-based progressive transmission schemes [11, 12] re-
sult in an embedded bit stream (i.e., it can be truncated at
any point by the decoder to yield the best corresponding re-
constructed image).

Although the wavelet tree provides an elegant hierarchi-
cal data structure which facilitates quantization and entropy
coding of the coefficients, the efficiency of the coder heav-
ily depends on the transform’s ability in generating “enough”
zero trees. For nonsmooth images (such as SAR image) that
contain a lot of texture and edges, wavelet-based zero tree
algorithms are not efficient. As will be seen shortly, our pro-
posed OBTWC shown in Figure 1 is a lot better in terms of
achieving higher compression ratio while retaining the same
perceptual image quality.

2.2. Theory of OBTWC

The theory of lattice structures and design methods for the
two-channel filter banks are well established [13, 17]. It is
shown in [13] that linear-phase and paraunitary proper-
ties cannot be simultaneously imposed on two-channel fil-
ter banks, unless for the special case of Haar wavelets. How-
ever, when more channels are allowed in the systems, both
of the above properties can coexist [13]. For instance, the
DCT (discrete cosine transform) and LOT (lapped orthogo-
nal transform) are two examples where both the analysis and
synthesis filters Hi(z) and Fx(z) are linear-phase FIR filters
and the corresponding filter banks are paraunitary. In this
section, the lattice structure of the M-channel linear-phase
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FIGURE 1: Proposed OBTWC.

paraunitary filter bank (OBTWC) is discussed. It is assumed
that the number of channels M is even and the filter length L
is a multiple of M, that is, L = NM.

It is shown in [6] that M/2 filters (in analysis or synthesis)
have symmetric impulse responses and the other M/2 filters
have antisymmetric impulse responses. Under the assump-
tions on N, M, and on the filter symmetry, the polyphase
transfer matrix H,(z) of a linear-phase paraunitary filter
bank of degree N — 1 can be decomposed as a product of
orthogonal factors and delays [6], that is,

Hy(z) = SQTN-1A(2) Tn2A - - - A(2) ToQ, (1)

10 I 0
N A (R
s_ L[S offr
“Aalo s |||
Here I and ] are the identity and reversed matrices, respec-

tively. So and S; can be any M/2 x M/2 orthogonal matrices
and T; are M X M orthogonal matrices

I 1][u o1 1
Ti= [1 —I} [0 V,} [1 —1} =wew,  (3)

where U; and V; are arbitrary orthogonal matrices. The
factorization [17] covers all linear-phase paraunitary filter
banks with an even number of channels. In other words,
given any collection of filters Hy(z) that comprise such a filter
bank, one can obtain the corresponding matrices S, Q, and
Ti(z). The synthesis procedure is given in [6]. The building
blocks in [17] can be rearranged into a modular form where
both the DCT and LOT are special cases [6],

where

)

Hp(z) = Kn-1(2)Kn-2(2) - - - K1(2)Ko,

K,‘(Z) = (DiWA(Z) wW. (4)

where

The class of OBTWCs, defined in this way, allows us to view
the DCT and LOT as special cases, respectively, for N = 1 and

N = 2. The degrees of freedom reside in the matrices U; and
Vi which are only restricted to be real M/2 X M/2 orthog-
onal matrices. Similar to the lattice factorization in (1), the
factorization in (4) is a general factorization that covers all
linear-phase paraunitary filter banks with M even and length
L = MN.

Based on our analysis, there still exists correlation be-
tween DC coefficients. To decorrelate the DC band even
more, several levels of wavelet decomposition can be used
depending on the input image size. Besides the obvious in-
crease in the coding efficiency of DC coefficients thanks
to deeper coefficient trees, wavelets provide variably longer
bases for the signal’s DC component, leading to smoother
reconstructed images, that is, blocking artifacts are further
reduced. Regularity objective can be added in the transform
design process to produce M-band wavelets, and a wavelet-
like iteration can be carried out using uniform-band trans-
forms as well.

The complete proposed coder diagram is depicted in
Figure 1. It is a hybrid combination of block transform and
wavelet transform. The waveform transform is used for the
DC band and overlapped block transforms are used for other
bands. The advantage is the enhanced capability of capturing
and separating the localized signal components in the fre-
quency domain.

2.3. Determination of block transform coefficients

The filter coefficients in H;(z) of Figure 1 require very careful
design. We use the following well-known guidelines for filter
coefficients to produce a good perceptual image codec.

(i) The filter coefficients should be smooth and symmetric
(or antisymmetric). Smoothness controls the noise in
a region with constant background. Symmetry allows
the use of symmetric extension to process the image’s
borders.

(ii) They should decay to zero smoothly at both ends. Non-
smoothness at the ends causes discontinuity between
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blocks when the image is compressed. This blocking
artifact is typical in JPEC because the DCT coefficients
are not smooth at the ends.

(iii) The bandpass and highpass filters should have no DC
leakage. Higher-frequency bands will be quantized
severely. It is desirable for the lowpass band to contain
all of the DC information. Otherwise, if the bandpass
and highpass responses to w = 0 are not zero, we see
the checkerboard artifact.

(iv) The coefficients should be chosen to maximize coding
gain. The coding gain is an approximate measure of
energy compaction. A higher gain means higher en-
ergy compaction.

(v) Their lengths should be reasonably short to avoid exces-
sive ringing and reasonably long to avoid blocking.

(vi) In the frequency range |w| < n/M, the bandpass and
highpass responses should be small. This minimizes the
quantization effect on bandpass and highpass filters.

To satisfy the above properties, we used an optimization tech-
nique. The cost function is a weighted linear combination
of coding gain, DC leakage, attenuation around mirror fre-
quencies, and stopband attenuation. It is defined as

Coverall = klccoding gain k2Coc + k3 Crirror

(5)
+ k4 Canalysis stopband + k5 Csynthesis stopband
with k; the weighting factors.
The coding gain cost function is defined as
o2
Ccoding gain = 1010g (6)

X
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where 07 is the variance of the input signal, 02 is the variance
of the ith subband, and || f;||? is the norm of the ith synthesis
filter.

The DC leakage cost function measures the amount of
DC energy that leaks out to the bandpass and highpass sub-
bands. The main idea is to concentrate all signal energy at
DC into the DC coefficients. This proves to be advantageous
in both signal decorrelation and in the prevention of discon-
tinuities in the reconstructed signals. Low DC leakage can
prevent the annoying checkerboard artifact that usually oc-
curs when high-frequency bands are severely quantized. The
DC cost function is defined as

M-1 L-1

Coc = > D hi(n). (7)

i=1 n=0

The mirror frequency cost function is a generalization of
Cpc. Frequency attenuation at mirror frequencies is impor-
tant in the further reduction of blocking artifacts. The corre-
sponding cost function is

=

-1

Cmirror = l<m<

| Hi(eln) |7,

2nm M
0 2

i

(8)

Stopband attenuation criterion measures the sum of all of the
filters’ energy outside the designated passbands. Mathemati-
cally,

M-1
Cana.lysis stopband = Z ,[ Wia(ejw) |Hi(ejw) |2dw’
i=0 wEQs(opband
Wi (/) | Fi(e/*) | do.

M-1
Csynthesis stopband = Z J
j=0 Y WE Qsmpband
)

In the analysis bank, the stopband attenuation cost helps
in improving the signal decorrelation and decreasing the
amount of aliasing. In meaningful images, we know a pri-
ori that most of the energy is concentrated in low-frequency
region. Hence, high stopband attenuation in this part of the
frequency spectrum becomes extremely desirable. In the syn-
thesis bank, the reverse is true. Synthesis filters covering low-
frequency bands need to have high stopband attenuation
near and/or at w = 7 to enhance their smoothness. The bi-
ased weighting can be enforced using two simple linear func-
tions W (e/?) and W;(e/®).

The optimization of cost function in (5) is performed
by using a nonlinear optimization routine called Simplex in
MATLAB. The results are the optimized filter coefficients.

2.4. Comparison summary between
OBTW(GC, DCT, and wavelet

Consumers and manufacturers are pushing for higher and
higher number of pixels in digital cameras, camcorders, and
high-definition TVs. All these advancements call for strin-
gent demands for faster and nicer compression codecs. It will
be ideal for a codec to have fast compression and, at the same
time, achieves very satisfactory perceptual quality and signal-
to-noise ratio. The proposed OBTWC has exactly these qual-
ities.

Table 1 summarizes the comparison between three co-
decs. It can be seen that the proposed codec has more ad-
vantages than DCT and wavelet. It is the balanced quality
between computational speed and performance that makes
the proposed OBTWC stands out among the other codecs.

2.5. Implementation of a complete coder

The proposed method was implemented by replacing the
transform of an H.263+ codec by the GenLOT transform
(using only the I-frame mode for still image compression),
with appropriate coefficient reordering. The entropy coding
and other parts of the codec are kept the same.

3. STILL IMAGE COMPRESSION

Although the component technologies of OBTWC for still
image compression were developed before this research, this
is the first time that we applied the software to SAR images,
and color images. Extensive comparative studies with two
commercial products have been carried out in this research.



C. Kwan et al. 5
TasLE 1: Comparison of different codecs.
DCT Wavelet OBTWC
Performance metrics (core technology in standards (zero-tree dyadic wavelet (proposed overlapped
such as JPEG, MPEG, transform and core block transform
H263, etc.) technology of JPEG-2000) wavelet coder)

Transmits most important information first v v
Simplicity of block transform v v

(less memory required)

Encodes the whole frame v

(larger on-board memory)

Block artifacts v

(lose details in high compression ratio)

Better performance (than DCT) v v

More computations (than DCT) v v
Ringing effect v v
Flexibility in frequency spectrum partitioning v

and higher energy compaction

Capture and separate localized signal v
components in the frequency domain

Produces smoother and more perceptually v v
pleasant reconstructed images

Enhances the compression ratio of existing

techniques without sacrificing too much v v

of the performance/perceptual quality

Texture preservation v
(suitable for SAR compression)

Reversible integer GenLOT available whereas the

standard codec does not allow reversible integer v
transform (useful for mobile communications)

Parallel processing capability v v

In terms of military applications, one can directly apply our
still image compression algorithm for image storage and
archiving.

3.1. Benchmark images compression

In this section, we summarize the application of several
progression transmission codecs, including SPIHT (wavelet-
based method), JPEG, JPEG-2000, and our OBTWC. Bench-
mark images (Lena and Barbara) were used in this compara-
tive study.

The objective performance criterion we used is called
peak signal-to-noise ratio (PSNR) which is defined as

255°
/M) SM (0, — 1)
where o0, is the nth pixel in the original image and r, is the

nth pixel in the reconstructed image. This is a popular ob-
jective method to measure distortion in image compression

PSNR = 10log (10)

TaBLE 2: Coding results of various progressive coders for Lena.

Lena Progressive transmission coders

Comp. ratio | SPIHT (9-7WL) JPEG JPEG-2000 OBTWC
1:8 40.41 39.91 40.32 40.43
1:16 37.21 36.38 37.27 37.32
1:32 34.11 32.90 34.14 34.23
1:64 31.10 29.67 31.00 31.16
1:100 29.35 27.80 29.12 29.31
1:128 28.38 26.91 28.00 28.35

applications. The higher the PSNR is, the better the compres-
sion and decompression performance is.

Table 2 summarizes the PSNR of Lena and Figure 2 de-
picts the PSNRs of different codecs at different compression
ratios. It can be seen that our codec performed consistently
better, except in two cases, than other codecs.
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FIGURE 2: PSNRs of various codecs at different compression ratios for Lena.

TaBLE 3: Coding results of various progressive coders for Barbara.

Barbara Progressive transmission coders

Comp. ratio SPIHT (9-7WL) JPEG JPEG 2000 OBTWC
1:8 36.41 36.31 37.17 38.08
1:16 31.40 31.11 32.29 33.47
1:32 27.58 27.28 28.39 29.53
1:64 24.86 24.58 25.42 26.37
1:100 23.76 23.42 24.06 24.95
1:128 23.35 22.68 23.37 24.01

Similarly, Table 3 and Figure 3 summarize the PSNRs for
Barbara. Again, our proposed codec performed consistently
better than all other codecs.

3.2. SARimage compression

We have compressed four types of SAR images: two types
from the Air Force, one type from the Army, and one type
from NASA. Our algorithm outperforms both wavelet and
JPEG coders. The wavelet coder was developed by Summus,
Inc. We purchased one copy. It was claimed by Summus that
its coder is better than JPEG and other wavelet-based coders.
The baseline JPEG coder is a shareware from the Internet.
The web address is http://www.geocities.com/SiliconValley/
7726/.

3.2.1. AirForce cluttered SAR image

The SAR image (size: 512 X 480, gray scale: 8 bits/pixel) was
supplied by Air Force Wright Patterson Laboratory (Marvin
Soraya). We applied four algorithms to it: our OBTWC algo-
rithm, Summus wavelet coder, JPEG-2000, and JPEG. Three

compression ratios were tried. The perceptual differences be-
tween the various coders are hard to discern by human eyes.
However, the objective performance index (PSNR) tells a big
difference. The PSNR is summarized in Table 4. We also plot-
ted PSNRs versus compression ratios. As shown in Figure 4,
although our coder has comparable performance as the com-
mercial products, in terms of computational complexity, our
algorithm allows parallel processing and hence is much more
efficient than other codecs.

3.2.2. Army’s SARimage

The SAR image (size: 764 X 764, gray scale: 8 bits/pixel) was
supplied by Army Research Laboratory in Fort Monmouth.
Again, four algorithms were applied and the performance is
summarized in Table 5. The PSNRs were also plotted against
the compression ratios (Figure 5). From Table 5, one can see
that our codec is slightly inferior to JPEG-2000 but much
better than the other two. But from practical implementation
perspective, our codec is much simpler and hence will offer
significant advantage for large images such as high-definition
TV images.

3.2.3. NASA’s SARimage

Spaceborne imaging radar-C/X-band synthetic aperture
radar (SIR-C/X-SAR) is a joint US-German-Italian Project
that uses a highly sophisticated imaging radar to capture im-
ages of Earth that are useful to scientists across a great range
of disciplines. The instrument was flown on two flights in
1994. One was on space shuttle Endeavor on mission STS-59
April 9-20, 1994. The second flight was on shuttle Endeavor
on STS-68 September 30—October 11, 1994.


http://www.geocities.com/SiliconValley/Grid/7726/
http://www.geocities.com/SiliconValley/Grid/7726/

C. Kwan et al.

PSNR

(a)

40

22

Performance comparison of our
coder with three commercial coders

100 120

20 40 60 80 140
Compression ratio
-—-- SPIHT - JPEG-2000
-—-- JPEG — OBTWC

(b)

FIGURE 3: PSNRs of various codecs at different compression ratios for Barbra.
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FIGURE 4: PSNR of four compression methods.

The image (size: 945 X 833, color depth: 8 bits/pixel)
shown in Figure 6 was a recently released image from the
SIR-C/X-SAR Project. We applied OBTWC, Summus, JPEG-
2000, and JPEG codecs to it. The results are summarized in
Table 6. The PSNRs versus compression ratios are plotted be-
sides Table 6. Except the 32 : 1 compression ratio case, our
OBTWC outperforms the other codecs in the other two cat-
egories. Even in the 32 : 1 case, the OBTWC is only 0.01 dB
less than the wavelet coder is. The plots in Figure 7 show the
PSNRs of the three codecs. The OBTWC and Summus have
similar performance in this case.

TaBLE 4: Performance comparison of our codec with 3 commercial
codecs for the Air Force SAR image.

?;i‘l’;‘rte};rs?gn iatio | OBTWC  Summus JPEG  JPEG-2000
8 3414 3306 3202 3477
16 3064 2983 2940  3L16
3 2842 2778 2761 28.95

TaBLE 5: Performance comparison of our codec with three com-
mercial codecs for an Army SAR image.

Algorithm\ OBTWC Summus JPEG JPEG-2000
compressmn ratio

8 38.07 3673 3632 39.41
16 35.05 3390 3357 36.02
32 32.52 31.84 3121 33.02

3.3. Colorimage compression

We were given four unclassified color images with the size of
344 x 244 and YUV (4 : 4 : 4) from the Wright Patterson Air
Force Laboratory, USA (http://www.wpatb.af.mil). The first
image is picture of 2sl tank. The second is T62 tank. The
third is Zill31 armored car. The fourth one is Btr60 armored
car. Our OBTWC codec achieved better results in almost
all cases except 2s1 image. Table 7 summarizes the objective
performance of three coders under three different compres-
sion ratios. Plots of PSNRs versus the compression ratios are
shown in Figure 8.
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FiGURE 5: PSNRs of four codecs.

FIGURE 6: Raw image from NASA.

3.4. Image enhancement of reconstructed images

The ringing effects in reconstructed images with high com-
pression ratios are caused by the long filter lengths in
OBTWC. Although the ringing effect here is less significant
than wavelet coders are, it is still an annoying artifact that af-
fects the visual perception of a reconstructed image. Here we
propose two approaches to minimize the ringing artifacts. It
is worth to mention that image enhancement is performed
at the receiving end, and hence this post-processing will not
affect the transmission speed.

3.4.1. Post-processing using nonlinear morphological filters

The key idea underlying the deringing algorithm is to avoid
filtering the entire image blindly, but instead to identify the
regions contaminated by ringing and apply the nonlinear
smoothing filter only to these regions. As such, the algorithm
is a signal-dependent (spatially varying) technique which re-
quires the extraction of certain parameters from the input

TaBLE 6: Compression performance of 4 codecs to NASA SAR im-
age.

Algorithm\ OBTWC Summus JPEG JPEG-2000
compression ratio
8 27.44 27.25 26.07 27.87
16 24.58 24.51 23.22 24.44
32 22.40 22.41 21.71 22.17
Performance comparison of our
coder with three commercial coders
28 - - - - -

PSNR

21 . . . M .
Compression ratio

--- Summus - JPEG-2000
-—-- JPEG — OBTWC

FiGURE 7: PSNRs of four codecs.

image. The choice of a morphological smoothing operator
was due to its fit to the purpose and also its very low compu-
tational complexity.

Edge detection

Since the ringing artifact is known to be associated with step
edges, the algorithm starts with an edge detection process on
the input image. In case of compressed images, the edge de-
tection process is even further complicated because of the
blur (associated with compression) which typically causes
false negatives (undetected edges) and also the ringing arti-
fact ripples which typically cause false positives (false edges).
Consequently, we designed a 3-phase edge detection algo-
rithm in which the following hold.

(1) The first phase is a baseline edge detection algorithm
employing Sobel edge detection operator (5 X 5). The
associated threshold for this baseline algorithm is ex-
tracted from the input image by paying attention to the
ringing around the step edges so that to the binary edge
map, only a very little amount of noise due to ringing
ripples penetrates.

(2) In spite of the careful threshold selection of the first
step, most of the time we still end up with some noise
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TaBLE 7: Summary of comparative studies for color images.
Summus JPEG OBTWC
Images) JPEG ) JPEG- OBTWC ) Summus  JPEG- ) JPEG Summus JPEG- OBTWC
PSNR | 32:1 221 2000  32:1 %l a1 2000 %%l 100:1  100:1 2000 100:1
32:1 64:1 100: 1
2s1 31.56 32.44 31.96 32.18 28.78 29.67 28.77 29.52 26.64 28.18 27.15 28.20
T62 28.45 29.07 28.70 30.05 25.37 26.37 25.72 27.15 23.45 24.97 24.24 25.61
Zil131 28.33 29.15 28.56 30.03 25.36 26.27 25.47 26.99 23.44 24.87 23.94 25.42
Btr60 30.48 29.07 31.75 32.63 27.93 26.37 28.70 29.79 26.22 24.97 26.87 28.32
Performance comparison of our Performance comparison of our
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FIGURE 8: PSNRs of three codecs for the four color images.

in the binary edge map. To clean this noise, we use a
morphological filter consisting of some pruning and
hit-or-miss operations.

(3) The cleaned edge map typically has significant discon-
tinuities along many of its edge traces. In this case

through a high-level processing, these edge disconti-
nuities are eliminated by edge tracking and linking. As
a result, we have a binary edge map which is much im-
proved as compared to the raw output from the first

step.



10

EURASIP Journal on Applied Signal Processing

Edge mask

The second major step is the generation of the so-called “edge
mask.” This phase is carried out essentially by a binary clos-
ing operation (3 X 3) on the output of the edge detection
phase. The edge mask serves the very important purpose of
protecting many genuine image features and high-frequency
details such as edges with narrow pulse-like profiles and tex-
ture from being destroyed by the consequent morphological
smoothing operation.

Filtering mask

The third major phase is the generation of the so-called “fil-
tering mask.” This phase is carried out by a dilation opera-
tion (3 X 3) on the output of the edge detection phase (to
isotropically mark the regions surrounding the edges where
we know that only these regions are subject to being con-
taminated with ringing) and then an exclusive-OR operation
between the dilation result and the edge mask (output of the
second phase) which will remove the regions covered by the
edge mask from the filtering mask so that the regions covered
by the edge mask will not be filtered. This sequence of oper-
ations generates the so-called raw filtering mask. One major
feature of the algorithm is that it is employing human visual
system (HVS) properties to further process the raw filtering
mask and eliminate from it those regions which because of
their content and also the masking properties of HVS will
not reveal the ringing noise confined to their boundaries. For
example, textured regions which could not be identified be-
cause of blur in the edge detection step, and therefore not
protected by the edge mask, will typically be detected during
this phase and consequently removed from the raw filtering
mask. The above-mentioned upper local variance limit at-
tributable to ringing ripples is a signal-dependent quantity as
well as its dependence on the compression level and we han-
dle it in the appropriate way and extract it from the image in
a spatially adaptive way. Once the HVS-based modification
is performed on the raw filtering mask, we have the so-called
final filtering mask or shortly the filtering mask.

Morphological smoothing

The fourth major phase of the algorithm is the morpho-
logical smoothing of the image regions lying under the ex-
posed regions of the filtering mask. For this purpose, we use a
simple averaged gray-level morphological opening and clos-
ing filter (3 X 3). The opening filter in a sense extracts the
lower bounding envelope of the ringing ripples, and in a dual
manner the closing filter in a sense extracts the upper bound-
ing envelope of the ringing ripples, and in their arithmetical
average the ringing ripples are to a very great extent elimi-
nated. All of these processings are performed through integer
arithmetic and local min/max operations on gray-level data.
Needless to say, the binary morphological operations of the
previous steps are performed by logical shift, and AND/OR
operations on binary data.

Final image generation

The final phase is the generation of the filter deringing out-
put. For this purpose, we do the following. We keep the re-
gions of the input image covered by the filtering mask in-
tact. However, the regions of the input image exposed by the
filtering mask (i.e., those regions which are filtered in the
fourth phase) are copied from the output of the morpholog-
ical smoothing filter and pasted on to the input image. This
generates the output of the deringing filter.

We applied the deringing filter to Lena. Figure 9 shows
the results for a compression ratio 100 : 1. It can be seen that
the image after post-processing is much better in terms of

perceptual performance than the reconstructed image in the
middle.

3.4.2.  Post-processing using median filter

This approach consists of two steps. First, an edge detec-
tion algorithm (Canny’s algorithm) is used to determine the
significant edges in a reconstructed image. Second, a median
filter (3 X 3) is then applied to eliminate the ringing. A me-
dian filter is a nonlinear filter that chooses the median of 9
elements in a 3 X 3 window. The idea is to eliminate high-
amplitude noise without blurring the edges. Figure 10 shows
the results. The perceptual performance did improve after
post-processing. The perceptual performance improvement
of median filtering is comparable to morphological filter de-
scribed in Section 3.4.1 It appears that the median filter is
simpler than the previous approach.

3.5. New region-of-interest (ROI) enhancement
capability

In progressive image transmission, the most important in-
formation is transmitted first. The importance of pixels in a
picture is reflected by the magnitude of its transformed co-
efficients. Therefore, the key idea here is that if we want to
highlight a region in an image, we need to scale up the co-
efficients in that particular region. We achieve this goal by
using Visual Basic. An interface of the software is shown in
Figure 11. First, an image is loaded onto the screen. Second,
a mouse is used to draw a box that one wants to highlight.
The coordinates of the box are passed to the image algorithm
so that the appropriate blocks will be highlighted. Third, a
weight factor is selected from the screen. The weighting fac-
tor scales all the coefficients in the region of interest.

Figure 12 shows the performance of image compression
with ROI enhancement. The tip of the gun barrel of a tank is
highlighted. It can be seen that the image with ROI enhance-
ment is better than the one without this option.

3.6. Computational complexity analysis

We have mainly used three methods in this research: DCT,
wavelet, and GenLOT transforms. Since every component in
coding and decoding is the same except in the transforma-
tion stage, we performed a complexity analysis of the three
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(a) 100 : 1 by OBTWC

(b) 100 : 1 after post-processing

FiGure 9: Effects of morphological deringing filter on Lena.

(a) 100: 1

(b) 100 : 1 after post-processing

FIGURE 10: Post-processing using median filter.

schemes. Table 8 summarizes the number of computations
by using software for a given N X N image. It is worth men-
tioning that if no parallel implementation for both DCT and
GenLOT is done, then it can be seen that DCT is the most
efficient one, followed by wavelet and GenLOT. Figure 13
shows the number of computations versus image size N. All
three grow exponentially if no parallel implementation is
used.

However, if one implements the DCT and GenLOT in
a parallel manner by taking advantage of the block trans-
formation characteristics, one can see that the DCT and
GenLOT can be very efficient. As can be seen from Table 9
and Figure 14, DCT and GenLOT algorithms stay almost flat
while the wavelet transform still grows exponentially.

3.7. Summary of the results

From all the experiments presented above, it is found that
the proposed method can compress images with better or
about the same PSNR as the two competing approaches. In

all these examples, the visual quality of the compressed image
from the proposed method is often better than the competing
approaches. For those cases where the proposed method has
slightly lower PSNR than the wavelet coder, there is little dif-
ference in visual quality. Also, the proposed post-processing
techniques are found to be effective in removing the ringing
artifacts at extreme compression ratio. In particular, the sys-
tem supports selective enhancement of an ROL

4. CONCLUSIONS AND FURTHER RESEARCH

In this paper, we presented a complete codec for image
compression based on overlapped block transform, which
has been tested extensively on benchmark images (Lena
and Barbara), SAR, and color images. For aggressive image
compression, post-processing is absolutely essential in or-
der to reduce unavoidable coding artifacts. Thus, we also
presented two methods that can enhance the perceptual
quality of decompressed images. Finally, an ROI enhance-
ment method is included in the proposed system, which can
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=% Compression Options

FIGURE 11: Interface of the region-of-interest program.

ROI that needs to
be emphasized

(a) Original image

(b) 100 : 1 compression with enhanced
tip of gun barrel

(c) 100 : 1 compression without ROI
enhancement

FiGurg 12: Comparison of images with and without ROI enhancement.

control the compression ratio at certain critical regions of
the images so that target recognition performance can be
preserved. Extensive comparative studies with a commercial
product (Summus—a wavelet-based codec), a JPEG base-
line codec, and a JPEG-2000 codec showed that the proposed
method achieved better performance in most cases.

While there exists extensive work on the reduction of
blocking artifacts in a DCT-based scheme, such as the
projection-onto-convex-sets (POCSs) approaches and others
[5, 18-25], they are mostly post-processing techniques that
work on a blocky image. Theoretically, since the information
is already lost, these post-processing techniques cannot really
reconstruct the original image but only improve the visual

TaBLE 8: Software implementation: computational complexity of
DCT, GenLOT, and wavelet for a given N x N image.

Method\complexity Multiplications Additions
8*8 DCT 3.25N? 7.25N?
8*40 GenLOT 40N? 78N?
9/7 4-L wavelet 11.9N? 18.6N?

quality of the image by smoothing out the artifacts. The over-
lapped block transform solves the issue by virtually eliminat-
ing the block boundaries in the first place, and thus provid-
ing a more attractive way of addressing the blocking artifact
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FIGURE 13: Software implementation. (All three grow exponentially with wavelet the least efficient.)

Number of multiplications

100 200 300 400 500 600 700 800 900 1000 1100
N

—— 8 x 8 DCT

—©— 8 x40 GenLOT
—— 9/7 4 — L wavelet X100

(a)

Number of additions

e
100 200 300 400 500 600 700 800 900 1000 1100

N

—— 8§ x 8 DCT

—o— 8 X 40 GenLOT
—<— 9/7 4 — L wavelet X100

(b)

FIGURE 14: Parallel hardware implementation. (DCT and GenLOT stay almost flat; wavelet grows exponentially.)

issue. Nevertheless, it would be an interesting future task to
compare such an overlapped transform approach with one
leading deblocking algorithm to examine the performance of
both approaches.
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