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ABSTRACT

Minimizing the rank of a matrix XXX over certain constraints arises
in diverse areas such as machine learning, control system and is
known to be computationally NP-hard. In this paper, a new sim-
ple and efficient algorithm for solving this rank minimization prob-
lem with linear constraints is proposed. By using gradient projection
method to optimize SSS while consecutively updating matrices UUU and
VVV (where XXX = UUUSSSVVV T ) in combination with the use of an approx-
imation function for l0-norm of singular values [1], our algorithm
is shown to run significantly faster with much lower computational
complexity than general-purpose interior-point solvers, for instance,
the SeDuMi package [2]. In addition, the proposed algorithm can re-
cover the matrix exactly with much fewer measurements and is also
appropriate for large-scale applications.

Index Terms— Rank minimization, system identification, ma-
trix norm, compressed sensing, convex optimization.

1. INTRODUCTION

The general rank minimization problem can be expressed as

min
XXX

rank(XXX) s.t. XXX ∈ C, (1)

where XXX ∈ Rn×m is the optimization variable and C is a convex
set denoting the constraints.

In this paper, we concentrate on the scenario where the con-
straint is a linear map A : Rn×m → Rp [3]

min
XXX

rank(XXX) s.t. A(XXX) = bbb, (2)

where the linear map A and vector bbb ∈ Rp are given. This problem
has many practical applications such as: linear system realization,
minimum-order system approximation, reduced-order controller de-
sign [4] and low rank matrix completion [5].

In general, the problem (2) is known to be NP-hard. A recent
heuristic algorithm introduced by Fazel [4] replaces the rank func-
tion by the nuclear norm, or sum of singular values, over the con-
straint set. If we denote the singular values of the matrix XXX by si

(i = 1, 2, ..., n) with s1 ≥ s2 ≥ ..., then the nuclear norm is defined
as: ‖XXX‖∗ =

∑n
i=1 si.

The heuristic optimization is then given by

min
XXX

‖XXX‖∗ s.t. A(XXX) = bbb. (3)

In the inspiring paper of B. Recht et al. [3], the authors showed
that if the linear map is nearly isometrically distributed, the solution
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of nuclear norm minimization (3) will coincide with (2), and solving
(3) will give the exact solution.

By using the nuclear norm, the optimization in (3) is convex.
Hence, it can be formulated as a primal-dual semidefinite program,
and solved by the well-known interior-point methods [3], [5], [2].
However, the reformulation requires large auxiliary matrix variables,
and thus might be impractical for large-scale problems.

In our algorithm, we directly search for the minimum number
of non-zero singular values, or the l0-norm of the singular vector
sss. By doing this, we have significantly narrowed down the search
space of variables. The space of decision variables are now the space
of sss which is only Rn (without loss of generality, we assume that
n < m). In addition, while searching sss, we keep updating vari-
ables UUU and VVV in the sigular value decomposition XXX = UUUSSSVVV T .
Fortunately, as sss converges to the exact solution, UUU and VVV converge
as well, leading XXX to the desirable value. This feature turns out to
tremendously improve the speed and the precision of the algorithm.

The paper is organized as follows. The next section presents the
main ideas and concepts behind our proposed method. In Section III,
we introduce the algorithm with detailed explanations. Finally, the
last two sections will present our experimental results and contain a
few concluding remarks, respectively.

2. MAIN IDEAS

Generally, the cost function of (2) and (3) can be regarded as two
instances of a function F (sss), where F (sss) can be lp-norm with 0 ≤
p ≤ 1. If F (sss) is l0-norm of sss, it is equivalent to minimize rank(XXX).
On the other hand, if p = 1, it is minimizing nuclear norm ‖XXX‖∗.

min
XXX

F (sss) s.t. A(UUUSSSVVV T ) = bbb. (4)

One can see at first glance that (4) is irrelevant since unknown
variables UUU and VVV disappear into the cost function. However, if
somehow we can fix them at a time and try to find sss closer to the
minimizer, and then simultaneously update UUU and VVV . Again, at the
next iteration, UUU and VVV are kept fixed, then find a new sss. After a
number of iterations, the algorithm will converge to a satisfactory
solution. The proposed approach has a similar flavor to that of the
celebrated EM algorithm.

If UUU and VVV are unchanged over many iterations, one can con-
sider them as fixed sparsifying transforms that try to zero out as
many singular values as possible. Consequently, (4) can be seen
as the well-known compressed sensing problem and hence can be
solved by many efficient methods [1]. On the other hand, if UUU and
VVV keep changing in every iteration, then these matrices can be con-
sidered as adaptive sparsifying transforms that can adapt well to the
varying behaviors of the signal.
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Fig. 1. Adaptive model

A gradient projection method can be employed to optimize (4).
The diagram in Figure 1 clarifies the process, where the parallelo-
gram area represents the linear constraint region. Suppose at itera-
tion k, we obtain a feasible approximation XXXk. Then, XXXk is decom-
posed using the SVD to obtain UUUk, VVV k and SSSk. Subsequently, the
vector sssk is updated to move closer to the minimizer of F (sss), where
sssk is the singular vector of matrix SSSk. The new updated sssk

∗ will be
combined with previous matrices UUUk and VVV k to generate a new XXXk

∗ .
Here, XXXk

∗ is not guaranteed to be a feasible point, so it needs to be
projected back onto the constraint region to obtain a new feasible
approximator XXXk+1. The cycle continues until we arrive at a certain
chosen termination condition.

One more contribution of our paper is that, by the proposed
method, we do not have to restrict ourself to optimizing l0- or l1-
norm of the singular vector sss of XXX (which is to minimize the rank
or the nuclear norm of XXX , respectively). Instead, we can minimize
the more general lp-norm of sss as well. This non-convex optimiza-
tion has been confirmed to work better (although slower) than the
l1-norm solution from the compressed sensing community [6].

In this paper, the l0-norm is utilized as the cost function of (4).
Unfortunately, l0-norm is a discontinuous function that is not differ-
entiable. We take advantage of a recent striking discovery: approxi-
mating l0-norm by a smooth function [1] has been shown to be very
fast and effective for sparse signal recovery.

3. ALGORITHM DESCRIPTION

Firstly, let us re-introduce the smooth approximation function of the
l0-norm of sss [1]. Define the following smooth function

fσ(si) = exp(−s2
i /σ2).

The value of σ is used to control the quality of the estimation

f(si) ≈
{

1 if si � σ

0 if si 	 σ

In other words, f(si) = 1 as si = 0 and f(si) = 0 as σ → 0.
Then by defining

Fσ(sss) = −
n∑

i=1

f(si), (5)

it is not difficult to verify that Fσ(sss) ≈ ‖sss‖0 − n as σ → 0. There-
fore, the rank minimization problem is now reduced to finding the
minimum of a differential function Fσ(sss) = −∑n

i=1 exp(−s2
i /σ2)

1: Initialization:
2: XXX0, σmax, σmin, tolerance ε, d > 1 and σ = σmax

3: while σ > σmin do
4: XXX0 → UUU0SSS0VVV 0T

and sss0 ← diagonal(SSS0)
5: k ← 1
6: repeat
7: ���Fσ(sssk) ← 2

σ2 [sk
1e−(sk

1 )2/σ2
, ..., sne−(sk

n)2/σ2
]

8: sssk
∗ ← sssk − β · ���Fσ(sssk) {Gradient descent}

9: XXXk
∗ ← UUUkSSSk

∗VVV
kT {New approximation}

10: XXXk+1 ← P(A(XXX)=bbb)(XXX
k
∗) {Projection}

11: XXXk+1 → UUUk+1SSSk+1VVV k+1T {SVD decomposition}
12: k ← k + 1
13: until halting condition true
14: σ ← σ/d {Decreasing σ}
15: XXX0 ← XXXk

16: end while
17: Output: XXX∗ ← XXX0

Algorithm 1: Rank minimization algorithm

subject to constraints

min
XXX

−
n∑

i=1

exp(−s2
i /σ2) s.t. A(UUUSSSVVV T ) = bbb, (6)

when σ is very small. Note that for small values of σ, Fσ(xxx) is
highly oscillatory and contains a lot of local minima, causing dif-
ficulty in finding the global solution. On the other hand, as σ in-
creases, Fσ(xxx) has much fewer local minima and is easier to solve.
In [1], the authors recommend to start from a large σ, then at each
fixed σ, (6) is optimized and that minimizer is used as the initial
approximator for the next smaller σ. Therefore, at each inner loop,
initiated from a good point will help the algorithm avoid most local
minima, and as σ → 0, the algorithm will converge to the global
solution.

One can observe that even with a fixed σ, (6) is difficult to solve
since the cost function is not convex. Moreover, the decision variable
vector sss is hidden in the constraint set and there is no easy access to
matrices UUU and VVV . A simple solution to this problem is to apply the
aforementioned idea of alternatively updating UUU , VVV and sss at each
fixed σ (see Figure 1 again). The algorithm should return the exact
solution after a small number of iterations.

The pseudocode for the proposed algorithm is shown in Algo-
rithm 1. For elegance of presentation, we consider the algorithm as
two separated processes. The first process called the outer loop op-
erates with decreasing values of σ. The second process called the
inner loop optimizes function Fσ(sss) at each fixed value of σ. The
minimizer of the current σ will be employed as the initial point of
the next σ. So, let us first present how to select the initial parameters.

3.1. Initialization

In general, any feasible initial point vec(XXX0) can be chosen as AAA+bbb,
where vec(XXX) denotes the vectorized version of matrix XXX , AAA denotes
the matrix representation of the linear map A and AAA+ is the Moore-
Penrose pseudoinverse of AAA. However, for large-scale problems or
when we need to execute the linear map implicitly, it is costly to
compute the pseudoinverse AAA+. We can instead choose a random
point, then project it onto the feasible space. In many cases, we can
select vec(XXX0) = AAATbbb.
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The orthogonal projection of XXX0 onto the affine space A(XXX) =
bbb can be performed as follows

P(A(XXX)=bbb)(XXX
0) = vec(XXX0) −AAAT (AAAAAAT )−1(AAAvec(XXX0) − bbb))

The equation is greatly simplified and easy to execute if the lin-
ear map is orthogonal

XXX0 ← P(A(XXX)=bbb)(XXX
0) = XXX0 −AT (A(XXX0) − bbb))

As shown above, a good starter for σmax is σ 	 s0
i , hence it

is sufficient to choose σmax = 2 max (s0) because at large σ, the
exponential function only changes slightly with a substantial change
of σ.

3.2. Outer loop

At the outer loop, the changes of σ significantly affect quality and
speed of the algorithm. When σ decreases dramatically, we need
much lower number of iterations at the outer loop, hence speeding
up the algorithm. The tradeoff here is the higher possibility to get
trapped into a local minimum, since the convergence rate of sss might
not follow the decreasing speed of σ. Therefore, it causes si 	 σ
that lead to exp(−s2

i /σ2) ≈ 0. Consequently, β · ���Fσ(sssk) ≈ 0
and sssk’s are kept nearly fixed in every inner loop (see the equation
of step 8 in the pseudo code of Algorithm 1). Finally, the algorithm
is not able to converge.

When σ is reduced gradually, the algorithm needs more itera-
tions for the outer loop, and si’s move toward to the convergent point
in parallel with the movement of σ. This characteristic guarantees
the convergence of matrices UUUk and VVV k, and so does the overall al-
gorithm. Choosing the best decreasing factor d is dependent on spe-
cific applications. Experimentally, a suitable range for d’s to ensure
convergence is d = 2 → 4. One can also choose a non-continuous
sequence σ for his/her own purpose.

It is noteworthy that when σ is very small, only si’s smaller
than σ can affect the fluctuation of Fσ(sss), hence σ can be seen as
a soft threshold of the algorithm. Consequently, the choice of σmin

will control the precision of the final solution. The smaller σmin,
the slower the algorithm runs, but it will return a more precise solu-
tion. In the proposed algorithm, we find that σmin = 10−4 is a safe
choice.

3.3. Inner loop

In each inner-loop process, σ is kept fixed. We use a gradient pro-
jection method to optimize (6).

At the gradient descent step (step 8 in the pseudocode), the step
size β needs to be considered. Since at smaller σ, Fσ(sss) is fluctu-
ating more, hence β should be small to escape from bypassing over
the global minimum. In our proposed algorithm, β is chosen to be
proportional to σ. Particularly, β = σ2.

At each fixed σ, the decision to terminate the inner loop is
rather difficult. Obviously, we wish to stop at the optimal solution
of Fσ(sss). Since the objective function value is simple to compute,
we decide to use it as a criteria for termination. The inner loop is
executed as long as the absolute value of the difference between
Fσ(sssk) and Fσ(sssk+1) keeps above a specified threshold ε. In other
words, when

|Fσ(sssk+1) − Fσ(sssk)| < ε, (7)

the inner loop is terminated.
The choice of ε is also dependent on specific applications. Since

Fσ(sss) is a decreasing exponential function that is not sensitive as sss

does not change very much at each iteration. This is especially true
as σ is very small. When ε is small, it results in more iterations at
each inner loop, but sssk will come closer to the optimal solution of
Fσ(sss). Therefore, the choice of ε is a tradeoff between computa-
tional cost and the precision of the algorithm. In our experiments, ε
is chosen to be 0.005.

Remark. With the large scale problems, the full SVD decompo-
sitions at every outer and inner loops are computationally expensive.
Instead, a slight modification of the algorithm is at each step, only
compute first largest r singular vectors uuuk

i , vvvk
i and singular values sk

i

of XXXk, where r is rank of the matrix we need to find. This approach
can be seen as a singular value hard thresholding where all singular
values of XXXk, except r largest ones, are zeroed out. This modifica-
tion significantly improve the speed of the algorithm and make the
algorithm tractable in solving large matrices.

4. SIMULATION RESULTS

In this section, the performance and speed of the proposed algo-
rithm are experimentally justified and compared with the interior-
point semidefinite programming (SDP) method which has been im-
plemented in a freely available software SeDuMi [2]. Note that in
all experiments, parameters of the algorithm are set as follows:

σmax = max(s0), σmin = 10−3, d = 2, ε = 0.005, β = σ2

Experiment 1: This experiment is devoted to compare the re-
covery performance and speed of our algorithm with SDP using Se-
DuMi [2]. We adopt the MIT logo matrix XXX [3], which has size
46 × 81 and rank r = 5 as the test input. The matrix is sampled us-
ing an orthogonal Gaussian i.i.d measurement matrix with the num-
ber of measurements ranging from 600 to 1600 (p = 600 → 1600
with step size 100). Figure 2a and 2b depict the performance curves
and computation time respectively. In both figures, the numerical
values on the x-axis represent the number of linear constraints (or
measurements) p while the values on y-axis of Figure 2a represent
the Signal to Noise ratio (SNR) between the original matrix (XXX) and
the recovered one (XXXr). Those on y-axis of Figure 2b represent
the running time of the algorithms. As one can observe, our algo-
rithm offers significant improvements in both recovery performance
as well as computational complexity.

Experiment 2: In this experiment, we sample the image us-
ing Structurally Random Matrix (SRM) [7] to take advantage of its
implicit construction, a property that fully random matrices do not
have, and show that our algorithm can handle the implicit form of
the linear map. This form is particularly important, especially when
working with large-scale applications, since it is impossible to create
a very large random Gaussian matrix. The sampling process of SRM
is as follows: at first, the test image XXX is vectorized, then the signs of
its entries are changed in a uniformly random manner, the output is
then passed into a fast transform such as DWT, FFT or DCT, etc. (in
this experiment, the DCT transform is chosen). Afterward, the mea-
surements are uniformly and randomly selected. We take the same
number of measurements as in Experiment 1. The performance and
time computation curves are depicted in Figures 2a and 2b. While
the performance of SRM is nearly the same as that of the Gaussian
matrix (even slightly better with small p), the computational cost is
substantially lowered since the algorithm is able to exploit the im-
plicitly fast and efficient structure of SRM transforms.

Experiment 3: This experiment compares the performance be-
tween the proposed algorithm and SeDuMi with randomly-generated
inputs. Matrices of size n × n and rank r are produced by generat-
ing pairs of two Gaussian matrices UUU ∈ Rn×r and VVV ∈ Rr×n
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Fig. 2. Performance and time computation curves of i.i.d Gaussian
and SRM measurement matrices: SNR and running time vs. the
number of measurements using of interior-point SeDuMi solver and
proposed algorithm.

and setting XXX = UUUVVV , where n = 50 and rank r = {5, 6, 7}. At
each fixed r, i.i.d Gaussian matrices are used to sample various num-
ber of measurements p = {400, 600, ..., 1500}. Figure 3 represents
the performance curve of two reconstruction algorithms with differ-
ent ranks. In the figure, the x- and y-axis stand for the number of
measurements and SNR, respectively. Once again, our reconstruc-
tion algorithm outperforms SeDuMi. Note that SNR = 50dB in
floating-point precision is often regarded as perfect recovery.

Matrix size Rank p/n2 Relative error Time (s)

1000 × 1000 10 0.15 3.29 × 10−4 25
50 0.27 4.94 × 10−4 95
100 0.38 6.35 × 10−4 256

3000 × 3000 10 0.1 5.75 × 10−4 215
50 0.2 1.97 × 10−5 768

Table 1: Experimental results of matrix completion with various
matrix sizes and ranks.

Experiment 4: The last experiment is devoted to the large scale
matrix completion problem [5]. Matrices XXX of size n × n and rank
r are produced as the above experiment, where n = {1000, 4000}
and r = {10, 50, 100}. We pick a subset of p entries of XXX uniformly
at random. In this experiment, we use the singular value hard thresh-
olding method as presented in the remark of the Subsection 3.3. The
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Fig. 3. Performance curves: SNR vs. the number of measurements
using interior-point SeDuMi solver and proposed algorithm with var-
ious ranks.

algorithm is run on a laptop computer with 2.0GHz CPU and 3GB
RAM. All the results are described in the Table 1, where the relative
Frobenius norm error is defined as ‖X − X∗‖F / ‖X‖F . As shown
in the table, one can see that a matrix 1000 × 1000 of rank 10 can
be found exactly from 85% corruption only in less than half of a
minute. We note that it is impossible to run such large matrices on
the SeDuMi software.

5. CONCLUSION

In this paper, a new fast and efficient rank minimization algorithm
is proposed. Extensive experimental results show that the proposed
algorithm performs extremely well in reconstructing low rank ma-
trices under linear constraints. Moreover, by exploiting the implicit
structure of the linear map such as orthogonality and fast transforms,
our algorithm is also proven to be appropriate for very large scale ap-
plications.
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