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Abstract—A new multiple description coding paradigm is pro-
posed by combining the time-domain lapped transform, block
level source splitting, linear prediction, and prediction residual
encoding. The method provides effective redundancy control and
fully utilizes the source correlation. The joint optimization of all
system components and the asymptotic performance analysis are
presented. Image coding results demonstrate the superior perfor-
mance of the proposed method, especially at low redundancies.

Index Terms—Image coding, lapped transform, linear estima-
tion, multiple description coding (MDC), rate distortion theory.

I. INTRODUCTION

M ULTIPLE DESCRIPTION coding (MDC) [1] is an at-
tractive technique of combating transmission errors, in

which several compressed bit streams (descriptions) are gen-
erated and can be transmitted via different paths. The descrip-
tions are designed such that the reconstruction quality degrades
gracefully when some of them are lost, making MDC suitable
for transmitting multimedia signals, where some transmission
errors can be tolerated.

A central issue in practical MDC designs is how to introduce
a controlled amount of redundancy into the descriptions which
the decoder can conveniently utilize, and many methods have
been proposed. In [2], a multiple description scalar quantizer
(MDSQ) is developed by using a central quantizer and an index
assignment, which generates two side quantizers such that each
of them alone produces an acceptable side distortion, whereas
their combination yields the finer central quantizer. The MDSQ
is asymptotically near optimal [3], and has been employed in,
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e.g., [4] and [5], after the DCT or wavelet transform. However,
the MDSQ index assignment is difficult to design and imple-
ment, and its redundancy is not easy to adjust.

In [6], a modified MDSQ (MMDSQ) with the same asymp-
totical performance as the MDSQ is developed, in which two
staggered scalar quantizers are used to generate the first layer of
each description. Another scalar quantizer is used to further par-
tition the joint bins of the first-layer quantizers, and its output is
split into the two descriptions. The MMDSQ avoids the index
assignment and can easily adjust the redundancy. It also outper-
forms other MDSQ-based methods in MD image coding. How-
ever, both MDSQ and MMDSQ do not perform well at low re-
dundancy regime, which is a desired property of good MDC
schemes [7, pp. 365].

Another family of MDC schemes is based on the source split-
ting approach pioneered by Jayant in [8] and [9], where a signal
is split into even and odd samples, and DPCM is used to encoded
each description. If one description is lost, the missing data are
predicted from their neighbors in the other description, using the
source correlation. However, the prediction errors of the missing
data are tied to the source correlation, which cannot be con-
trolled. In [10], DPCM is used before splitting, and the predic-
tion in the DPCM is designed to preserve some source correla-
tions. Therefore, the redundancy between the descriptions can
be adjusted to some extent. Although the method reduces the
interdescription prediction error, the remaining error still limits
the side decoder performance, especially at high rates.

In [11], the transform coefficients are split into two parts.
Each part is quantized into one description. To introduce re-
dundancy, each description also includes a coarsely quantized
version of the other part, which helps the decoding when the
other description is lost. The optimal redundancy rate alloca-
tion is studied. A similar approach is developed in [12] using
the SPIHT algorithm. Recently, this method is applied to the
JPEG 2000 framework in [13] under the name of RD-MDC,
in which each JPEG 2000 code-block is encoded at two rates,
one in each description, and the rate allocation is determined
by Lagrangian optimization. However, to get balanced descrip-
tions and optimal performance, the RD-MDC needs to classify
all code-blocks into two subsets, such that any code-block in
one subset has similar characteristics to another code-block in
the other subset. This procedure is quite time-consuming. In ad-
dition, the side distortion of the RD-MDC at low redundancies
is not satisfactory, as shown in Section V.

The pairwise correlating transform (PCT) [7] represents an-
other method of introducing redundancy, where a set of 2 2
correlating transforms is applied to the uncorrelated coefficients
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after the DCT. The outputs of each PCT are split into two de-
scriptions. If one coefficient is lost, it is estimated from its coun-
terpart in the other description.

The PCT framework has some inherent drawbacks. First of
all, although the PCT has good low redundancy performance in
theory, its practical application could not fully achieve this, be-
cause the PCT can only be applied to coefficients with large vari-
ances relative to the quantization error [7]. Other coefficients
are directly split into the two descriptions. In the side decoder,
these low-variance coefficients are simply estimated as zero,
which limits the side decoder performance at low redundancies.
Second, similar to [8], the PCT does not perform well at high re-
dundancies because of the prediction residual [14]. In this case,
the decoded image of the side decoder in [7] can be 2 dB lower
than the MDSQ.

Third, the PCT system only uses the correlation it inserts be-
tween the two parts of a block, but does not exploit the rich cor-
relation among neighboring blocks. Finally, the practical imple-
mentation of the PCT system is not easy. Given coefficients,
the method needs to pair the two coefficients with the th and

th largest variances, and the optimal PCTs depend on
the coefficient variances. To estimate these variances, in [7] all
image blocks are classified into four classes. Coefficient vari-
ances of each class are then calculated and sorted for PCT de-
signs. In addition, existing entropy coding for single description
coding cannot be used for the PCT outputs due to different sta-
tistics and block sizes.

A generalized PCT (GPCT) is proposed in [14], which is a
hybrid method. At low redundancies, it is simply the PCT. At
high redundancies, in addition to the PCT, each description also
encodes the prediction residual of the other half of PCT outputs.
It is shown in [14] that the GPCT side distortion is 3 dB away
from that of the MDSQ and MMDSQ. However, the GPCT only
improves the PCT at high redundancies, but does not solve other
problems of the PCT. In addition, there has not been any prac-
tical application using the GPCT.

As a summary, the methods in [2], [5]–[7], and [11]–[14]
offer good redundancy control, but do not fully exploit the
source correlation. Although the schemes in [8] and [9] can
achieve good performance at low redundancies by utilizing the
source correlation, they cannot adjust the redundancy of the
MDC system. The algorithm in [10] uses the source correlation
to adjust the redundancy, but suffers from the prediction error.
Therefore, the goal of this paper is to develop an MDC scheme
that can simultaneously achieve the following properties: pro-
viding effective control of the redundancy, taking full advantage
of the rich correlation of the source in the MD encoding and
decoding, and achieving satisfactory performance at all rates
and redundancies.

One of the motivations of investigating such a scheme is
Shannon’s comments on reliable communications [15, pp. 75]:
“Any redundancy in the source will usually help if it is utilized
at the receiving point. In particular, If the source already has
a certain redundancy a sizable fraction of the letters can
be received incorrectly and still reconstructed by the context.”
Since MDC can be understood as a joint source channel coding
problem, one would expect similar effect exists that the inherent
dependence in the source can be utilized.

Fig. 1. Forward and inverse time-domain lapped transforms (TDLT).

The potential benefit of utilizing the source correlation in
practical MD encoding and decoding suggests a design that de-
viates from the traditional transform paradigm, for which the
error resilient design of the lapped transform [16] is a suit-
able platform. In [17] and [18], the lapped orthogonal transform
output is split at the block level for transmission. The transform
is designed to introduce some correlations to help estimating
lost blocks at the decoder. In [19], a new family of transforms
called the time-domain lapped transform (TDLT) [20] is used,
which simplifies the design. The Wiener filter is applied in [21]
to further improve the performance. However, these methods
sacrifice too much coding efficiency to get good error resilience,
and they all suffer from the prediction residual at high rates. In
addition, they have to change the transform to adjust the redun-
dancy, which is not convenient in practice.

In this paper, we present a new MDC scheme by combining
the time-domain lapped transform, block level source splitting,
Wiener filter based prediction, and the encoding of the predic-
tion residual. We formulate the joint optimization of all com-
ponents in the system, analyze its asymptotic performance, and
give various design results. Our scheme resolves the problems
of previous methods, and outperforms the MMDSQ, RD-MDC,
and PCT in MD image coding, especially at low redundancies.
In addition to the performance gain, the proposed method also
has lower complexity than many existing methods such as the
PCT, GPCT, and RD-MDC.

II. PROBLEM FORMULATION AND OPTIMAL DESIGN

In this section, after a brief introduction of the time-domain
lapped transform (TDLT) developed in [20], we present the
proposed MDC scheme and discuss its advantages over other
methods. We then formulate the joint design of various compo-
nents of the system and derive the optimal solution.

A. Time-Domain Lapped Transform

Fig. 1 shows the block diagram of the TDLT developed in
[20], which is a low-cost extension of the DCT, but with compet-
itive performance compared to JPEG 2000 [22]. At the encoder,
an prefilter is employed at the boundary of two blocks
( is the block size). The -point DCT is then applied to
each block, creating basis functions that cover two blocks. In the
decoder, the inverse DCT and postfilter at block boundaries
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Fig. 2. Block diagrams of encoding (a) and decoding (b) one description in the proposed method.

are applied. Matrices and have the following structures to
yield near-optimal linear-phase lapped transform [20]:

(1)

(2)

(3)

where and are identity matrix and counteri-
dentity matrix, respectively. Matrix is an in-
vertible matrix that can be optimized for different purposes. In
this paper, denotes a block diagonal matrix with
matrices and on the diagonal and zeros elsewhere.

Denote and as the first and the last rows of the
prefilter , and and as the first and the last columns
of , respectively, i.e.,

(4)

(5)

the forward lapped transform and inverse
transform can be written as

(6)

(7)

B. Overview of the Proposed MDC Scheme and Its Advantages

In this paper, we modify the TDLT framework to generate
two descriptions. Fig. 2 illustrates the encoding and decoding
of one description by the proposed method. The other descrip-
tion is obtained in a symmetric manner. In this paper, we use

, , and to denote the th block of prefilter input,
DCT input, and DCT output. The reconstruction of a variable is
denoted by the hat operator.

In Fig. 2, the prefiltered blocks are split into even-in-
dexed blocks and odd-indexed blocks. After DCT, quantization,
and entropy coding, the two groups form the base layers of
the two descriptions, respectively. Since the base layer only in-
cludes half of the input, each description also contains an en-
hancement layer to help reconstructing the other half, if one de-
scription is lost. To fully exploit the source correlation, we use

a Wiener filter to predict a missing block using its two recon-
structed neighboring blocks, as in [21]. More precisely, in
Fig. 2 is predicted using the nearest samples from
and samples from , where . The deriva-
tion of the Wiener filter is given in the Appendix. Different from
[21], in this paper, the prediction residuals are further
DCT-transformed, quantized and entropy-coded to form the en-
hancement layer of each description.

At the decoder side, if one description is lost, the missing
blocks are first estimated from the received base layer blocks by
Wiener filter. The decoded enhancement layer blocks are then
added to the estimation before postfiltering. When both descrip-
tions are available, only the decoded base layers from the two
descriptions are fed to the postfilter for reconstruction. The en-
hancement layer in each description is simply discarded. There-
fore, the enhancement layer is the redundancy introduced by our
method, which can be easily controlled by adjusting the quanti-
zation step size.

Our scheme enjoys various advantages over existing methods.
Compared to the MDSQ/MMDSQ, RD-MDC, PCT/GPCT, it
uses Wiener filter to exploit the source correlation between
neighboring blocks in MD encoding and decoding. The benefit
of utilizing the source correlation can be seen in Section V,
where even a simple system with DCT and linear interpolation
based prediction can outperform other methods in some cases,
especially at low redundancies. Compared with the MDSQ
and [8]–[10], our method offers a more flexible control of the
redundancy. Our method is also superior to [11]–[13] by using
predictive coding, as it is well established that for correlated
sources, predictive coding has better rate-distortion perfor-
mance than direct encoding [23, pp. 113], i.e., it achieves lower
distortion at the same bit rate.

The proposed scheme also avoids other limitations of the PCT
and GPCT. First, the block level splitting has much better coding
efficiency than coefficient level splitting, as the structure within
each block is intact. Second, prediction in the spatial domain al-
lows the residual to be coded even at low redundancies, where
important image edge information can still survive the exces-
sive quantization after the prediction and the DCT. In contrast,
most coefficients in the PCT/GPCT are split directly in this
case, which are uncorrelated and cannot be predicted from each
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others. Third, as shown in Section III, at high redundancies, the
theoretical performance of our method is as good as the GPCT.
In practical image coding, our method outperforms not only the
PCT/GPCT, but also the MMDSQ and RD-MDC, as our method
is well suited for nonstationary signals. Finally, our scheme can
be easily optimized and implemented. Only one prefilter and
one Wiener filter are needed, and the prediction residuals are
processed in the same way as base layer blocks.

C. Joint Optimal Design of the System Components

Let [in bits/pixel (bpp)] represent the overall bit rate of
the two descriptions, i.e., the ratio between the total bits of the
two descriptions and the number of input samples. Let and

denote the average bits for each base layer sample and each
enhancement layer sample, respectively. The bit rate for each
description is thus bpp/description, and the total
rate is .

As shown below, given the target bit rate , the probability
of losing one description, the matrix in prefilter , and

the size of the Wiener filter, we can find the closed-form ex-
pressions of the corresponding optimal Wiener filter and bit
allocation and that minimize the expected distortion at
the receiver. To further find the optimal matrix with the min-
imal expected distortion, an unconstrained numerical optimiza-
tion program, such as the function fminunc in MATLAB, can be
used, by treating all entries of as unknown variables. Next,
we give the derivation of the first step, i.e., the optimal and

for a given . The derivation of the corresponding Wiener
filter is given in the Appendix.

Let and be the central distortion and side distortion,
i.e., the mean squared error (MSE) when the decoder receives
two and one description, respectively. The expected distortion

is defined as

(8)

In the proposed MDC scheme, each description contains half
base layer blocks and half enhancement layer blocks. Only base
layer blocks are used if two descriptions are received. If one of
them is lost, half of the input is reconstructed via base layer and
the other half is via enhancement layer. Therefore

(9)

where and are the MSE caused by the subband
quantization noise in base layer and prediction-compensated
enhancement layer, respectively. The subscript denotes the
block size (we use to represent the DPCM case, as
studied in Section III). Substituting into (8), we have

(10)

We first find the optimal expressions of and
for given and , under the optimal bit allocation within
each block. Since the inverse lapped transform is generally
not orthogonal, the reconstruction error or is the

weighted combination of subband quantization noises, and the
weighting parameters are the norms of the inverse transform
filters. Let the quantization noise of be . After the
inverse TDLT, the reconstruction error becomes . As
usual, we assume the quantization noises of different subbands
are uncorrelated. The MSE of the reconstruction is thus

(11)

where is the variance of the th entry of , and is
the th column of . Under the assumptions of high rates and
i.i.d. sources, can be written as [23, pp. 108]

(12)

where is a constant that depends on the input statistics and the
quantization scheme. is the bits allocated to the th entry
of a base layer block, and . is
the variance of the th entry of , which is the th diagonal
element of the autocorrelation matrix

(13)

and .
Upon optimal bit allocation of [24], the minimal value

for (11) is given by

(14)
This is, in fact, the objective function of the single description
coding. For block transforms, the minimum value of (14) is
achieved by the Karhunen–Loève transform (KLT). For lapped
transforms and longer filter banks, there is no closed-form solu-
tion, but numerical optimization method can be used to find the
solution that minimizes (14).

In single description coding, a performance measure called
the coding gain is defined based on

(15)

When , the coding gain of the DCT and the optimized
TDLT in [20] is 8.83 and 9.62 dB, respectively, for first-order
Gaussian–Markov inputs with correlation .

We now look at , the MSE caused by enhancement
layer blocks in the side decoder. It can be seen from Fig. 2 that
the prediction residual is

(16)

where is the Wiener filter-based prediction of from
and . The derivation of for the given

prefilter is given in the Appendix. At the decoder, the recon-
struction of a predictively coded block is

(17)
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where is the reconstruction of . From (16) and (17),
we have the following:

(18)

In other words, the reconstruction error of is equal to that
of the prediction residual . This is, indeed, a property of
any differential coding system [23, pp. 113].

As in Fig. 2, let be the DCT transform of , we have

(19)

where is the quantization noise of . After post-
filtering, the reconstruction error becomes

, and its MSE is

(20)

where is the bits allocated to the th entry of . is
the variance of the th entry of , given by the th diagonal
element of the autocorrelation matrix . The expression of

is given by (44) in the Appendix.
Since (20) has the same format as (11), the derivation from

(11) to (14) can be applied here, and the minimal value of
after optimal bit allocation is, therefore

(21)
The remaining bit allocation issue is to find the optimal and

for the given that minimize the expected distortion in
(10). Substituting (14) and (21) into (10), the problem can be
written as

(22)

This can be solved using the Lagrangian method, and the op-
timal bit allocation can be found to be

(23)

At high rates, i.e., if is not forced to 0 in (23), substituting
this into (14) and (21), we have

(24)

In this case, the minimal objective function in (22) becomes

(25)

Finally, plugging (24) into and in (9) yields the following
distortion product :

(26)

which is further discussed in the DPCM case in Section III.
The following remarks are in order.
Remark 1: Equation (23) shows that more bits should

be allocated to the prediction residual when the loss prob-
ability is higher or when is larger (the data are
more difficult to predict). Notice that when

. In this case, the method
reduces to our previous approach in [21]. However, it should be
emphasized that this threshold is derived based on the first-order
Gauss–Markov model. For nonstationary signals like natural
images, we show in Section V that sending prediction residual
is beneficial even at very low bit rates and low redundancies,
because these bits are spent at regions with strong edges, and
can thus significantly improve the reconstruction quality.

Remark 2: Equation (25) shows that the optimal TDLT for the
proposed MDC scheme needs to minimize , whereas
the optimal single description transform should minimize
in (14). Since and are dependent, the optimal TDLT
for the proposed MDC is different from the single description
case, although the difference is not much, as shown in Sec-
tion IV.

Remark 3: Equation (25) also shows that when the loss prob-
ability changes, we always need to minimize .
Therefore, the optimal transform is independent of . This is de-
sired in practice. If is forced to 0, (25) would be invalid, and
the optimal transform would be a function of . However, our
optimization results in Section IV show that the optimal trans-
form is not sensitive to .

Remark 4: The DCT can be viewed as a special case of the
TDLT when the prefilter is . In this case, the derivation
above is still valid. The performance of our method in the DCT
case is also studied in Sections IV and V.

III. ASYMPTOTIC PERFORMANCE OF THE PROPOSED METHOD

We now analyze the asymptotic performance of our trans-
form-based method. This is achieved by studying the DPCM
case, which has the same performance as transform coding when
the block size goes to infinity [24]. In the DPCM case, we split
the data into even and odd samples, and use DPCM to encode
each group. Each description also predicts the samples in the
other group and encodes the residual as the enhancement layer.
Since the block size is , no block transform or lapped
transform is used.

This special case of our method is indeed an improvement
of Jayant’s DPCM based method in [8] and [9]. As discussed
in Section I, Jayant’s method splits the source at sample level
and uses linear prediction between the two descriptions, but it
does not encode the prediction residual, which is handled by the
enhancement layer in our method.

A. Optimization in the DPCM Case

Assume the input follows a first-order Gauss–Markov model
with correlation coefficient . After splitting, each part is still
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a first-order Gauss–Markov signal, but with correlation coeffi-
cient . Let and be two consecutive samples in one
description. If the DPCM is used in each description, the optimal
prediction of from is given by . At
high rates, the variance of the residual is

(27)

where is the quantization noise variance of and is neg-
ligible at high rates.

Similar to (18), the DPCM system also satisfies
[23]. Therefore, the reconstruction error

of after DPCM with bit rate is

(28)

This can be viewed as the counterpart for (14).
When one description is lost, each missing sample is first

predicted from and , i.e.,

(29)

where the optimal solution for is the Wiener filter. At high
rates, it is approximately [9]

(30)

In this case, the variance of the residual is

(31)

In Jayant’s method, this error exists even at high rates. In our
method, the prediction residual is further encoded at rate in
the enhancement layer in each description, leading to a reduced
distortion of

(32)

which is the counterpart for (21). Since (28) and (32) have the
same format as (14) and (21), respectively, the bit allocation
solution (23) to (22) can be applied here as well. From (27) and
(31), we know that , so (23) becomes

(33)

B. Asymptotic Performance of the Proposed Method

It is shown in [3] (see also [6]) that under the high rate as-
sumption, the product of the side distortion and the central dis-
tortion of an MDC scheme for a stationary source satisfies

(34)

where is the entropy power of the source [23, pp. 95]. This
property of the distortion product has been widely used as a
performance measure for MDC.

In the DPCM case of our method, substituting the bit alloca-
tion into (28), (32) and (9), we can get

(35)
This corresponds to (26) for . To gain more insight,
notice that the variance of the innovation sequence of a first-
order Gauss–Markov signal is , which is also
the entropy power of the signal, i.e., . Therefore, the
distortion product in (35) can be written as

(36)

Comparing (36) and (34), the performance of the proposed
method is away from the theoretical bound by a factor of

, or about 3 dB for small values of . This is similar
to the performance of the GPCT in [14] at high redundancies.
However, it should be noted that this result is for the first-order
Gauss–Markov signal, which is stationary. We show in Sec-
tion V that for nonstationary signals such as natural images,
the proposed method performs equally well as other MDC
algorithms at high redundancies. For low redundancies, it sig-
nificantly outperforms other methods, because the block-level
prediction compensation is quite suitable for nonstationary
signals.

Fig. 3 compares the expected distortion of our method and
Jayant’s method for . and are also included. The
input is a first-order Gauss–Markov source with . The
constant is chosen as 1. The figure shows that the side SNR of
Jayant’s method could not be improved at high rates, due to the
existence of prediction error (31), which dominates the expected
distortion at high rates. This problem is resolved in our method
by encoding the prediction error. Thus, both the side SNR and
the expected SNR can be improved as the increase of the bit
rate. However, this is achieved at the price of reduced central
SNR. Fig. 3 also shows that when the bit rate is below about 2.6
bits/sample, no residual is encoded, and our method reduces to
Jayant’s method. However, as shown in Section V, for natural
images, it is beneficial to encode the residuals even at very low
bit rates.

IV. OPTIMIZATION RESULTS AND DESIGN EXAMPLES

In this section, we show various optimized distortion prod-
ucts and filters for the proposed method. Table I summarizes the
optimized distortion product under different configura-
tions of the transform, block size , description loss probability

, and Wiener filter size. The input is chosen as a first-order
Gauss–Markov signal with and . As in Fig. 3,

is selected. The bit rate is bpp. The source codes to
generate the results in this paper can be downloaded from [25].

Three configurations of the proposed algorithm are compared
with the DPCM in Table I. The first one jointly optimizes the
prefilter and the Wiener filter to minimize the expected dis-
tortion in (10). We denote this method as multiple description
lapped transform with prediction compensation (MDLT-PC).
The second one is denoted as TDLT-PC, which uses the best
prefilter for single description coding, i.e., by optimizing (14).
The last one is denoted as DCT-PC, which only uses the DCT,
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Fig. 3. Comparison of the expected distortion � of the DPCM case of our
method and Jayant’s method. The central and side distortions are also included
for reference (� � ���, � � �, � � ����, and � � �).

TABLE I
DISTORTION PRODUCT � � ���� � OF DIFFERENT CONFIGURATIONS

(WITH � � �, � � ����, � � �, AND � � � bpp)

i.e., no prefilter. In TDLT-PC and DCT-PC, Wiener filter and
residual encoding are still used.

In Table I, MDLT-PC already approaches the performance of
DPCM when . For , the distortion product of
the three configurations is about 5%, 10%, and 20% inferior to
the DPCM, respectively. Reducing Wiener filter size increases
the distortion, but the change is less than 3%. For , even
MDLT-PC with has better performance than TDLT-PC
with , showing the advantage of joint optimization. Note
also that MDLT-PC with is worse than DCT-PC with

by about 2.5%. Finally, as shown in [21], Wiener filter
with is optimal for the DCT. In this case, it actually
reduces to linear interpolation. Despite its simplicity, we show
in Section V that the DCT-PC can still achieve better results
than the MMDSQ and RD-MDC in some cases.

We show in Section II that the optimal transform is indepen-
dent of when . Simulation results also show that the
coding gain of the optimized transform does not change much
when is forced to 0. The optimal result is also not sensitive to

and . For , when the rate and the error probability
vary in a large range, the coding gain of the optimized TDLT

only changes between 9.41 and 9.61 dB. This makes it possible

to fix the transform and still achieves near optimal performance
for all practical scenarios.

Two design examples are used in the image coding in the next
section. The first one is optimized for , bpp,

and . The coding gain of the result is 9.53 dB,
the product is 0.00164, and the corresponding optimized
matrix in the TDLT prefilter is given by

(37)

The second example is optimized for , bpp,
and , with a coding gain of 9.54 dB and
. The optimized matrix is

(38)

In this case, the corresponding 8 2 Wiener filter is simply

V. PERFORMANCE IN MD IMAGE CODING

In this section, we evaluate the performance of the proposed
method in the MD coding of natural images. The source codes
and testing parameters for all results can be downloaded from
[25]. Six 512 512 standard test images with different charac-
teristics are used. The block size is chosen to be 8. Two de-
scriptions are generated by partitioning the transformed blocks
in a checkerboard pattern. All base layer blocks in each descrip-
tion are grouped together to form a 256 512 subimage, which
is then encoded by the embedded entropy coding in [22]. Simi-
larly, all enhancement layer blocks in each description are also
grouped together and encoded by the same entropy coding al-
gorithm.

The 1-D Wiener filter is applied to 2-D images in a separable
manner. First, each row of a block is Wiener-predicted using
the co-located rows in the left and right neighboring blocks.
Second, each column of the block is estimated using the
co-located columns in the top and bottom neighboring blocks.
After that, the average of the row and the column predictions is
used as the final prediction of the 2-D block. The 2-D prediction
residual is then calculated and encoded in the enhancement
layer.

We first study the tradeoff between and , the cen-
tral PSNR and the side PSNR. This is related to the distor-
tion product and has been used as a performance mea-
sure in, e.g., [3], [5], [6], and [13]. In our method, this is easily
achieved by varying the quantization step sizes of the two layers.
In Figs. 4 and 5, our method is compared with the wavelet and
Tarp filter-based MMDSQ in [6], and the JPEG 2000-based
RD-MDC in [13] (source code at [26]), which represent the state
of the art in MDC. The total bit rate is and bpp,
respectively. Four configurations of the proposed method are
tested, namely, MDLT-PC with and (37), (38),
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Fig. 4. Performances of MDLT-PC, MMDSQ and RD-MDC at � � � bit/pixel. (a) Barbara. (b) Boat. (c) Baboon. (d) Goldhill. (e) Lena. (f) Peppers.

Fig. 5. Performances of MDLT-PC, MMDSQ and RD-MDC at � � ���� bit/pixel. (a) Barbara. (b) Boat. (c) Baboon. (d) Goldhill. (e) Lena. (f) Peppers.

DLT-PC with and DCT-PC with . The average of
the two side MSEs is used to calculate the side PSNR in these
figures.

It can be seen that the performances of the MMDSQ and
RD-MDC are quite similar in many cases. The MMDSQ per-
forms better for smooth images like Lena and Peppers, whereas
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Fig. 6. Side decoder results with total rate of 1 bpp in (a)–(c) and 0.25 bpp in (d)–(f). The central PSNR isincluded in the parentheses. (a) Barbara by MMDSQ:
24.52 dB (36.09 dB). (b) Barbara by RD-MDC: 27.60 dB (36.07 dB). (c) Barbara by MDLT-PC: 31.68 dB (36.07 dB). (d) Goldhill by MMDSQ: 24.58 dB
(30.35 dB). (e) Goldhill by RD-MDC: 24.46 dB (30.35 dB). (f) Goldhill by MDLT-PC: 27.22 dB (30.35 dB).

the RD-MDC is better for images with more textures, such as
Barbara.

At the same central PSNR, the side PSNR of our method out-
performs the MDSQ and RD-MDC in most cases of Barbara,
Boat, Baboon, and Goldhill, many with large margins, espe-
cially at low redundancies. The improvement can be more than
8 and 6 dB for bpp and bpp, respectively. For
smooth images like Lena and Peppers, our method still achieves
better performance in many low redundancy cases. At high re-
dundancies, the three methods behave similarly, especially for
smooth images.

The results also show that the proposed method is not sen-
sitive to the size of the Wiener filter. In most cases, the low-
cost MDLT-PC with has similar performance to the
MDLT-PC with , making it a good candidate for prac-
tical applications, due to its simpler Wiener filter.

When the single description optimized TDLT is used (TDLT-
PC), the curves are lower than the jointly optimized MDLT-PC
curves by less than 0.5 dB in all cases. If only the DCT is used
(DCT-PC), the curves can be up to 2 dB lower, with more degra-
dations at low rates. These relationships agree with Table I for
Gauss–Markov sources. Note that even the simple DCT-PC with
linear interpolation can achieve similar or better performance
than the MMDSQ and RD-MDC at some low redundancy ex-
periments, demonstrating the benefit of utilizing source corre-
lation in these cases.

The first points of all curves of our method correspond to
. In this case, our method reduces to the prediction-only

method in [21], and reasonable side PSNR is still obtained. In
contrast, the side decoding performance of the MMDSQ with
low redundancies is not satisfactory, because most received bits
are in the second layer and cannot be used. Similar defect also
exists in the RD-MDC at low redundancies, because there is
little information about half of the code-blocks.

Fig. 6 shows some decoding results with one description.
The three methods are compared at the same total bit rate and
same central PSNR. Clearly, our method achieves significant
improvement in both the side PSNR and the visual quality.

Finally, we compare our method and the PCT. In Fig. 9 of
[7], the of image Lena is kept at 35.78 dB. At this ,
the JPEG-based single description coder in [7] needs a rate of
0.60 bpp, whereas the TDLT codec in [7] only needs 0.346 bpp,
due to the improved transform and entropy coding. The PCT
achieves a side PSNR of 27.94 and 29.63 dB, with redundancy
of 15% and 22% over 0.60 bpp, respectively. To get the same

, our MDLT-PC with only needs a redundancy of
9.88% and 16.02% over 0.346 bpp, respectively. In addition,
the lowest PCT redundancy in Fig. 9 of [7] is about 10%, with

dB. When , our method can achieve a redun-
dancy of 4.38%, and the corresponding is 25.45 dB. There-
fore, our method can achieve the same with less redundancy
than the PCT, and it also reaches a lower redundancy range. The
comparison is not very rigorous because of the codec differ-
ences, but even if the PCT can be implemented in the TDLT
framework, it is still difficult to achieve similar performance to
our method due to its aforementioned limitations.
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VI. CONCLUSION

This paper presents an MDC paradigm by integrating time-
domain lapped transform, block level splitting, linear prediction
and compensation. The method provides effective redundancy
control while simultaneously takes advantage of the source cor-
relation. Image coding results show that it outperforms existing
methods significantly.

The findings in this paper can be useful for other applica-
tions such as MD video coding. Moreover, the proposed method
can be further improved. For example, the enhancement layer
bit rate can be reduced by refining the entropy coding for the
residual, and 2-D prediction and adaptive filter can be applied
to reduce the prediction residual, as in [27].

The method can also be generalized to create descriptions,
where . A direct generalization is to split the image into

subimages after prefiltering. Each subimage is coded as the
base layer of one description. Each description also encodes the
prediction residuals of all other subimages as the enhancement
layer. Further improvement of this approach is our ongoing re-
search.

APPENDIX

In this section, we derive the Wiener filter in Fig. 2. In [21],
all data in the two neighboring blocks are used to estimate a lost
block. Since the performance is not sensitive to the size of the
Wiener filter, in this paper we use neighboring
samples from each side to estimate the lost block, where can
be chosen to obtain a desired tradeoff between complexity and
performance.

In Fig. 2, the prediction of is , where
is the prediction filter, and is a vector con-
taining nearest neighboring samples next to , sam-
ples from and samples from . That is

(39)

where

(40)

The autocorrelation of the prediction residual is

(41)

The Wiener filter that minimizes the MSE is
, where is the correlation be-

tween and , and is the autocorrelation .
At high rate, the quantization noise can be ignored [21], [23, pp.
114], and the Wiener filter can be approximated as

(42)

The matrices involved can be obtained from the structure of the
lapped transform in Fig. 1. Define

(43)

As shown in Fig. 1, . Thus,
, where , and

is the autocorrelation matrix of . In this paper,
is obtained by assuming the input follows a first-order

Gauss–Markov model with correlation coefficient .
Matrices and in (42) can then be obtained
from the appropriate sub-matrices of .

From and the Wiener
filter given in (42), we have

(44)

In this paper, this is used in (20) to obtain the distortion of the
enhancement layer.

As in [21], we normalize the Wiener filter to have unit row
sums. In addition, two Wiener filters are used at the
boundary to predict a block from only the top or the bottom
neighboring block. Their derivations are similar to (42).
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