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A Progressive Transmission Image
Coder Using Linear Phase Uniform

Filterbanks as Block Transforms
Trac D. Tran and Truong Q. Nguyen

Abstract—This paper presents a novel image coding scheme
usingMMM -channel linear phase perfect reconstruction filterbanks
(LPPRFB’s) in the embedded zerotree wavelet (EZW) framework
introduced by Shapiro [1]. The innovation here is to replace
the EZW’s dyadic wavelet transform by MMM -channel uniform-
band maximally decimated LPPRFB’s, which offer finer fre-
quency spectrum partitioning and higher energy compaction. The
transform stage can now be implemented as a block transform
which supports parallel processing mode and facilitates region-
of-interest coding/decoding. For hardware implementation, the
transform boasts efficient lattice structures, which employ a
minimal number of delay elements and are robust under the
quantization of lattice coefficients. The resulted compression algo-
rithm also retains all attractive properties of the EZW coder and
its variations such as progressive image transmission, embedded
quantization, exact bit rate control, and idempotency. Despite its
simplicity, our new coder outperforms some of the best image
coders published recently in literature [1]–[4], for almost all test
images (especially natural, hard-to-code ones) at almost all bit
rates.

Index Terms—Block transform coding, image coding, filter-
banks, wavelet transform.

I. INTRODUCTION

BLOCK transform coding and subband coding have been
two dominant techniques in existing image compression

standards and implementations. Both methods actually exhibit
many similarities: relying on a certain transform to convert
the input image to a more decorrelated representation, then
utilizing the same basic building blocks such as bit allocator,
quantizer, and entropy coder to achieve compression.

Block transform coders enjoyed success first due to their
low complexity in implementation and their reasonable per-
formance. The most popular block transform coder leads
to the current image compression standard JPEG [5] which
utilizes the 8 8 discrete cosine transform (DCT) [6] at its
transformation stage. At high bit rates (1 b/pixel and up), JPEG
offers almost visually lossless reconstruction image quality.
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However, when more compression is needed (i.e., at lower
bit rates), annoying blocking artifacts show up because of
two reasons: 1) the DCT bases are short, nonoverlapped, and
have discontinuities at the ends and 2) JPEG processes each
image block independently. So, interblock correlation has been
completely abandoned.

The development of the lapped orthogonal transform (LOT)
[7] and its generalized versions: the lapped biorthogonal
transform (LBT) [8], the generalized LOT (GenLOT) [9]–[11],
and the generalized LBT (GLBT) [12]–[14] helps solve the
blocking problem by borrowing pixels from the adjacent
blocks to produce the transform coefficients of the current
block. It has long been recognized that lapped transforms
belong to a subclass of linear phase perfect reconstruction filter
banks (LPPRFB’s): -channel systems with filter lengths

[7]. The DCT has channels and all filters of
length ; hence, its basis functions do not overlap. Lapped
transform outperforms the DCT on two counts: 1) from the
analysis viewpoint, it takes into account interblock correlation,
hence, provides better energy compaction that leads to more
efficient entropy coding of the coefficients and 2) from the
synthesis viewpoint, its basis functions decay asymptotically to
zero at the ends, reducing blocking discontinuities drastically.
However, earlier lapped-transform-based image coders [7],
[10], [15] have not utilized global information to their full ad-
vantage: the quantization and the entropy coding of transform
coefficients are still independent from block to block.

Recently, subband coding has emerged as the leading stan-
dardization candidate in future image compression systems
thanks to the development of the discrete wavelet transform.
Wavelet representation with implicit overlapping and variable-
length basis functions produces smoother and more perceptu-
ally pleasant reconstructed images. Moreover, wavelet’s mul-
tiresolution characteristics have created an intuitive foundation
on which simple, yet sophisticated, methods of encoding
the transform coefficients are developed. Exploiting the re-
lationship between the parent and the offspring coefficients
in a wavelet tree, progressive wavelet coders [1]–[3] can
effectively order the coefficients by bit planes and transmit
more significant bits first. This coding scheme results in
an embedded bit stream along with many other advantages
such as exact bit rate control and near-idempotency (perfect
idempotency is obtained when the transform can map integers
to integers). In these subband coders, global information is
taken into account fully.

1057–7149/99$10.00 1999 IEEE
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Fig. 1. Dyadic wavelet transform and its corresponding image decomposition.

From a frequency domain point of view, the wavelet trans-
form simply provides an octave-band representation of sig-
nals. The dyadic wavelet transform can be thought of as a
nonuniform-band lapped transform. It can sufficiently decor-
relate smooth images; however, it has problems with images
with well-localized high-frequency components—having low
energy compaction in these cases. Several solutions have been
proposed to solve this problem, most notably the wavelet
packet approach [16] which yielded significant gains in ob-
jective performance.

In this work, we shall confirm that the embedded framework
is not only limited to the wavelet transform and the wavelet
packet; it can be utilized with multichannel uniform-band
filterbanks as well. In fact, a judicious choice of -channel
LPPRFB coupled with several levels of wavelet decomposition
of the dc band can provide much finer frequency spectrum
partitioning, leading to significant improvement over current
wavelet coders. This paper also attempts to shed some light
onto a deeper understanding of wavelets, lapped transforms,
their relation, and their performance in image compression
from a multirate filterbank perspective.

The outline of the paper is as follows. In Section II, we
offer a brief review of LPPRFB—its lattice structures and its
implementation as block transform—as well as the wavelet
transform and its role in progressive image coding. Section III
describes the wavelet—block transform analogy, which leads
to a general zerotree data structure for block transform coeffi-
cients and details of the design of high-performance transforms
to take full advantage of the new coding scheme. Section IV
presents many coding examples to confirm the validity of the
theory. An extensive performance comparison between the
new coder and existing state-of-the-art ones is also included.
Finally, the conclusions are drawn in Section V.

A. Notations

Boldfaced characters are used to denote vectors and ma-
trices. and denote, respectively, the transpose and

the inverse of the matrix . Special matrices used extensively
are the identity matrix , the reversal matrix , and the null
matrix . When the size of a matrix is not clear from context,
subscripts will be included to indicate its size. For example,

denotes the reversal matrix, and stands
for the null matrix. The impulse response of a filter
and its discrete -transform are represented by and .
For abbreviations, we use LP, PR, PU, and FB to denote,
respectively,linear phase, perfect reconstruction, paraunitary
(or orthogonal), and filterbanks. The letters are
reserved for the number of wavelet decomposition levels, the
number of channels, and the filter’s (or the input’s) length,
respectively. The termsLPPRFB, block transform,andlapped
transformare used interchangeably in the paper.

II. REVIEW

A. The Wavelet Transform and Progressive
Image Transmission

From a filterbank viewpoint, the wavelet transform is an
octave-band representation for signals; the discrete dyadic
wavelet transform can be obtained by iterating on the lowpass
output of a PR two-channel filterbank with enough regularity
[17]–[19] as shown in Fig. 1. For a true wavelet decomposi-
tion, one iterates on the lowpass output only, whereas for a
wavelet-packet decomposition, one may iterate on any output.
The wavelet transform is, intuitively, a multiresolution decom-
position of a signal into its coarse and detailed components. In
the case of images, the wavelet representation is well-matched
to psychovisual models, and it has given rise to numerous
compression systems with superior subjective and objective
quality to others at medium and high compression ratios
[19], [20].

Many of these aforementioned high-performance wavelet
coders also offer the capability of progressive image transmis-
sion. This coding approach relies on the fundamental idea that
more important information (defined here as what decreases a
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Fig. 2. Wavelet and block transform analogy.

certain distortion measure the most) should be transmitted first.
Assume that the distortion measure is the mean-squared error
(MSE), the transform is paraunitary, and transform coefficients

are transmitted one by one, it can be proven that the
mean squared error decreases by , where is the
total number of pixels [21]. Therefore, larger coefficients
should always be transmitted first. If one bit is transmitted
at a time, this approach can be generalized to ranking the
coefficients by bit planes and the most significant bits are
transmitted first [22]. The progressive transmission scheme
results in an embedded bit stream (i.e., it can be truncated
at any point by the decoder to yield the best corresponding
reconstructed image). The algorithm can be thought of as an
elegant combination of a scalar quantizer with power-of-two
stepsizes and an entropy coder to encode wavelet coefficients.

Embedded algorithm relies on the hierarchical coefficients’
tree structure called awavelet tree—a set of wavelet coef-
ficients from different scales that belong in the same spatial
locality. This is demonstrated in Fig. 2(a), where the tree in the
vertical direction is circled. All of the coefficients in the lowest
frequency band make up thedc bandor the reference signal
(located at the upper left corner). Besides these dc coefficients,
in a wavelet tree of a particular direction, each lower-frequency
parent nodehas four corresponding higher-frequencyoffspring
nodes. All coefficients below a parent node in the same spatial
locality is defined as itsdescendents. Define a coefficient

to be significantwith respect to a given threshold if
, and insignificant otherwise. Meaningful image

statistics have shown that if a coefficient is insignificant, it is
very likely that its offspring and descendents are insignificant
as well. Exploiting this fact, the most sophisticated embedded
wavelet coder SPIHT can output a single binary marker to
represent very efficiently a large, smooth image area (an
insignificant tree). For more details on the algorithm, the reader
is referred to [1]–[3].

Although the wavelet tree provides an elegant hierarchical
data structure which facilitates quantization and entropy cod-
ing of the coefficients, the efficiency of the coder still depends
heavily on the transform’s ability in generating zerotrees. For

nonsmooth images that contain a lot of texture and edges,
the wavelet transform is not as efficient in signal decorrelation
comparing to well-designed multichannel LPPRFB’s which we
shall prove to provide finer frequency selectivity and superior
energy compaction.

B. Linear Phase Perfect Reconstruction Filterbanks

Two equivalent representations of an-channel filter bank
are depicted in Fig. 3 [17], [18]. In this paper, we only
consider filterbanks with the following properties: perfect
reconstruction, linear phase, finite impulse response (FIR), real
coefficient, maximally decimated, and uniform-band. Here are
several of our justifications.

• The PR property is highly desirable since it provides a
lossless signal representation and it simplifies the error
analysis significantly.

• In image processing, it is also crucial that all analysis and
synthesis filters have linear phase. Besides the elimination
of the phase distortion, linear phase systems allow us to
use simple symmetric extension methods to accurately
handle the boundaries of finite-length signals. Further-
more, the linear phase property can be exploited, leading
to faster and more efficient FB implementation.

• The filter length should be relatively short to prevent
ringing artifacts in the reconstructed images and to keep
the transform fast.

• Since our interest is on compression, especially at low bit
rates, we prefer maximally decimated FB’s which do not
expand the input signals.

From the polyphase representation in Fig. 3(b), perfect
reconstruction can be loosely defined as the existence of an
FIR matrix that satisfies the equation

(1)

We call these systemsbiorthogonal. An important subset of
PRFB isparaunitary FB, where is chosen to be

(2)

with being the order of .
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Fig. 3. Two representations of anM -channel uniform-band maximally decimated filterbank.

Fig. 4. Lattice structure for LPPRFB.

LPPRFB’s have long found application in transform-based
image coding. The DCT is an eight-channel eight-tap LP-
PUFB. A popular extension of the DCT is the LOT, an
even-channel -tap LPPUFB that can be interpreted as an
overlapping block transform. Rather than processing one block
independently from the next like DCT, LOT has overlapping
input windows and it elegantly solves the blocking problem
in DCT-based coders by partly smoothing out the block
boundaries. To reduce blocking effect further, longer overlaps
might be needed. This motivates the development of the
generalized lapped orthogonal transform (GenLOT) [9]–[11]
and its biorthogonal versions (GLBT) [12]–[14].

Every FB presented in this paper has an efficient lattice
structure that retains both LP and PR properties under quan-
tization of lattice coefficients. The key idea behind the lattice
structure is the factorization of the filterbank’s polyphase
matrix . Let and be the analysis and
synthesis filters of length in an -channel
LPPUFB. If is even, it is necessary to have symmetric
and antisymmetric filters [11]. Define

where and are arbitrary invertible matrices,
and

Then, the polyphase matrix can always be factored as
follows [10], [14]:

(3)

where , and

Again, and are arbitrary invertible
matrices. For fast implementations, can be replaced by the
DCT. The complete lattice structure is shown in Fig. 4.

It is clear from (3) that each stage of the biorthogonal FB
[either or ] contains two arbitrary invertible matrices
of size . These matrices contain the free parameters, or
the degrees of freedom, that can be used to fine-tune the FB
in the design process. If an orthogonal FB is desired, the
free matrices are restricted to be orthogonal. In this case, the

and orthogonal matrices can be factored further into
plane rotations as depicted in Fig. 5(a). In the more general
biorthogonal case, the free matrices are only required to be
invertible, and we can always decompose them using the
singular value decomposition (SVD) as
where and are orthogonal matrices with rotation
angles , and is a diagonal matrix with positive ele-
ments as illustrated in Fig. 5(b). Invertibility is guaranteed
structurally under a mild condition—as long as none of the
diagonal lattice coefficients representing is quantized to
zero. Unconstrained optimization can now be used to optimize
the FB whose rotation angles (and the diagonal multipliers
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(a)

(b)

Fig. 5. Matrix parameterization: (a) orthogonal and (b) invertible.

in the biorthogonal case) are allowed to vary freely and
independently.

Conceptually, each of the aforementioned LPPRFB’s can
be implemented as a block transform directly as depicted in
Fig. 6. In the one-dimensional (1-D) direct implementation,
the input signal can be blocked into sequences of length

, overlapped by samples with adjacent
sequences. The columns of the transform coefficient matrix

hold the impulse responses of the analysis filters .
The resulting transform coefficients can then be
quantized, coded, and transmitted to the decoder where the
inverse transform is performed to reconstruct the original se-
quences . The long basis functions which decay smoothly
to zero, coupled with overlapping data blocks, have the ability
to reduce blocking artifacts at high compression ratios. In some
cases as we demonstrate later, blocking can be completely
eliminated. In the two-dimensional (2-D) case, the input block
size is and the output block size is . Like the
2-D separable wavelet transform, filtering is applied vertically
first and then horizontally (or vice versa).

III. D ESIGN

A. Zerotree Data Structure for Block Transform

One of the original contributions of this paper is the novel
usage of -channel uniform LPPRFB as a replacement for
the dyadic wavelet transform at the transformation stage
of a zerotree coder. Instead of obtaining an octave-band
signal decomposition, one can have a finer uniform-band
partitioning as depicted in Fig. 7 (drawn for ). The finer
frequency partitioning increases the frequency resolution that
can often generate more insignificant coefficients, leading to
an enhancement in the performance of the zerotree algorithm.
However, uniform filterbank also has uniform downsampling
(all subbands now have the same size). A parent node would
not have four offspring nodes as in the case of the wavelet
representation. How would one come up with a new tree struc-
ture that still takes full advantage of the interscale correlation
between the transform coefficients?

The above question can be answered by investigating an
analogy between the wavelet and the block transform as illus-
trated in Fig. 2. The parent, the offspring, and the descendents

in a wavelet tree cover the same spatial locality, and so do
the coefficients of a transform block. In fact, a wavelet tree
in an -level decomposition is analogous to a -channel
transform’s coefficient block. The difference lies at the bases
that generate these coefficients. It can be shown that a 1-D

-level wavelet decomposition, if implemented as a lapped
transform, has the following coefficient matrix

...

(4)
From the coefficient matrix , we can observe the fol-

lowing interesting and important characteristics of the wavelet
transform through the block transform’s prism.

• The wavelet transform can be viewed as a lapped trans-
form with filters of variable lengths. For an -level
decomposition, there are filters.

• Each basis function has linear phase; however, they do
not share the same center of symmetry.

• The block size is defined by the length of the longest filter.
If is longer and has length , the top filter covering
the dc component turns out to be the longest, and it has
a length of . For the biorthogonal
wavelet pair with of length 9 and of length
7 and three levels of decomposition, the eight resulting
basis functions have respective lengths of 57, 49, 21, 21,
7, 7, 7, and 7.

• For a six-level decomposition using the same 9/7-tap
pair, the length of the longest basis function grows to
505! The large number of overlapping pixels explains the
smoothness of the reconstructed images where blocking
artifacts are completely eliminated.

Each block of lapped transform coefficients represents a
spatial locality similarly to a tree of wavelet coefficients as
illustrated in Fig. 2. Let be the set of coordinates of all
offspring of the node in an -channel block transform
( ), then can be represented as
follows:

(5)

All (0, 0) coefficients from all transform blocks form the dc
band, which is similar to the wavelet transform’s reference
signal, and each of these nodes has only three offspring: (0, 1),
(1, 0), and (1, 1). The complete tree is now available locally,
i.e., we do not have to search for the offspring across the
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(a)

(b)

Fig. 6. M -channel LPPRFB as lapped transform: (a) direct 1-D implementation and (b) illustration in 2-D.

(a) (b)

Fig. 7. Frequency spectrum partitioning: (a)M -channel uniform-band LPPRFB and (b) dyadic wavelet transform.

Fig. 8. Demonstration of the analogy between block transform and wavelet representation.

subbands anymore. This is a straightforward generalization of
the structure first proposed for the 8 8 DCT in [23]. The
only requirement here is that the number of channelhas
to be a power of two.

Fig. 8 demonstrates through a simple rearrangement of the
block transform coefficients that the redefined tree structure
above does possess a wavelet-like multiscale representation.
Table I compares the energy compaction level between the
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(a) (b)

(c) (d)

Fig. 9. Frequency and impulse responses of orthogonal transforms (a) 8� 8 DCT. (b) 8� 16 type-II LOT. (c) 4� 24 4� 8 VLLOT. (d) 8� 40 GenLOT.

TABLE I
COMPARISON ON THEENERGY COMPACTION LEVELS OF THE DYADIC

WAVELET TRANSFORM AND UNIFORM LPPRFB’S ON THE BARBARA IMAGE

wavelet transform and two high-performance block transforms,
the 8 40 GenLOT and the 16 32 GLBT (which will
be presented in more details in the next section), for the
Barbara image. The two block transforms consistently generate

a higher percentage of small-value coefficients, hence creates
a significant increase in the number of zerotrees. This holds
the key to our coder’s superior performance.

B. Transform Design Issues

Transform-based coders rely on multirate filterbanks to
generate the frequency coefficients that can be quantized
and entropy coded. In the decoders, filterbanks are again
used to combine and reconstruct the signal. Therefore, from
our viewpoint, well-optimized filterbanks play an integral
role in the coder’s performance. As previously mentioned in
Section II, any realization of the lattice coefficient set
in the previous section results in an LPPRFB. The degrees of
freedom in the lattice coefficient set can be exploited to obtain
other desirable properties for the FB’s. The cost function
used in this paper is a weighted linear combination of coding
gain, dc leakage, attenuation around mirror frequencies, and
stopband attenuation—all of which are well-known properties
in yielding the best reconstructed image quality [18], [24]:

(6)

1) Coding Gain: Coding gain is an approximate measure
of the transform’s energy compaction capability. Since our
coder has progressive transmission, higher coding gain almost
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(a)

(b)

Fig. 10. Frequency and impulse responses of biorthogonal transforms: (a) 8� 16 GLBT and (b) 16� 32 GLBT.

TABLE II
COMPARISON OF OBJECTIVE TRANSFORM PROPERTIES

always translates to higher image quality in the mean-squared
sense. Transforms with higher coding gain tend to compact
more energy into a fewer number of coefficients, and the more
significant bits of those coefficients always get transmitted
first. All new FB’s presented in this paper are obtained with a
version of the generalized coding gain formula [25]:

(7)

where is the variance of the input signal, is the variance
of the th subband, and is the norm of theth synthesis
filter. The signal is the commonly-used AR(1) process
with intersample autocorrelation coefficient [7]. For
orthogonal (paraunitary) FB’s, the synthesis filters are simply
the time-reversed analysis filters. The reader should note that
we have never attempted to optimize the FB’s to match the
statistics of any input image. The only image model employed
in the design process is the AR(1) model. We do recognize
that even higher coding performance can be achieved when
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TABLE III
OBJECTIVE CODING RESULTS (PSNR IN DECIBELS): (a) LENA, (b) GOLDHILL , AND (c) BARBARA

(a)

(b)

(c)

the transform is image-dependent. However, the coder’s level
of complexity is also significantly higher.

2) Low DC Leakage:The dc leakage cost function mea-
sures the amount of dc energy that leaks out to the bandpass
and highpass subbands. The main idea is to concentrate all
signal energy at dc into the dc coefficients. This proves to be
advantageous in both signal decorrelation and in the prevention
of discontinuities in the reconstructed signals. Low dc leakage
can prevent the annoying checkerboard artifact that usually
occurs when high-frequency bands are severely quantized
[18]. This problem is more troublesome in traditional block
transform coders because high-frequency bands are usually

more coarsely quantized. The dc cost function is defined as

(8)

Notice that all antisymmetric filters have a zero at dc. There-
fore, the above formula only needs to apply to symmetric filters
to reduce the complexity of the optimization process.

3) Attenuation at Mirror Frequencies:The mirror frequency
cost function is a generalization of . The concern is now
at every aliasing frequencies , ,

. Ramstadet al. show that frequency attenuation at
mirror frequencies are very important in the further reduction
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of blocking artifacts: the filter responses should be small at
these mirror frequencies as well [24]. The corresponding cost
function is

(9)

Low dc leakage and high attenuation near the mirror frequen-
cies are not as essential to the coder’s objective performance
as coding gain. However, they do improve the visual quality
of the reconstructed image significantly.

4) Stopband Attenuation:Stopband attenuation of the fil-
ters is a classical performance criterion in filter design. In this
paper, the stopband attenuation criterion measures the sum of
all of the filters’ energy outside the designated passbands:

(10)

(11)

In the LPPUFB case, .
The biorthogonal FB’s offer more flexibility. In the analysis
bank, the stopband attenuation cost helps in improving the
signal decorrelation and decreasing the amount of aliasing. In
meaningful images, we knowa priori that most of the energy is
concentrated in low frequency region. Hence, high stopband
attenuation in this part of the frequency spectrum becomes
extremely desirable. In the synthesis bank, the reverse is true.
Synthesis filters covering low-frequency bands need to have
high stopband attenuation near and/or at to enhance
their smoothness. The biased weighting can be enforced using
two simple linear functions and as shown
in (10) and (11).

5) Transforms with Variable-Length Basis Functions:The
elegant factorization in Section II results in all filters of equal
length. For images that contain a lot of strong edges, the
long basis functions covering high-frequency bands can cause
excessive ringing at low bit rates. On the other hand, the longer
the filter becomes, the higher the complexity of the FB gets.
Since blocking is most noticeable in smooth image regions,
in order to reduce blocking artifacts, filters covering high-
frequency bands do not need long overlapping windows. In
fact, they may not have to be overlapped at all. If the filter
length can be restricted mathematically, i.e., these coefficients
are structurally enforced to exact zeros, the complexity of the
resulting FB can be reduced significantly. Efforts to reduce
ringing artifacts and to minimize the transform complexity can
be found in [26]–[28]. This class of transforms represents low-
frequency components by longer overlapped basis functions
to prevent blocking, while reserving shorter basis functions
for high-frequency components to minimize ringing. One of

(a)

(b)

(c)

Fig. 11. Rate-distortion curves of image coding examples (a) Lena, (b)
Goldhill, and (c) Barbara.

such transform named VLLOT with four 24-tap and four
eight-tap filters is presented in this paper to validate the
flexibility of the general zerotree coding scheme. Ringing can
also be minimized by adding a time-constrained objective
to high-frequency bandpass filters to force the tails of their
impulse responses to have very small values (not necessarily
zeros). This constraint does not limit the search space of the
optimization routine, so it tends to yield better filterbanks.
It does not reduce the transform and inverse transform cost
however.



TRAN AND NGUYEN: PROGRESSIVE TRANSMISSION IMAGE CODER 1503

(a) (b)

(c) (d)

Fig. 12. The 512� 512 Barbara image coded at 1 : 32 using various transforms: (a) 8� 8 DCT, (b) 8� 16 LOT, (c) 8� 16 GLBT, and (d) 16� 32 GLBT.

All FB’s presented in this paper are obtained from the multi-
variable nonlinear optimization routinesimplexin Matlab. To
initialize the lattice, we set the matrices containing the free
parameters ( and ) to either or . More specifically,
the rotation angles are initialized to either zero or, whereas
the diagonal multipliers are all initialized to 1. A set of
weighting factors that we have found to provide a reasonable
tradeoff between various transform properties is {10.0,
1.0, 0.1, 0.5, 0.5}.

The frequency and impulse responses of several orthogonal
are shown in Fig. 9(a)–(d). The 8 8 DCT [6] and the
8 16 quasioptimal type-II fast LOT [7] in Fig. 9(a) and
(b), respectively, are from previous works. They are included
to serve as comparative yardsticks of how important a good
choice of FB is in image coding applications. The 424 4

8 VLLOT and the 8 40 GenLOT are designed following
the guidelines presented in this section. The biorthogonal
LPFB’s are depicted in Fig. 10(a) and (b). The objective
performance measures of the DCT, the LOT, and the new
block transforms are tabulated and compared in Table II.
Notice that the GenLOT and GLBT all have high coding gain,
nonequiripple frequency responses that decay to zero at dc,
high mirror frequency attenuation, and their impulse responses
decay smoothly to zero at two ends—another crucial factor in
reducing blocking artifacts [7], [8].

C. Treatment of DC Band

Fig. 8 shows that there still exists correlation between dc
coefficients. To decorrelate the dc band even more, several
levels of wavelet decomposition can be used depending on the
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(a) (b)

(c) (d)

Fig. 13. The 512� 512 Goldhill image coded by the 16� 32 GLBT: (a) 1 : 16, 33.42 dB, (b) 1 : 32, 30.84 dB, (c) 1 : 64, 28.74 dB, and (d) 1 : 100, 27.62 dB.

input image size. Besides the obvious increase in the coding
efficiency of dc coefficients thanks to a deeper coefficient
trees, wavelets provide variably longer bases for the signal’s
dc component, leading to smoother reconstructed images, i.e.,
blocking artifacts are further reduced. Regularity objective can
be added in the transform design process to produce-band
wavelets, and a wavelet-like iteration can be carried out as
well. In all results presented later in this paper, we choose
the popular biorthogonal 9/7-tap pair [29] to process the dc
coefficients.

IV. CODING RESULTS

The objective coding results (PSNR in dB) for standard 512
512, 8-b gray-scale test images Lena, Barbara, and Goldhill

are tabulated in Table III. The transforms in comparison are
as follows.

• 9/7-tap biorthogonal wavelet [29].
• 8 8 DCT [6] shown in Fig. 9(a).
• 8 16 LOT [7] shown in Fig. 9(b).
• 4 24 4 8 VLLOT shown in Fig. 9(c).
• 8 40 GenLOT shown in Fig. 9(d).
• 8 16 GLBT shown in Fig. 10(a).
• 16 32 GLBT shown in Fig. 10(b).

Except the 9/7-tap biorthogonal wavelet, all of the trans-
forms listed above are multiband uniform LPPRFB’s, and their
transform coefficients are encoded as described in Section III.
All computed PSNR quotes in dB are obtained from a real
compressed bit stream with all overheads included. The rate-
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(a) (b) (c)

(d) (e) (f)

Fig. 14. Perceptual comparison between the wavelet and the block transform embedded coder. Enlarged portions: (a) original Barbara image, (b) SPIHTat
1 : 32, (c) 8� 16 GLBT embedded coder at 1 : 32, (d) original Goldhill, (e) SPIHT at 1 : 32, and (f) 8� 16 GLBT embedded coder at 1 : 32.

distortion curves in Fig. 11 and the tabulated coding results
in Table III clearly demonstrate the superiority of our block
transform coder. For a smooth image like Lena where the
wavelet transform can sufficiently decorrelate, SPIHT offers
a comparable performance. However, for a highly-textured
image like Barbara, the 8 40 GenLOT, the 8 16 GLBT,
and the 16 32 GLBT coder can provide a PSNR gain of
more than 2 dB over a wide range of bit rates. Unlike other
block transform coders whose performance dramatically drops
at very high compression ratios, the new progressive coders
are consistent throughout as illustrated in Fig. 11. Comparing
to the -channel FB’s in previous works (the DCT and
the LOT), the new FB’s consistently provide higher coding
performances. The PSNR improvement can reach up to almost
3 dB comparing to the DCT and more than 1 dB comparing
to the LOT.

Figs. 12–14 confirm the superiority of the new coders
in reconstructed image quality as well. Fig. 12 shows re-
constructed Barbara images at 1 : 32 using various block
transforms. Comparing to JPEG, blocking artifacts are already
remarkably reduced in the DCT-based coder in Fig. 12(a) and
the LOT-based coder in Fig. 12(b). Blocking is completely
eliminated when the DCT and the LOT are replaced by the
new FB’s as shown in Figs. 12(c)–(d) and 13. Even at 1 : 100,
the reconstructed Goldhill image in Fig. 13(d) is still visually
pleasant: no blocking and not much ringing. A closer look

in Fig. 14(a)–(c) (where enlarged 256 256 image portions
are shown so that artifacts can be more easily seen) reveals
that besides blocking elimination, the 8 16 GLBT can
preserve texture nicely (the table cloth and the clothes pattern
in the Barbara image) while keeping the edges relatively clean.
Comparing to the 9/7-tap wavelet, our-channel FB’s yield
overall sharper reconstructed images with more defining edges
and more evenly reconstructed texture regions. Although the
PSNR difference is not as striking in the Goldhill image,
the improvement in perceptual quality is rather significant as
shown in Fig. 14(d)–(f).

As previously mentioned, the improvement over wavelets
keys on the lapped transform’s ability to capture and separate
localized signal components in the frequency domain. In the
spatial domain, this corresponds to images with directional
repetitive texture patterns. To illustrate this point, the lapped-
transform-based coder is compared against the FBI wavelet
scalar quantization (WSQ) standard [30]. When the original
768 768 gray-scale fingerprint image shown in Fig. 15(a)
is compressed at 1 : 13.6 (43 366 bytes) by the WSQ coder,
Bradley et al. reported a PSNR of 36.05 dB. Using the
16 32 GLBT in Fig. 10(b), a PSNR of 38.09 dB can be
achieved at the same compression ratio. At the same level
of PSNR, the GLBT coder can compress the image down to
1 : 20 where the reconstructed image is shown in Fig. 15(b).
To put this in perspective, the wavelet-packet-based SFQ
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(a) (b)

(c) (d)

Fig. 15. Fingerprint compression example: (a) original fingerprint image (589 824 bytes), (b) coded by the 16� 32 GLBT coder at 1 : 20 (29 490 bytes),
36.05 dB, (c) coded by the WSQ coder at 1 : 18.036 (32 702 bytes), 34.42 dB, and (d) coded by the 16� 32 GLBT coder at 1 : 27 (21 845 bytes), 34.42 dB.

coder in [16] reported a PSNR of only 37.30 dB at 1 : 13.6
compression ratio. At 1 : 18.036 (32 702 bytes), the WSQ’s
reconstructed image shown in Fig. 15(c) has a PSNR of 34.42
dB while the GLBT coder produces 36.57 dB. At the same
distortion level, the GLBT coder can compress the image
down to a compression ratio of 1 : 27 (21 845 bytes) as shown
in Fig. 15(d). Again, the reader should note the high visual
quality of the reconstructed images in Fig. 15(b) and (d): no
disturbing blocking and ringing artifacts.

V. CONCLUSIONS

We have presented in this paper a novel low-complexity pro-
gressive transmission image coding scheme where-channel
uniform LPPRFB, the wavelet transform, and the zerotree
entropy coder are combined to yield excellent performance

in coding efficiency. As a recapitulation, the resulting coder
offers the following advantages.

• It is based on multichannel block-transforms, which can
provide finer frequency spectrum partitioning and higher
energy compaction.

• The transform facilitates hardware implementation with
efficient lattice structures which employ a minimal num-
ber of delay elements and are robust under the quantiza-
tion of lattice coefficients.

• The block-based nature of the transforms facilitate region-
of-interest coding/decoding.

• The transform also increases the parallelism of compu-
tation.

• The coder has progressive image transmission and all of
its attractive characteristics: embedded quantization, exact
bit rate control, and idempotency.
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• It provides high subjective and objective performance,
outperforms consistently the best progressive coders pub-
lished recently in literature by a wide margin.
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