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A Progressive Transmission Image
Coder Using Linear Phase Uniform
Filterbanks as Block Transforms

Trac D. Tran and Truong Q. Nguyen

Abstract—This paper presents a novel image coding scheme However, when more compression is needed (i.e., at lower
using M-channel linear phase perfect reconstruction filterbanks pjt rates), annoying blocking artifacts show up because of
(LPPRFB's) in the embedded zerotree wavelet (EZW) framework 4\ reasons: 1) the DCT bases are short, nonoverlapped, and
introduced by Shaplro [1]. The innovation here is to r_eplace have discontinuities at the ends and 2) J’PEG ! h
the EZW'’s dyadic wavelet transform by M-channel uniform- processes eac
band maximally decimated LPPRFB'’s, which offer finer fre- image block independently. So, interblock correlation has been
quency spectrum partitioning and higher energy compaction. The completely abandoned.
transform stage can now be implemented as a block transform  The development of the lapped orthogonal transform (LOT)
which supports parallel processing mode and facilitates region- [7] and its generalized versions: the lapped biorthogonal

of-interest coding/decoding. For hardware implementation, the .
transform boasts efficient lattice structures, which employ a transform (LBT) [8], the generalized LOT (GenLOT) [9]-{11],

minimal number of delay elements and are robust under the and the generalized LBT (GLBT) [12]-[14] helps solve the
quantization of lattice coefficients. The resulted compression algo- blocking problem by borrowing pixels from the adjacent
rithm also retainshall attractive properties of the EZW coderbar&(é OIblocks to produce the transform coefficients of the current
its variations such as progressive image transmission, embedde .

guantization, exact bit rate control, and idempotency. Despite its block. It has long bee.n recognized that lapped trar?sfor.ms
simplicity, our new coder outperforms some of the best image Pelong to a subclass of linear phase perfect reconstruction filter
coders published recently in literature [1]-[4], for aimost all test banks (LPPRFB’s):M-channel systems with filter lengths

images (especially natural, hard-to-code ones) at almost all bit v >~ Af [7]. The DCT hasM channels and all filters of

LS length M; hence, its basis functions do not overlap. Lapped

Index Terms—Block transform coding, image coding, filter- transform outperforms the DCT on two counts: 1) from the

banks, wavelet transform. analysis viewpoint, it takes into account interblock correlation,
hence, provides better energy compaction that leads to more

I. INTRODUCTION efficient entropy coding of the coefficients and 2) from the

LOCK ‘ di d subband codina h b synthesis viewpoint, its basis functions decay asymptotically to

d trgns orm EO. INg and subband coding have DGR, 4t the ends, reducing blocking discontinuities drastically.

two omlngnt tec niques in existing image COMPTesSIQhly, vever, earlier lapped-transform-based image coders [7],
standards and implementations. Both methods actually exhi |6], [15] have not utilized global information to their full ad-

many similarities: relying on & certain transform to conve antage: the quantization and the entropy coding of transform

the input image to a more decorrelated representation, thced%ﬁ‘icients are still independent from block to block.

utilizing the same basic building blocks such as bit allocator, Recently, subband coding has emerged as the leading stan-
quantizer, and entropy coder_to achieve compression. dardization candidate in future image compression systems

Block transform coders enjoyed success first due to th%r .

low complexity in implementation and their reasonable pe hanks to the development of the discrete wavelet transform.
formancep Thﬁ mostp ooular block transform coder Igaggavelet representation with implicit overlapping and variable-

: : Pop . Jength basis functions produces smoother and more perceptu-

to the current image compression standard JPEG [5] wh|§h | ¢ tructed i M let I
y pleasant reconstructed images. Moreover, wavelet's mu

utilizes the 8x 8 discrete cosine transform (DCT) [6] at its. . - L .
. . . . esolution characteristics have created an intuitive foundation
transformation stage. At high bit rates (1 b/pixel and up), JP . . - .
on which simple, yet sophisticated, methods of encoding

offers almost visually lossless reconstruction image qualit%.e transform coefficients are developed. Exploiting the re-

] ] ] ) lationship between the parent and the offspring coefficients
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Fig. 1. Dyadic wavelet transform and its corresponding image decomposition.

From a frequency domain point of view, the wavelet transhe inverse of the matriA. Special matrices used extensively
form simply provides an octave-band representation of sigre the identity matrixd, the reversal matrixJ, and the null
nals. The dyadic wavelet transform can be thought of asnzatrix 0. When the size of a matrix is not clear from context,
nonuniform-band lapped transform. It can sufficiently decosubscripts will be included to indicate its size. For example,
relate smooth images; however, it has problems with imagég; denotes theMl x M reversal matrix, and,; .y Stands
with well-localized high-frequency components—having lovfor the M x N null matrix. The impulse response of a filter
energy compaction in these cases. Several solutions have keethits discrete-transform are represented bjn] and H(z).
proposed to solve this problem, most notably the wavelBbr abbreviations, we use LP, PR, PU, and FB to denote,
packet approach [16] which yielded significant gains in olvespectivelylinear phase, perfect reconstruction, paraunitary
jective performance. (or orthogona), and filterbanks The lettersL, M, N are

In this work, we shall confirm that the embedded framewomleserved for the number of wavelet decomposition levels, the
is not only limited to the wavelet transform and the waveletumber of channels, and the filter's (or the input’s) length,
packet; it can be utilized with multichannel uniform-bandespectively. The termisPPRFB, block transformandlapped
filterbanks as well. In fact, a judicious choice df-channel transformare used interchangeably in the paper.

LPPRFB coupled with several levels of wavelet decomposition

of the dc band can provide much finer frequency spectrum Il. REVIEW

partitioning, leading to significant improvement over current )

wavelet coders. This paper also attempts to shed some Iiﬂét-rhe Wavelet Transform and Progressive

onto a deeper understanding of wavelets, lapped transforid@9€ Transmission

their relation, and their performance in image compressionFrom a filterbank viewpoint, the wavelet transform is an
from a multirate filterbank perspective. octave-band representation for signals; the discrete dyadic

The outline of the paper is as follows. In Section Il, wavavelet transform can be obtained by iterating on the lowpass
offer a brief review of LPPRFB—its lattice structures and itsutput of a PR two-channel filterbank with enough regularity
implementation as block transform—as well as the wavelft7]-[19] as shown in Fig. 1. For a true wavelet decomposi-
transform and its role in progressive image coding. Section tlbn, one iterates on the lowpass output only, whereas for a
describes the wavelet—block transform analogy, which leadsvelet-packet decomposition, one may iterate on any output.
to a general zerotree data structure for block transform coeffihe wavelet transform is, intuitively, a multiresolution decom-
cients and details of the design of high-performance transforpasition of a signal into its coarse and detailed components. In
to take full advantage of the new coding scheme. Section tkle case of images, the wavelet representation is well-matched
presents many coding examples to confirm the validity of the psychovisual models, and it has given rise to numerous
theory. An extensive performance comparison between tb@mpression systems with superior subjective and objective
new coder and existing state-of-the-art ones is also includeglality to others at medium and high compression ratios
Finally, the conclusions are drawn in Section V. [19], [20].

Many of these aforementioned high-performance wavelet
coders also offer the capability of progressive image transmis-

Boldfaced characters are used to denote vectors and mei@n. This coding approach relies on the fundamental idea that
trices. AT and A—! denote, respectively, the transpose anahore important information (defined here as what decreases a

A. Notations
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Fig. 2. Wavelet and block transform analogy.

certain distortion measure the most) should be transmitted firsbnsmooth images that contain a lot of texture and edges,
Assume that the distortion measure is the mean-squared ether wavelet transform is not as efficient in signal decorrelation
(MSE), the transform is paraunitary, and transform coefficient®mparing to well-designed multichannel LPPRFB’s which we

C; ; are transmitted one by one, it can be proven that tisball prove to provide finer frequency selectivity and superior

mean squared error decreases|by ;|/N, where N is the energy compaction.

total number of pixels [21]. Therefore, larger coefficients

should always be transmitted first. If one bit is transmitte@. Linear Phase Perfect Reconstruction Filterbanks

at a time, this approach can be generalized to ranking theryg equivalent representations of afi-channel filter bank
coefficients by bit planes and the most significant bits agge depicted in Fig. 3 [17], [18]. In this paper, we only
transmitted first [22]. The progressive transmission schemgnsider filterbanks with the following properties: perfect
results in an embedded bit stream (i.e., it can be truncaigionstruction, linear phase, finite impulse response (FIR), real
at any point by the decoder to yield the best correspondiggefficient, maximally decimated, and uniform-band. Here are
reconstructed image). The algorithm can be thought of as &veral of our justifications.
elega_nt combination of a scalar quantizer with power—qf—Fwo « The PR property is highly desirable since it provides a
stepsizes and an entropy coder to encode wavelet coefficients. |5gsless signal representation and it simplifies the error
Embedded algorithm relies on the hierarchical coefficients’  analysis significantly.
tree structure called aavelet tree-a set of wavelet coef- .« |nimage processing, it is also crucial that all analysis and
ficients from different scales that belong in the same spatial ~synthesis filters have linear phase. Besides the elimination
locality. This is demonstrated in Fig. 2(a), where the tree inthe  of the phase distortion, linear phase systems allow us to
vertical direction is circled. All of the coefficients in the lowest use simple symmetric extension methods to accurately
frequency band make up tige bandor the reference signal handle the boundaries of finite-length signals. Further-
(located at the upper left corner). Besides these dc coefficients, more, the linear phase property can be exploited, leading
in awavelet tree of a particular direction, each lower-frequency to faster and more efficient FB implementation.
parent nodenhas four corresponding higher-frequeradfspring  « The filter length should be relatively short to prevent
nodes All coefficients below a parent node in the same spatial ringing artifacts in the reconstructed images and to keep

locality is defined as itdescendentsDefine a coefficient
C;. ; to be significantwith respect to a given thresholfl if
|C; ;1 = T, andinsignificant otherwise. Meaningful image

the transform fast.
Since our interest is on compression, especially at low bit
rates, we prefer maximally decimated FB’s which do not

statistics have shown that if a coefficient is insignificant, itis  expand the input signals.

very likely that its offspring and descendents are insignificant From the polyphase representation in Fig. 3(b), perfect

as well. Exploiting this fact, the most sophisticated embeddegconstruction can be loosely defined as the existence of an

wavelet coder SPIHT can output a single binary marker @R matrix R(z) that satisfies the equation

represent very efficiently a large, smooth image area (an _

insignificant tree). For more details on the algorithm, the reader R(2)E(z) =bz"'T,  b#0,120. (1)

is referred to [1]-[3]. We call these systemisiorthogonal An important subset of
Although the wavelet tree provides an elegant hierarchic®RFB isparaunitary FB, whereR(z) is chosen to be

data structure which facilitates quantization and entropy cod- R(z) = 7""ET(7_1) @)

ing of the coefficients, the efficiency of the coder still depends ) ) )

heavily on the transform’s ability in generating zerotrees. Farith K being the order ofE(z).
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Fig. 4. Lattice structure for LPPRFB.

LPPRFB’s have long found application in transform-basethen, the polyphase matrikE(z) can always be factored as
image coding. The DCT is an eight-channel eight-tap LPellows [10], [14]:

PUFB. A popular extension of the DCT is the LOT, an
even-channeM -tap LPPUFB that can be interpreted as an E(2) = Gr1(2)Gx2(2) --- Gi(2)Eo (3)
overlapping block transform. Rather than processing one bl R

independently from the next like DCT, LOT has overlappir?\g%ere Gi(z) = WA()W, and

input windows and it elegantly solves the blocking problem 1 [Up Upd 1 [Uy 0O I J

in DCT-based coders by partly smoothing out the blockEo = V2 |:V0J ~V, } -2 [0 VJ [J —I}'
boundaries. To reduce blocking effect further, longer overlaps

might be needed. This motivates the development of theAgain, Uy and V, are arbitraryM/2 x M /2 invertible
generalized lapped orthogonal transform (GenLOT) [9]-[11patrices. For fast implementatiorisy can be replaced by the
and its biorthogonal versions (GLBT) [12]-[14]. DCT. The complete lattice structure is shown in Fig. 4.

Every FB presented in this paper has an efficient latticelt is clear from (3) that each stage of the biorthogonal FB
structure that retains both LP and PR properties under qué@ither G;(z) or Eo] contains two arbitrary invertible matrices
tization of lattice coefficients. The key idea behind the latticef size M/2. These matrices contain the free parameters, or
structure is the factorization of the filterbank’s polyphaste degrees of freedom, that can be used to fine-tune the FB
matrix E(z). Let Hi(z) and Fy(z) be the analysis andin the design process. If an orthogonal FB is desired, the

synthesis filters of length" = AMK in an M-channel free matrices are restricted to be orthogonal. In this case, the
LPPUFB. If M is even, it is necessary to haw¢/2 symmetric U; and V,; orthogonal matrices can be factored further into
and M /2 antisymmetric filters [11]. Define plane rotations as depicted in Fig. 5(a). In the more general
biorthogonal case, the free matrices are only required to be
U, Oy invertible, and we can always decompose them using the
P; = |:01\4/2 vV, } singular value decomposition (SVD) dd; = U,;)I'’;U;;

where U;q and U;; are orthogonal matrices with rotation
anglesd;, and I'; is a diagonal matrix with positive ele-

whereU; andV; are arbitraryM//2x M /2 invertible matrices, mentse; as illustrated in Fig. 5(b). Invertibility is guaranteed

and structurally under a mild condition—as long as none of the
1[I I I 0 diagonal lattice coefficients; representind’; is quantized to

W= _— [ M2 M/ﬂ 7 A= [ M2 M/2 } _ zero. Unconstrained optimization can now be used to optimize
V2 Ly —Tupe Oz 2 Ty the FB whose rotation angles (and the diagonal multipliers
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in a wavelet tree cover the same spatial locality, and so do

] o X \/ \/ €Qsf the coefficients of a transform block. In fact, a wavelet tree
U =X A\ ¥ sin® in an L-level decomposition is analogous to 2&-channel
J— 1 - sin® s .. . .
ECYAYA s transform’s coefficient block. The difference lies at the bases
— — 2 4 cos® h L
6, 65 6 that generate these coeﬁlgl_ents._ It_ can be shown that a 1-D
" L-level wavelet decomposition, if implemented as a lapped
@) transform, has the following coefficient matrix
— n n n -
N holn  ho 5| -+ ho 75| ho 71
I D GU VA VA \VARY. 2 - -
_ | Ui_ - 91>< /\\\/X %2 97>< /\\\/X ho[ﬂ]*ho[—}*“'*ho[ﬂ}*hl[ﬁ}
B I 9 VAVA N - CIAVAN 20 el
63 65 86 (X4 69 9” 612 ho[n] % hO |:§:| koo e 3% hl |:2L_—2:|

(b)

Fig. 5. Matrix parameterization: (a) orthogonal and (b) invertible.

P, ho[n] * ho [g} Kook g [2;—_2}

in the biorthogonal case) are allowed to vary freely and
independently.

Conceptually, each of the aforementioned LPPRFB’s can
be implemented as a block transform directly as depicted in
Fig. 6. In the one-dimensional (1-D) direct implementation,
the input signal can be blocked into sequenegsa] of length L J
N = KM, overlapped byM (K — 1) samples with adjacent N _ (4)
sequences. Th&! columns of the transform coefficient matrix From the coefficient matri¥’,, we can observe the fol-

P hold the impulse responses of the analysis filteyg]. lowing interesting and important characterls_tlcs of the wavelet
The resultingM transform coefficientsY;[n] can then be transform through the block transform’s prism.
guantized, coded, and transmitted to the decoder where the The wavelet transform can be viewed as a lapped trans-
inverse transform is performed to reconstruct the original se- form with filters of variable lengths. For ad.-level
quences:;[n]. The long basis functions which decay smoothly ~ decomposition, there arz* filters.
to zero, coupled with overlapping data blocks, have the ability* Each basis function has linear phase; however, they do
to reduce blocking artifacts at high compression ratios. In some not share the same center of symmetry.
cases as we demonstrate later, blocking can be completely The block size is defined by the length of the longest filter.
eliminated. In the two-dimensional (2-D) case, the input block If 2g[n] is longer and has lengtNj, the top filter covering
size isN x N and the output block size &/ x M. Like the the dc component turns out to be the longest, and it has
2-D separable wavelet transform, filtering is applied vertically ~ a length of(2% — 1)(No — 1) + 1. For the biorthogonal
first and then horizontally (or vice versa). wavelet pair withho[n] of length 9 andh,[n] of length

7 and three levels of decomposition, the eight resulting

. DESIGN basis functions have respective lengths of 57, 49, 21, 21,
7,7, 7, and 7.
A. Zerotree Data Structure for Block Transform » For a six-level decomposition using the same 9/7-tap

pair, the length of the longest basis function grows to

One of the original contributions of this paper is the novel 505! The large number of overlapping pixels explains the

usage ofA/-channel uniform LPPRFB as a replacement for : :
. . smoothness of the reconstructed images where blocking
the dyadic wavelet transform at the transformation stage

L artifacts are completely eliminated.
of a zerotree coder. Instead of obtaining an octave-band o
signal decomposition, one can have a finer uniform-bangEach block of lapped transform coefficients represents a

partitioning as depicted in Fig. 7 (drawn féf = 8). The finer

frequency partitioning increases the frequency resolution tHigstrated in Fig. 2. Let(, j)

can often generate more insignificant coefficients, leading
an enhancement in the performance of the zerotree algorit

However, uniform filterbank also has uniform downsamplin
(all subbands now have the same size). A parent node would
not have four offspring nodes as in the case of the wavelet
representation. How would one come up with a new tree struc-

spatial locality similarly to a tree of wavelet coefficients as

be the set of coordinates of all

@ffspring of the node€:, 5) in an M-channel block transform
< 4,5 < M —1), then O(¢, j) can be represented as

5)Iiows.

(20 +1, 25 +1)}.

O(i, 3) ={(24, 29), (2, 2j + 1), (2i + 1, 2j),

()

ture that still takes full advantage of the interscale correlatigkl (0, 0) coefficients from all transform blocks form the dc
band, which is similar to the wavelet transform’s reference

between the transform coefficients?

The above question can be answered by investigating signal, and each of these nodes has only three offspring: (0, 1),
analogy between the wavelet and the block transform as ill&; 0), and (1, 1). The complete tree is now available locally,
trated in Fig. 2. The parent, the offspring, and the descendeinés, we do not have to search for the offspring across the
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™M™M

Fig. 8. Demonstration of the analogy between block transform and wavelet representation.

subbands anymore. This is a straightforward generalization ofFig. 8 demonstrates through a simple rearrangement of the
the structure first proposed for the>8 8 DCT in [23]. The block transform coefficients that the redefined tree structure

only requirement here is that the number of chanhklhas above does possess a wavelet-like multiscale representation.
to be a power of two. Table | compares the energy compaction level between the
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TABLE |

COMPARISON ON THE ENERGY COMPACTION LEVELS OF THE DYADIC
WAVELET TRANSFORM AND UNIFORM LPPRFB’S ON THE BARBARA IMAGE

Transform
Threshold || 9/7 Wavelet | 9/7 Wavelet 8 x 40 16 x 32
T 3-level 4-level GenLOT GLBT
1 22.54 22.57 26.50 32.49
" 2 40.58 40.64 46.26 52.56
=l 4 61.08 61.20 67.29 72.05
% 8 75.88 76.10 81.67 84.63
=
B 16 85.70 86.07 89.73 91.91
L:): 32 92.30 92.86 94.32 96.06
é 64 96.29 97.07 96.91 98.19
% 128 98.15 99.12 98.27 99.20
]
2 256 98.45 99.53 99.06 99.65
Q\g 512 98.72 99.61 99.58 99.86
1024 99.31 99.67 100 99.99

a higher percentage of small-value coefficients, hence creates
a significant increase in the number of zerotrees. This holds
the key to our coder’s superior performance.

B. Transform Design Issues

Transform-based coders rely on multirate filterbanks to
generate the frequency coefficients that can be quantized
and entropy coded. In the decoders, filterbanks are again
used to combine and reconstruct the signal. Therefore, from
our viewpoint, well-optimized filterbanks play an integral
role in the coder’s performance. As previously mentioned in
Section Il, any realization of the lattice coefficient $8f, «;}
in the previous section results in an LPPRFB. The degrees of
freedom in the lattice coefficient set can be exploited to obtain
other desirable properties for the FB’s. The cost function
used in this paper is a weighted linear combination of coding
gain, dc leakage, attenuation around mirror frequencies, and
stopband attenuation—all of which are well-known properties
in yielding the best reconstructed image quality [18], [24]:

Coverall = kl Ccoding gain + kQCDC + k301nirr0r

+ k4canalysis stopband + ka’) C(synthesis stopband- (6)

wavelet transform and two high-performance block transforms,

the 8 x 40 GenLOT and the 16< 32 GLBT (which will

1) Coding Gain: Coding gain is an approximate measure

be presented in more details in the next section), for tloé the transform’s energy compaction capability. Since our
Barbara image. The two block transforms consistently generateder has progressive transmission, higher coding gain almost
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Fig. 10. Frequency and impulse responses of biorthogonal transforms:Xa)@ GLBT and (b) 16x 32 GLBT.

TABLE I
COMPARISON OF OBJECTIVE TRANSFORM PROPERTIES

Transform
Transform
Property 8x8 8x16 4x24 4x8 8x40 8x16 16x32
DCT LOT VLLOT GenLLOT GLBT GLBT
Coding Gain (dB) 8.83 9.22 9.26 9.52 9.62 9.96
DC Attenuation (-dB) 310.62 312.56 322.10 322.10 327.40 303.32
Stopband Attenuation (-dB) 9.96 19.38 8.06 16.18 13.50 14.28
Mirror Freq. Attenuation (-dB) 322.10 317.24 318.58 317.24 55.54 302.35

always translates to higher image quality in the mean-squanebereo? is the variance of the input signal is the variance
sense. Transforms with higher coding gain tend to compagftthe ith subband, and|f;||? is the norm of theith synthesis
more energy into a fewer number of coefficients, and the moiger. The signalz[n] is the commonly-used AR(1) process
significant bits of those coefficients always get transmitt&gityy intersample autocorrelation coefficient= 0.95 [7]. For

first. All new FB’s presented in this paper are obtained with rthogonal (paraunitary) FB's, the synthesis filters are simply
version of the generalized coding gain formula [25]:

Ccoding gain — 10 10g10

g

2

T

M-1
[
k=0

/M
tll2>

(7)

the time-reversed analysis filters. The reader should note that
we have never attempted to optimize the FB’s to match the
statistics of any input image. The only image model employed
in the design process is the AR(1) model. We do recognize
that even higher coding performance can be achieved when
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OgJECTIVE CoDING RESULTS (PSNRIN Dl;rQBBEIT_ISE,):”(L) LENA, (b) GoLDHILL, AND (C) BARBARA
Lena Progressive Transmission Image Coders
Comp. SPIHT | 8x8 8x 16 8 x40 | 4x244x8 8x 16 16 x 32
Ratio ||(9/7 WL)| DCT LOT GenLOT | VLLOT GLBT GLBT
1:8 40.41 39.91 40.05 40.43 40.18 40.35 40.43
1:16 37.21 36.38 36.72 37.32 36.85 37.28 37.33
1:32 34.11 32.90 33.56 34.23 33.61 34.14 34.27
1:64 31.10 29.67 30.48 31.16 30.48 31.04 31.18
1:100 29.35 27.80 28.62 29.31 28.62 29.14 29.38
1:128 28.38 26.91 27.61 28.35 27.64 28.19 28.39
@
Goldhill Progressive Transmission Image Coders
Comp. SPIHT | 8x38 8x 16 8 x40 | 4x24 4x8 8x 16 16 x 32
Ratio {|(9/7 WL)| DCT LOT GenLOT | VLLOT GLBT GLBT
1:8 36.55 36.25 36.63 36.80 36.49 36.69 36.78
1:16 33.13 32.76 33.18 33.36 33.06 3331 3342
1:32 30.56 30.07 30.56 30.79 30.51 30.70 30.84
1:64 28.48 27.93 28.36 28.60 28.35 28.58 28.74
1:100 27.38 26.65 27.09 27.40 27.10 27.33 27.62
1:128 26.73 26.01 26.48 26.79 26.46 26.71 26.96
(b)
Barbara Progressive Transmission Image Coders
Comp. SPIHT | 8x8 8x16 8x40 | 4x24 4x8 8x 16 16 x 32
Ratio ||(9/7 WL)| DCT LOT GenLOT | VLLOT GLBT GLBT
1:8 36.41 36.31 37.43 38.08 36.83 37.84 38.43
1:16 31.40 31.11 32.70 33.47 31.86 33.02 33.94
1:32 27.58 27.28 28.80 29.53 27.99 29.04 30.18
1:64 24.86 24.58 25.70 26.37 25.10 26.00 27.13
1:100 23.76 23.42 24.34 24.95 23.96 24.55 25.39
1:128 23.35 22.68 23.37 24.01 23.24 23.49 24.56
©

the transform is image-dependent. However, the coder’s lewebre coarsely quantized. The dc cost function is defined as
of complexity is also significantly higher. Mol L1

2) Low DC Leakage:The dc leakage cost function mea- Cpo = Z Z hiln].
sures the amount of dc energy that leaks out to the bandpass
and highpass subbands. The main idea is to concentrate'\f;\l

. . -
signal energy at dc into the dc coefficients. This proves to 5()eonce that all antisymmetric filters have a zero at dc. There-

. . . . ore, the above fo ic fi
advantageous in both signal decorrelation and in the preventian. .y ce the cor:greliig/nz rtﬁ:dosptt(i)n%szlt)i/otr? ;?/cr)r;rgse;nc filters

of discontinuities in the reconstructed signals. Low dc Ieakages) Attenuation at Mirror FrequenciesThe mirror frequency
can prevent the annoying checkerboard artifact that usuadyst function is a generalization 6fpc. The concern is now
occurs when high-frequency bands are severely quantizgdevery aliasing frequencies,, = 2rm/M, m € Z,1 <
[18]. This problem is more troublesome in traditional block: < M /2. Ramstacet al. show that frequency attenuation at
transform coders because high-frequency bands are usualiyror frequencies are very important in the further reduction

(8)

=1 n=0
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of blocking artifacts: the filter responses should be small at
these mirror frequencies as well [24]. The corresponding cost ¥
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‘ > . Lena — — — — 16x32 GLBT
unction Is wl A —. —. —. 8x16GLBT |
Mot i . SPIHT (9/7 WL)
Cmirror = Z |Hi(e]wm) 3 38F
i—0 g
2rm M £ el
Wm =" 1Sm§7- 9) =

33k

Low dc leakage and high attenuation near the mirror frequen-
cies are not as essential to the coder’s objective performance,,|
as coding gain. However, they do improve the visual quality

of the reconstructed image significantly. T S
4) Stopband AttenuationStopband attenuation of the fil- Compression Ratio
ters is a classical performance criterion in filter design. In this (@)
paper, the stopband attenuation criterion measures the sum of _
all of the filters’ energy outside the designated passbands: -
AN Goldhill — — — — 16x32GLBT
M—1 —. —. —. 8xI6GLBT

— SPIHT (9/7 WL
C(a,na,lysis stopband — ( ) |

325F
<
“
N
WEstopband N

=0
W) Hi(e?) | dw  (10)
Z /wEQstopband T

M-—1
1=0
Fy(")|” dw. (11)

PSNR (dB)

Csynt hesis stopband —

W)

29

In the LPPUFB Casec’analysis stopband = C(synthesis stopband - s 20
The biorthogonal FB’s offer more flexibility. In the analysis
bank, the stopband attenuation cost helps in improving the (b)
signal decorrelation and decreasing the amount of aliasing. In
meaningful images, we knowpriori that most of the energy is AN
concentrated in low frequency region. Hence, high stopband *[*, . Barbara — — — — [16x32GLBT
attenuation in this part of the frequency spectrum becomes=} “~ +_ T T :;‘f}ff(g/'fwu ]
extremely desirable. In the synthesis bank, the reverse is true.,,
Synthesis filters covering low-frequency bands need to have
high stopband attenuation near and/orsat= 7 to enhance £
their smoothness. The biased weighting can be enforced usir‘ﬁjg'
two simple linear function$??(e’*) and W2(e/*) as shown 2}
in (10) and (11). .
5) Transforms with Variable-Length Basis FunctioriBhe
elegant factorization in Section Il results in all filters of equal
length. For images that contain a lot of strong edges, the =t
long basis functions covering high-frequency bands can cause
excessive ringing at low bit rates. On the other hand, the longer (©
the filter becomes, the higher the complexity of the FB getsig 11, Rate-distortion curves of image coding examples (a) Lena, (b)
Since blocking is most noticeable in smooth image regionSeldhill, and (c) Barbara.
in order to reduce blocking artifacts, filters covering high-
frequency bands do not need long overlapping windows. such transform named VLLOT with four 24-tap and four
fact, they may not have to be overlapped at all. If the filtagight-tap filters is presented in this paper to validate the
length can be restricted mathematically, i.e., these coefficiefitsxibility of the general zerotree coding scheme. Ringing can
are structurally enforced to exact zeros, the complexity of tladso be minimized by adding a time-constrained objective
resulting FB can be reduced significantly. Efforts to reduae high-frequency bandpass filters to force the tails of their
ringing artifacts and to minimize the transform complexity caimpulse responses to have very small values (not necessarily
be found in [26]-[28]. This class of transforms represents loweros). This constraint does not limit the search space of the
frequency components by longer overlapped basis functiomgtimization routine, so it tends to yield better filterbanks.
to prevent blocking, while reserving shorter basis functioris does not reduce the transform and inverse transform cost
for high-frequency components to minimize ringing. One diowever.

Compression Ratio

A (dB

26
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Fig. 12. The 512« 512 Barbara image coded at 1: 32 using various transforms: xa8®CT, (b) 8 x 16 LOT, (c) 8x 16 GLBT, and (d) 16x 32 GLBT.

All FB’s presented in this paper are obtained from the mult8 VLLOT and the 8x 40 GenLOT are designed following
variable nonlinear optimization routir@mplexin Matlab. To the guidelines presented in this section. The biorthogonal
initialize the lattice, we set the matrices containing the frdg®FB’s are depicted in Fig. 10(a) and (b). The objective
parametersl; and V,) to eitherI or —I. More specifically, performance measures of the DCT, the LOT, and the new
the rotation angles; are initialized to either zero or, whereas block transforms are tabulated and compared in Table II.
the diagonal multipliersy; are all initialized to 1. A set of Notice that the GenLOT and GLBT all have high coding gain,
weighting factors that we have found to provide a reasonafienequiripple frequency responses that decay to zero at dc,
tradeoff between various transform propertie§ist = {10.0, high mirror frequency attenuation, and their impulse responses
1.0, 0.1, 0.5, 0.5} o decay smoothly to zero at two ends—another crucial factor in

The frequency and impulse responses of several orthogoffucing blocking artifacts [7], [8].
are shown in Fig. 9(a)-(d). The & 8 DCT [6] and the
8 x 16 quasioptimal type-Il fast LOT [7] in Fig. 9(a) andC. Treatment of DC Band
(b), respectively, are from previous works. They are included Fig. 8 shows that there still exists correlation between dc
to serve as comparative yardsticks of how important a goodefficients. To decorrelate the dc band even more, several
choice of FB is in image coding applications. Thex®24 4 x  levels of wavelet decomposition can be used depending on the
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(b)

(d)
Fig. 13. The 512« 512 Goldhill image coded by the 16 32 GLBT: (a) 1:16, 33.42 dB, (b) 1:32, 30.84 dB, (c) 1:64, 28.74 dB, and (d) 1:100, 27.62 dB.

input image size. Besides the obvious increase in the codimg tabulated in Table Ill. The transforms in comparison are
efficiency of dc coefficients thanks to a deeper coefficieas follows.

trees, wavelets provide variably longer bases for the signal’'s. g/7-tap biorthogonal wavelet [29].

dc component, leading to smoother reconstructed images, i.e. g x 8 DCT [6] shown in Fig. 9(a).

blocking artifacts are further reduced. Regularity objective can, g . 15 LOT [7] shown in Fig. 9(b).

be added in the transform design process to proddeband « 4 x 24 4 x 8 VLLOT shown in Fig. 9(c).

wavelets, and a wavelet-like iteration can be carried out as, g . 40 GenLOT shown in Fig. 9(d).

well. In all results presented later in this paper, we choose, 8 x 16 GLBT shown in Fig. 10(a).

the popular biorthogonal 9/7-tap pair [29] to process the dc 16 x 32 GLBT shown in Fig. 10(b).

coefficients. _
Except the 9/7-tap biorthogonal wavelet, all of the trans-
forms listed above are multiband uniform LPPRFB’s, and their
IV. CODING RESULTS transform coefficients are encoded as described in Section IIl.
The objective coding results (PSNR in dB) for standard 5181 computed PSNR quotes in dB are obtained from a real
x 512, 8-b gray-scale test images Lena, Barbara, and Goldkitimpressed bit stream with all overheads included. The rate-
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(d) (e) ®

Fig. 14. Perceptual comparison between the wavelet and the block transform embedded coder. Enlarged portions: (a) original Barbara imaget(b) SPIHT
1:32, (c) 8x 16 GLBT embedded coder at 1:32, (d) original Goldhill, (e) SPIHT at 1:32, and ) B5 GLBT embedded coder at 1:32.

distortion curves in Fig. 11 and the tabulated coding resulits Fig. 14(a)—(c) (where enlarged 256 256 image portions
in Table Il clearly demonstrate the superiority of our bloclare shown so that artifacts can be more easily seen) reveals
transform coder. For a smooth image like Lena where thieat besides blocking elimination, the 8 16 GLBT can
wavelet transform can sufficiently decorrelate, SPIHT offefgreserve texture nicely (the table cloth and the clothes pattern
a comparable performance. However, for a highly-textured the Barbara image) while keeping the edges relatively clean.
image like Barbara, the & 40 GenLOT, the 8 16 GLBT, Comparing to the 9/7-tap wavelet, off-channel FB’s yield
and the 16x 32 GLBT coder can provide a PSNR gain obverall sharper reconstructed images with more defining edges
more than 2 dB over a wide range of bit rates. Unlike othend more evenly reconstructed texture regions. Although the
block transform coders whose performance dramatically droBSNR difference is not as striking in the Goldhill image,
at very high compression ratios, the new progressive codéne improvement in perceptual quality is rather significant as
are consistent throughout as illustrated in Fig. 11. Comparisgown in Fig. 14(d)—(f).
to the M-channel FB’s in previous works (the DCT and As previously mentioned, the improvement over wavelets
the LOT), the new FB’s consistently provide higher codingeys on the lapped transform’s ability to capture and separate
performances. The PSNR improvement can reach up to almiostalized signal components in the frequency domain. In the
3 dB comparing to the DCT and more than 1 dB comparirgpatial domain, this corresponds to images with directional
to the LOT. repetitive texture patterns. To illustrate this point, the lapped-
Figs. 12-14 confirm the superiority of the new codersansform-based coder is compared against the FBI wavelet
in reconstructed image quality as well. Fig. 12 shows reealar quantization (WSQ) standard [30]. When the original
constructed Barbara images at 1:32 using various blogk8 x 768 gray-scale fingerprint image shown in Fig. 15(a)
transforms. Comparing to JPEG, blocking artifacts are alreaidycompressed at 1:13.6 (43366 bytes) by the WSQ coder,
remarkably reduced in the DCT-based coder in Fig. 12(a) aBdadley et al. reported a PSNR of 36.05 dB. Using the
the LOT-based coder in Fig. 12(b). Blocking is completel§6 x 32 GLBT in Fig. 10(b), a PSNR of 38.09 dB can be
eliminated when the DCT and the LOT are replaced by ttechieved at the same compression ratio. At the same level
new FB’s as shown in Figs. 12(c)—(d) and 13. Even at 1:106f PSNR, the GLBT coder can compress the image down to
the reconstructed Goldhill image in Fig. 13(d) is still visuallyl : 20 where the reconstructed image is shown in Fig. 15(b).
pleasant: no blocking and not much ringing. A closer looko put this in perspective, the wavelet-packet-based SFQ
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Fig. 15. Fingerprint compression example: (a) original fingerprint image (589 824 bytes), (b) coded by xh82L&LBT coder at 1:20 (29490 bytes),
36.05 dB, (c) coded by the WSQ coder at 1:18.036 (32702 bytes), 34.42 dB, and (d) coded byxtt& XBLBT coder at 1:27 (21845 bytes), 34.42 dB.

coder in [16] reported a PSNR of only 37.30 dB at 1:13.th coding efficiency. As a recapitulation, the resulting coder
compression ratio. At 1:18.036 (32702 bytes), the WSQtffers the following advantages.
reconstructed image shown in Fig. 15(c) has a PSNR of 34.42 |t js based on multichannel block-transforms, which can

dB while the GLBT coder produces 36.57 dB. At the same
distortion level, the GLBT coder can compress the image
down to a compression ratio of 1:27 (21 845 bytes) as shown,
in Fig. 15(d). Again, the reader should note the high visual
quality of the reconstructed images in Fig. 15(b) and (d): no

disturbing blocking and ringing artifacts.

V. CONCLUSIONS

We have presented in this paper a novel low-complexity pro-

gressive transmission image coding scheme whérehannel

uniform LPPRFB, the wavelet transform, and the zerotree
entropy coder are combined to yield excellent performance

provide finer frequency spectrum partitioning and higher
energy compaction.

The transform facilitates hardware implementation with
efficient lattice structures which employ a minimal num-
ber of delay elements and are robust under the quantiza-
tion of lattice coefficients.

The block-based nature of the transforms facilitate region-
of-interest coding/decoding.

The transform also increases the parallelism of compu-
tation.

The coder has progressive image transmission and all of
its attractive characteristics: embedded quantization, exact
bit rate control, and idempotency.
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It provides high subjective and objective performancegz4]
outperforms consistently the best progressive coders p"f?s’]
lished recently in literature by a wide margin.
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