
IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 49, NO. 11, NOVEMBER 2001 2659

Lattice Structure for Regular Paraunitary
Linear-Phase Filterbanks andM -Band Orthogonal

Symmetric Wavelets
Soontorn Oraintara, Member, IEEE, Trac D. Tran, Member, IEEE, Peter Niels Heller, Member, IEEE, and
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Abstract—Paraunitary linear-phase (PULP) -channel
uniform filterbanks, which are also known as the generalized
lapped orthogonal transforms (GenLOTs), can be designed and
implemented using lattice structures. This paper discusses how to
impose regularity constraints onto the lattice structure of PULP
filterbanks. These conditions are expressed in term of the rotation
angles of the lattice components by which the resulting filterbanks
are guaranteed to have one or two degrees of regularity. Iterating
these new regular filterbanks on the lowpass subband generates a
large family of symmetric -band orthonormal wavelets. Design
procedures with many design examples are presented. Smooth in-
terpolation using regular PULP filterbanks is illustrated through
image coding experiments where the novel -band wavelets
consistently yield smoother reconstructed images and better
perceptual quality.

I. INTRODUCTION

A PERFECT reconstruction (PR) filterbank (FB) provides an
invertible linear time-frequency representation. Wavelets

are an even more recent approach in which the filterbank is
iterated to represent information at multiple scales as well as
at distinct time and frequency bins. These new tools for signal
processing and communications have a rich mathematical
structure, introducing an entirely new collection of filter design
constraints and approaches. Fig. 1(a) and (b) shows the structures
of an -channel filterbank in the regular form and its polyphase
representation, respectively. For PR systems, the product of the
analysis and synthesis polyphase matrices is equal
to , or more generally, its pseudo-circulant version [1].
A real-coefficient filterbank is said to beparaunitary (PU) if

since becomes a unitary matrix on
the unit circle. The synthesis filters now become the
time-reverse versions of the analysis filters .

Recently, PU linear-phase (PULP) filterbanks, together
with the zero-tree coding framework, have been shown to
yield significant improvements in still image compression
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compared with other existing transforms, including the discrete
cosine transform (DCT) and wavelet transform [2]–[4]. The
linear-phase (LP) property of the FB allows effective repre-
sentations of finite-length signals via symmetric extensions
employed at signal boundaries [5]. These PULP filterbanks
are also known as the lapped orthogonal transform (LOT) and
its generalized version GenLOT. These terms will be used
interchangeably in the paper.

PULP filterbanks are often designed and implemented using
the lattice structure since the PR property can be structurally im-
posed. Moreover, the structure is shown to be robust, efficient,
and complete. A complete and minimal factorization of PULP
filterbanks is first presented in [6]. In [7], an equivalent but mod-
ular factorization is presented where the DCT and the LOT are
shown to be special cases. The number of channelsis as-
sumed to be even, and all filters have equal length of multiples
of . Theory and lattice structure for filterbanks with an odd
number of channels and unequal-length filters can be found in
[8], [9], and [3], respectively.

Smoothness of the scaling function, which is obtained from
infinite iteration of the lowpass channel of the filterbank, is im-
portant in signal approximation and interpolation. The smooth-
ness of the scaling function is closely related to the concept of
regularity, which is defined as the number of zeros at mirror
(aliasing) frequencies , of the low-
pass filter [10]. Systems with higher degree of regularity have
smoother scaling functions. Note that the degree of regularity of
the filterbanks is defined from the scaling function viewpoint.
From the wavelet-function perspective, this property is known
as thevanishing momentbecause the corresponding wavelets
are orthogonal to any piecewise polynomial of degree ,
where is the number of vanishing moments (equivalently, the
degrees of regularity). In other words, all filters except the low-
pass must have a zero of order at dc frequency ( )
[10].

From the iterative construction of wavelets, it has been proven
for the dyadic case ( ) that one vanishing moment is
a necessary condition for the convergence of the scaling func-
tion and the mother wavelet [11]. This is equivalent to the zero
frequency response at of the lowpass filter. In the case of

-band wavelets, the frequency response of the lowpass filter
is for all and .
Consequently, the scaling function can exactly represent
a (piecewise) constant signal. Moreover, if the lowpass filter is

-regular, the scaling function can exactly represent any

1053–587X/01$10.00 © 2001 IEEE
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Fig. 1. Block diagram ofM -channel filterbanks. (a) Filter structure and (b) its equivalent polyphase structure.

polynomial up to degree . Hence, this property is very
important in smooth signal approximation application such as
image coding and denoising.

Despite the elegance of regularity, lattice structures for reg-
ular PULP filterbanks have not been reported in the literature.
In the case when , it is well known that PU and LP are
exclusive properties (except for the simple Haar wavelet). All
two-band solutions have been found, and each of them has its
own lattice structure [12], [13]. For the two-channel PU case, the
filterbank has one regularity if all rotation angles in the struc-
ture sum up to [2]. This paper aims to generalize the above
two-band result: investigating the lattice structure of-channel
regular PULP filter banks. Preliminary results can also be found
in [14]. Throughout this paper, the number of channelsis as-
sumed to be even, and the length of all filters is restricted to an
integer multiple of . It has been proven that when is even,
an -channel filter bank with linear-phase consists of an equal
number of symmetric and anti-symmetric filters [6]. Since the
anti-symmetric filters already have one zero at , one ex-
pects that for the first vanishing moment, the regularity condi-
tion needs to be imposed into the symmetric filters only.

Two conventional approaches in designing -channel
regular filterbanks have been suggested. The first method is
to impose the number of zeros at mirror frequencies into the
lowpass filter [10], [15]. Having constructed the first filter,
the remaining filters have to be designed such that the
overall resulting filterbank is PR. For the two-channel case, the
highpass channel can be uniquely determined from the lowpass
filter, whereas for , there are more degrees of freedom in
choosing the bandpass and the highpass filters. This later step
can be accomplished using a Gram–Schmidt process [10], [16].
However, this approach does not guarantee the linear-phase
property of the filters. Moreover, the resulting filterbank is not
globally optimum since one of the filters has been preselected.
Another method is to use time-domain constraints [17]. A
PR filterbank is first constructed, possibly using the lattice
structure. Then, vanishing-moment conditions are enforced by
time-domain side-constraints. The disadvantage of thisad hoc
approach is that the optimization process becomes significantly
more complicated, leading to slow convergence (if at all), and
the optimization process can easily get trapped in local minima.
Moreover, regularity can only be approximately imposed.

A. Organization

In this paper, we present a novel approach of imposing up
to two vanishing moments directly onto the lattice structure of

-channel PULP filterbanks. We begin with a review of the

lattice structure for PULP filterbanks in Section II. Next, var-
ious necessary conditions for-regular -channel filterbanks
are derived in Section III. Section IV discusses the first and
second vanishing moments in terms of the lattice coefficients.
The equivalent relations on the rotation angles of the lattice
structure are derived so that the resulting filterbank is guar-
anteed to have degrees of regularity along with the PULP
property. Design examples are presented throughout. Section V
presents image coding experiments where the new regular FBs
and -band wavelets consistently yield more visually pleasant
reconstructed images. Finally, concluding remarks are found in
Section VI.

B. Notations

Boldfaced lower-case characters are used to denote vectors,
whereas boldfaced upper-case characters are used to denote ma-
trices. , , , , , and denote, respectively,
the transpose, the inverse, the determinant, theth row, the th
column, and theth th element of the matrix . The symbols

, , and stand for the th filter’s impulse re-
sponse, its associated-transform, and its Fourier transform.

Several special matrices with reserved symbols are the
polyphase matrix of the analysis bank , the polyphase
matrix of the synthesis bank , the identity matrix , the
reversal matrix ( flipped left–right or up–down), the null
matrix , a permutation matrix , and the diagonal matrix
with entries being either 1 or 1 . Likewise, the special
vectors are the column vector with all entries being unityand
the column vector with all entries being zero, except the first
entry being one . When the size of a matrix or vector is not
clear from context, subscripts will be included. and are
usually reserved for the number of channels and the degrees of
regularity. An -channel -tap FB is sometimes denoted
as an lapped transform, where is the overlapping
factor. For abbreviations, we often use LP, PR, PU, and FB to
denotelinear phase, perfect reconstruction, paraunitary, and
filterbank.

II. L ATTICE STRUCTURE FORPULP FILTER BANKS: A REVIEW

Lattice structure is an efficient implementation of PULP fil-
terbanks where both the PU and LP properties are simultane-
ously imposed into the filters’ impulse responses. It is assumed
that the number of channels is even, and all the fil-
ters have equal length , where is an integer. It has
been proven that when the number of channels is even, there are

symmetric and anti-symmetric filters [4], [6]. The
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Fig. 2. Lattice structure for PULP filterbanks (GenLOT).

polyphase matrix is a degree polynomial matrix
in . Under the assumptions on , , and the filter symmetry,
define the lattice elements as

and

where , and is the reversal matrix. and are
orthonormal matrices of size , and each can be parameter-
ized using rotation angles [1]. The polyphase matrix
of a PULP filterbank with degree can always be factored
as a product of PU matrices with degree one [7], i.e.,

(1)

where , and . Fig. 2 shows
the complete lattice structure of PULP filterbanks. Although this
structure is minimal in terms of the number of delays, it does not
minimize the number of free parameters. In [18], the authors
show that the matrices for can be set to without any
completeness violation. This more efficient structure with

for

will be used in the analysis of the forthcoming sections.
Having characterized the PULP filterbanks this way, one can

view the discrete cosine transform (DCT) and lapped orthog-
onal transform (LOT) as special cases with and ,
respectively. This is the reason why the structure is called Gen-
eralized LOT (GenLOT). Fig. 3 shows an example of parame-
terization of orthogonal matrices. It should be noted that while
the above parameterization of orthogonal matrices is complete,
it is not unique, i.e., one can parameterize the same matrix with
different order of rotation angles.

III. L ATTICE STRUCTURE FORREGULAR PULP FILTERBANKS

Definition III.1: A filterbank has degrees of regularity if
its lowpass filter has multiple zeros at each mirror
frequency for .

The above condition is sometime called vanishing moment of
the filterbank since it is equivalent to the number of zeros at dc
of the bandpass filters. In particular, it can be proven that in a

Fig. 3. Orthogonal matrix parameterization.

PU filterbank, the lowpass filter has multiple zeros at
each mirror frequency if and only if the bandpass filter
has multiple zeros at for [10].

Theorem III.1: A filterbank has degrees of regularity if
and only if its polyphase matrix satisfies the following
condition:

...
...

(2)

where are some nonzero constants for
[19].

Theorem III.2: A filterbank parameterized by the lattice
structure presented in Fig. 2 has one regularity if and only if

(3)

Proof: From Theorem III.1, in order to obtain the first reg-
ularity of the bandpass/highpass filters, the polyphase matrix
must satisfy

...
...

Since
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hence

where we are reminded that . Using the fact
that is orthogonal, it is clear that . Without loss
of generality, we assume that the dc value of the lowpass filter
is positive, which implies that .

Note that the above condition does not depend on the
matrices because of the fact that the filters ,

areantisymmetricfilters,andtherefore,
their frequency responses at are zero. From (3), it is clear
that thematrix rotates thevector whilepreserving itsnorm
to the vector . This step can be done by properly choosing
theordersandvaluesof rotationangles fromtheparameteri-
zationof thematrix , asdiscussed in thenextsection.

Theorem III.3: If the filterbank in Fig. 2 (with for
) satisfies the condition , it has two degrees of regularity

if and only if it satisfies the following condition:

(4)

where .
Proof: Since the proof is straightforward but cumber-

some, we defer it to the Appendix. We may proceed without
any discontinuity.

Theorem III.4: The minimal length for a two-regular PULP
filterbank is .

Proof: Keep in mind that in order for the filter bank
to have two degrees of regularity, both conditions and

must be satisfied. The first condition can be satisfied by
choosing properly. The second condition composes of

vectors forming a closed loop (zero sum). Taking into
account that are orthogonal matrices, the first
vectors in (4) have equal length , and the last
vector has length

. Therefore, in order for the
condition to hold, there must be at least three vectors,
i.e., . This proves that the minimal length for PULP
filterbanks with two vanishing moments is .

The vectors in (4) form a closed loop, and hence, they must
obey the triangle inequality. In particular, since the matrices
are orthonormal, the lengths of the vectors are fixed, and
these matrices can only control the directions of these vectors.
For example, given a choice of for , it is not
clear if there exists that satisfies (4). In the next section,
the condition is divided into three cases based on the length
of the filters to ensure that the triangle inequality holds at all

Fig. 4. Parameterization of the orthogonal matricesU .

time. The first case is the minimal length case ( ), where
there are only three vectors in the condition forming a fixed
triangle (all interior angles are fixed and known). The second
case is when the length of the filters is ( ), where there
are four vectors presented in the condition. In this case, the
interior angles of the quadrilateral are not fixed and depend on
the choices of . The last case is the generalization of the first
two cases by which the length of the filters can be extended to
arbitrary multiple of .

IV. REGULARITY IMPOSITION INTO THELATTICE STRUCTURE

A. Imposing the First Regularity

The condition in (3) implies that every row of except
for the top one is orthogonal to. Since is orthonormal,
one concludes that its top row must be constant and is equal
to . Note that the popular DCT matrix used in JPEG and
MPEG standards satisfies this condition. Let us parameterize the
matrix as in Fig. 4. Note that since the order of the rotation
angles is not unique, the configuration in Fig. 4 is chosen for
convenience of the rest of the development. We divide the
rotation angles of into two parts. The first rotations
angles operate between the first row and the others, and the
other rotation angles reside in the

matrix operating on the bottom rows,
as indicated in Fig. 4. It is easy to see that (3) can be enforced
by using out of degrees of freedom of as follows.

Theorem IV.1:Let be parameterized as in Fig. 4.
if and only if the following conditions hold:

1) .
2) for .
3) .

Proof: Since , it is sufficient to show that
. Since the second element of is zero, from

Fig. 4, it is obvious that

Similarly, considering the third element of , which is zero,
we have
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Fig. 5. Role of the matrixU for the first regularity.

Keep repeating the same procedure for alluntil .
When , we have

1) Geometry Interpretation:
Definition IV.1: The angle between two vectorsand is

defined by

Fact 1: The angle between any two vectors does not de-
pend on their lengths, i.e., ,
where and are both positive (or both negative)
scalar constants.

Fact 2: The angle is preserved under a rigid rotation, i.e.,
if is an orthogonal matrix, then

, where we have used the fact that
.

From (3), it is clear that the matrix rotates, while pre-
serving the norm, the vector into the direction of vector .
Note that the angle between and is

Fig. 5 illustrates the roles of and in . The first
rotation angles in rotate the vector to the direction

of . Then, rotates the resulting vector in the direction
perpendicular to , and thus, the resulting vector remains the
same.

2) Design Example:In this example, a one-regular eight-
channel 24-tap PULP filterbank is designed using the lattice
structure. The filters are optimized in order to maximize the
stopband attenuation, which can be given by

where are some weighting functions, and are stop-
band regions of the filters. Fig. 6(a) shows the frequency re-
sponses of the resulting filters. The zeros of the lowpass filter
are plotted in Fig. 6(b), showing that the filterbank has one de-
gree of regularity, which confirms the theory. Fig. 6(c) shows
the corresponding scaling function and wavelets.

B. Imposing the Second Regularity: Minimal Length Case

Supposing that the first regularity has been imposed into
of the PULP filterbank, we now discuss how to impose the
second regularity using the condition . Let us take the sim-
plest case when the filter length is minimal. From Theorem III.4,
the minimal length for PULP filterbanks with two vanishing mo-
ments is , where is the number of channels. Substituting

into (4), we have

(5)

The question is now as follows: How can one choose the ro-
tation angles in so that (5) is satisfied? For convenience, let

, , and . These
three vectors form a bilateral triangle with

, as depicted in Fig. 7. Having known the three sides of the
triangle, one can determine the angles between each pair of the
three vectors. Letting, , and be defined as in Fig. 7, it is
easy to see that

and

From the above definitions of and Fig. 7, we have

(6)

where the last equation is obtained by left-multiplying both vec-
tors by . From (6), it is clear that the angle between the
vectors and is dependent on the matrix only. This
is the key of how to parameterize the matrix. Supposing that

satisfies (6), we have , which implies that
, permitting the matrix to be able

to close the triangle by properly rotating the vector .
Definition IV.2: Let be an orthogonal matrix

defined on the vector as follows:

(7)

where . This matrix is called theHouse-
holder matrix[20], which maps the vector into the direction
of while preserving its norm, i.e.,

1) Parameterization of : From (6), we have

(8)
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Fig. 6. Design example eight-channel PULP filterbank with one vanishing moment. (a) Frequency and impulse responses. (b) Zero locations of the lowpass filter.
(c) Scaling function and wavelets.

Let us parameterize as in Fig. 8, i.e.,

By choosing , (8) then implies

(9)

where in the last equation, we have used the fact that

It should be noted that the above parameterization does not in-
crease the degree of freedom from since is fixed.

Theorem IV.2: .
Proof: From (9), it is clear that
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Fig. 7. Geometrical interpretation of (5), where the three vectorsx , x , and
x form a triangle.

Fig. 8. Parameterization of the orthogonal matricesV .

Let the rotation angles of the matrix and be or-
dered as in Fig. 8, where is an orthogonal matrix of size

consisting of rotation
angles. From Fig. 8, it is easy to show that if
and only if

(10)

Since (10) is independent from the matrix , the rota-
tion angles of can be arbitrarily chosen, and the resulting
matrix still satisfies (9). In order to satisfy (10), clearly, the
degree of freedom of is reduced by one. Having parameter-
ized as above, the resulting angle betweenand is equal to

, and hence, .
2) Parameterization of : Having specified , what re-

mains in (5) is how to choose so that . This
step takes out degrees of freedom from , as in the case
of imposing the first vanishing moment into . From (5)

(11)

where in the last equation, we have used the fact that
. Let be parameterized as in

Fig. 8, i.e.,

By choosing , then (11) implies

(12)

where in the last equation, we have used the fact that

Fig. 9. Role of the matricesV for the second vanishing moment.

Similar to the case of , this parameterization does not in-
crease the degree of freedom from since the matrix has
already been determined, and hence, the choice ofis fixed.

3) Geometric Interpretation of the Matrices: For the
second vanishing moment, the condition is a little more com-
plicated, but the geometry is still simple. In this case, there are
three vectors forming a closed bilateral triangle as in Fig. 7,
where the values of , , and are uniquely determined as
follows:

and

By rewriting (5) as

the following observations can be made (see Fig. 9).

1) must rotate in such a way that the angle between
and is .

2) rotates the two vectors and together so
that the resulting vector is in the direction of .

4) Design Example:In this example, a two-regular eight-
channel PULP filterbank is designed with minimal length, i.e.,
all the filters have length . The frequency re-
sponses are presented in Fig. 10(a), and the zeros of the low-
pass filters are plotted in Fig. 10(b). Fig. 10(c) shows the cor-
responding scaling function and wavelets. It can be seen that
the lowpass filter has (at least) double zeros at each the mirror
frequencies, which confirms that the bandpass and highpass fil-
ters will have (at least) two vanishing moments. In this design
example, the stopband attenuation is used to optimize the fil-
ters. One observes that frequency response of this filterbank has
lower stopband attenuation than that of the one in the design
example 1. This is simply because of the fact that a number of
free parameters have been used to impose the second vanishing
moment.

C. Imposing the Second Regularity: Filter Length Is Equal
to ( )

Substituting into the condition yields

(13)

Similar to the minimal length case, let ,
, and . It is clear
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Fig. 10. Design example of two-regular minimal length PULP filterbank withM = 8, i.e., the filter length̀ = 24. (a) Frequency and impulse responses. (b)
Zero locations of the lowpass filter. (c) Scaling function and wavelets.

that the vectors form a triangle, but unlike the previous case,
the length of can be varied, depending on the choices of.
In fact, it is easy to show that

Based on the same configuration as in Fig. 7, the anglesand
are determined from the lengths of the three vectors. In order

to form a closed triangle of the vectors, they must satisfy the
triangle inequality, i.e., .

Since , the triangle inequality
becomes

(14)

and thus, (13) is always possible, regardless of the choice of.
Similar to the previous case, we choose to impose the condition

into and , which means that is free to be chosen.
The only difference between the cases of and is
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Fig. 11. Illustration of a necessary condition for the second vanishing moment and the roles of the vectorsc and the exterior angles .

that, based on the notations in Fig. 7, the anglesand are
now dependent on , i.e.,

and (15)

From (15), it is clear that must be calculated after
the vector is known, i.e., must be already determined.
Once is calculated, the and are determined in the sim-
ilar manner as in the case of , whereas is free to be
chosen since it does not depend on either conditionor .

Example: In this design example, a two-regular 32-tap eight-
channel PULP filterbank is designed using the proposed theory.

Its frequency response, the zeros of the lowpass filter, and the
corresponding scaling and wavelet functions are, respectively,
shown in Fig. 11(a)–(c).

D. Imposing the Second Regularity: Filter Length Is Equal to
with

From the two previous subsections, one can see that the same
technique can be generalized to the case where the length of the
filters is longer than . However, special treatment
must be applied when the filter length is long in order to guar-
antee the triangle inequality. In particular, it must be satisfied by
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the choices of at every step. Recall that the condition for
the general case is given by (4)

(16)
From (16), it is clear that

(17)

for . This is why the first case of does
not need this special treatment since the left-hand side is zero.
When , there is only one value of, i.e., , that needs
to be checked, and since , the inequality (17) holds,
as in (14). When , (17) has to be taken into consideration
when the matrices are chosen. In fact, only approximately
one half of the values of need to be checked, as stated in the
following theorem.

Theorem IV.3:The inequalities in (17) always hold if
, where is the largest integer less than or equal to

.
Proof: Let . From (17), we have

Theorem IV.3 suggests that only when ,
(17) needs to be checked. Supposing that the matricesare
determined in increasing order, then Theorem IV.3 implies that

for can be arbitrarily chosen. If
, there are some choices of that can violate (17),

and hence, they have to be carefully chosen.
To be more concrete, for each, let

(18)

Hence, (17) can be written as

(19)

Supposing that , for have been specified, can be
computed. Therefore, the matrix has to be chosen in terms of

so that (19) is satisfied. Let be the angles between
and . Fig. 12 illustrates the roles of . Squaring both sides
of (19) yields

Fig. 12. Design example of two-regular minimal length PULP filterbank with
M = 8, i.e., the filter length̀ = 32. (a) Frequency and impulse responses. (b)
Zero locations of the lowpass filter. (c) Scaling function and wavelets.

(20)

Again, let us parameterize using the configuration pre-
sented in Fig. 8. For each, by choosing

the exterior angles can be expressed in terms of the matrices
as follows:

(21)

From Fig. 8, it is obvious that

(22)

Hence, can be arbitrarily chosen, and the constraints (20)
can be imposed by choosing that satisfy (22).

V. APPLICATION IN IMAGE COMPRESSION

In this section, the novel regular filterbanks and-band
wavelet obtained from the design examples are evaluated in
an image compression application. The test images in the
experiment are popular 8-bit gray-scale images
Lena, Barbara, Goldhill. The set partitioning in hierarchical
trees (SPIHT) progressive image transmission algorithm is
chosen to compare the performances of the transforms. In
other words, the encoding algorithm is fixed. We only modify
the decomposition stage in the encoder and the reconstruction
stage in the decoder with different transformations. The five
transforms chosen for the experiment are

• two-band 9/7 Daubechies symmetric wavelets [21], four
degrees of regularity, six levels of iteration;

• eight-band eight-tap DCT [22], one degree of regularity,
two levels of iteration;

• eight-band 16-tap LOT [23], one degree of regularity, two
levels of iteration;

• eight-band 24-tap PULP regular FB labeled PULPv1, one
degree of regularity, two levels of iteration;

• eight-band 24-tap PULP regular FB labeled PULPv2, two
degrees of regularity, two levels of iteration.
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TABLE I
OBJECTIVE PROPERTIES OF THEPULP FILTER BANKS USED IN IMAGE

COMPRESSIONEXPERIMENTS

Fig. 13. PSNR of the reconstruction images using (9, 7) wavelets (dash-dot
line), PULPv1 (dash line), and PULPv2 (solid line) filterbanks in the progressive
image transmission coding. The transforms are tested onLena, Barbara, and
Goldhill images.

Table I summarizes the properties of the-band transforms
used in the comparison. For these-band transforms, the
lowpass subband coefficients are collected and fed through
another stage of transformation. Since the size of the test
images is limited, we can only have two levels of decompo-
sition. To avoid modification of the encoding algorithm, the

-band wavelet coefficients are rearranged and grouped into
the popular quad-tree structure (each parent node in a zero-tree
has four descendants). This way, a two-level iteration of an
eight-band filterbank is equivalent to a six-level dyadic wavelet
iteration. For more details on the coefficient rearrangement and
regrouping, see [24] and [25].

Fig. 13 shows the rate-distortion curves obtained from
PULPv1 and PULPv2 filterbanks at various compression
ratios ranging from 8 : 1 to 128 : 1. The full sets of PSNR
values are tabulated in Table II. It is evident that the system
with one vanishing moment (PULPv1) has higher objective
performance comparing with that with two vanishing moments
(PULPv2). However, the perceptual quality of the PULPv2
filterbank is slightly better. Fig. 14 illustrates the original and
the zoom-in part of the reconstructed Barbara images. One
can notice that in smooth regions, the PULPv1 filterbank still
has a checkerboarding artifact, whereas the PULPv2 filterbank
yields a smoother reconstruction. Both of these filterbanks have
exactly the same level of computational complexity.

We note that length 24 is the minimum length for the
two-regular eight-channel PULP filterbank. Therefore, there

TABLE II
OBJECTIVE CODING RESULTS(PSNRIN dB) USING DIFFERENTTRANSFORMS

ON TEST IMAGES LENA, BARBARA, AND GOLDHILL

are only a few degrees of freedom left in the optimization
process. The PSNR difference between the two transforms
(PULPv1 and PULPv2) can be reduced by allowing longer
filter length. In addition, note that the filterbanks used in the
compression are optimized to reduce the stopband attenuation
only, and thus, they are not yet optimal for practical image
coding. There are many criteria such as transform coding gain,
nonequally weighted stopband attenuation, i.e., nonconstant

, mirror frequency, etc., which can improve the coding
performance [24]. These will be incorporated in the design
procedure of future work.

VI. CONCLUDING REMARKS

In this paper, the theory, design, lattice structure, and coding
application of PULP filterbanks with one and two degrees of
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Fig. 14. Coding results at compression rate 32 : 1. The first column corresponds to the original image. The second and third columns are the images codedusing
an eight-band 24-tap wavelet with one and two degrees of regularity, respectively.

regularity are presented. The proposed lattice structure guaran-
tees that the resulting filterbanks have all of the desired prop-
erties (PR, PU, LP, and one or two vanishing moments). The
number of the channel is assumed to be even, and all the
filters have the same length for some integer . The con-
ditions for obtaining one and two vanishing moments from the
resulting filters are derived in terms of the lattice elements. In
order to design a PULP filterbank with one degree of regularity,
the minimal permissible length of the filters is, and the pop-
ular DCT satisfies this condition. It is found that
rotation angles of can be used to enforce the first degree of
regularity of the filterbank. This constraint reduces the degrees
of freedom in optimizing the filterbank by .

For a PULP filterbank with two degrees of regularity, a neces-
sary and sufficient condition of the lattice elements is derived in
the general case for arbitrary filter length. Unlike the general pa-
raunitary filterbanks that require the minimum permissible filter
length to be , the minimum permissible length in the PULP
case is proven to be . The design method is divided into
three cases, where the filters’ lengths are , ,
and . Unconstrained optimization is used in the design
process. Many regular design examples are presented.

The novel filterbanks are then evaluated and compared
with previously published filterbanks in the literature using a
progressive image transmission coding framework. With filter
length (which is the minimum length for two-regular
eight-channel PULP filterbanks), the one with one vanishing
moment yields better objective coding performance in PSNR
(ranging from 0 to 1.5 dB). However, in terms of perceptual

quality, the filterbank with two vanishing moments consistently
offers smoother reconstructed images.

APPENDIX

Proof of Condition : Substituting in (2) yields a
necessary and sufficient condition for the filterbank to have two
vanishing moments. Hence

...
(23)

where

...

and

...

(24)

(25)
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(26)

Therefore

(27)

where

and .

where

Thus

where we have

and

Substituting and back into (23) yields two matrix-vector
equations. The first equation is obtained from equating the top
half elements of all the vectors, i.e.,

(28)

Notice that this equation is exactly the same as the condition
, which has already been imposed by enforcing the first

rotation angles of , as in Lemma 4.2.1. The second equation
comes from the bottom row of (23), i.e.,

(29)

Premultiplying the above equation by and taking
into account that results in the condition ,
as previously described.
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