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Abstract—Paraunitary linear-phase (PULP) M-channel compared with other existing transforms, including the discrete
uniform filterbanks, which are also known as the ge_neralized cosine transform (DCT) and wavelet transform [2]-[4]. The
lapped orthogonal transforms (GenLOTS), can be designed and linear-phase (LP) property of the FB allows effective repre-

implemented using lattice structures. This paper discusses how to tati f finite-l th si IS Vi i tensi
impose regularity constraints onto the lattice structure of PULP sentations of finite-length signals via symmetric extensions

filterbanks. These conditions are expressed in term of the rotation €mployed at signal boundaries [5]. These PULP filterbanks
angles of the lattice components by which the resulting filterbanks are also known as the lapped orthogonal transform (LOT) and
are guaranteed to have one or two degrees of regularity. Iterating jts generalized version GenLOT. These terms will be used
these new regular filterbanks on the lowpass subband generates ainterchangeably in the paper.

large family of symmetric M-band orthonormal wavelets. Design h . . .
procedures with many design examples are presented. Smooth in- PULP filterbanks are often designed and implemented using

terpolation using regular PULP filterbanks is illustrated through  the lattice structure since the PR property can be structurally im-
image coding experiments where the novelM-band wavelets posed. Moreover, the structure is shown to be robust, efficient,
consistently yield smoother reconstructed images and better and complete. A complete and minimal factorization of PULP
perceptual quality. filterbanks is first presented in [6]. In [7], an equivalent but mod-
ular factorization is presented where the DCT and the LOT are
. INTRODUCTION shown to be special cases. The number of chanh&ls as-

PERFECT reconstruction (PR) filterbank (FB) provides apumed to be even, and all filters have equal length of multiples

A invertible linear time-frequency representation. Wavelef® M. Theory and lattice structure for filterbanks with an odd
are an even more recent approach in which the filterbankngmber of channels and unequal-length filters can be found in
iterated to represent information at multiple scales as well B [9], and [3], respectively. ' o _
at distinct time and frequency bins. These new tools for signalSmoothness of the scaling function, which is obtained from
processing and communications have a rich mathematitinite iteration of the lowpass channel of the filterbank, is im-
structure, introducing an entirely new collection of filter desigRortant in signal approximation and interpolation. The smooth-
constraints and approaches. Fig. 1(a) and (b) shows the struct{}#es$ of the scaling function is closely related to the concept of
of anM -channel filterbank in the regular form and its polyphastegularity, which is defined as the number of zeros at mirror
representation, respectively. For PR systems, the product of tAbasing) frequencier /M, k =1, 2, ..., M—1ofthe low-
analysis and synthesis polyphase matriBés)E(z) is equal Pass filter [10]_. Systerr_ls with higher degree of regularity have
to z—KT, or more generally, its pseudo-circulant version [1]§m00therscal|ngfunctlons. Note that the degree of regularity of
A real-coefficient filterbank is said to bearaunitary (PU) if the filterbanks is define_d from the s_caling_function vigwpoint.
R(z) = ET(z7!) sinceE(z) becomes a unitary matrix on From the yvayelet—functlon perspective, this property is known
the unit circle. The synthesis filter8}(z) now become the @S thevanishing momenbecause the corresponding wavelets
time-reverse versions of the analysis filtéfg z). are orthogonal to any piecewise polynomial of degkee- 1,

Recently, PU linear-phase (PULP) filterbanks, togethéYhereK is the number of vanishing moments (equivalently, the
with the zero-tree coding framework, have been shown gegrees of regularity). In other words, all filters except the low-
yield significant improvements in still image compressioi[QlaO?SHO(z) must have a zero of ordéf at dc frequency = 0)
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Fig. 1. Block diagram of\f -channel filterbanks. (a) Filter structure and (b) its equivalent polyphase structure.

polynomial up to degredl’ — 1. Hence, this property is very lattice structure for PULP filterbanks in Section II. Next, var-
important in smooth signal approximation application such &sus necessary conditions féf-regulari/-channel filterbanks
image coding and denoising. are derived in Section Ill. Section IV discusses the first and
Despite the elegance of regularity, lattice structures for regecond vanishing moments in terms of the lattice coefficients.
ular PULP filterbanks have not been reported in the literatur€he equivalent relations on the rotation angles of the lattice
In the case whedd = 2, it is well known that PU and LP are structure are derived so that the resulting filterbank is guar-
exclusive properties (except for the simple Haar wavelet). Adinteed to have( degrees of regularity along with the PULP
two-band solutions have been found, and each of them haspiteperty. Design examples are presented throughout. Section V
own lattice structure [12], [13]. For the two-channel PU case, tipgesents image coding experiments where the new regular FBs
filterbank has one regularity if all rotation angles in the stru@ndM -band wavelets consistently yield more visually pleasant
ture sum up tar/4 [2]. This paper aims to generalize the aboveeconstructed images. Finally, concluding remarks are found in
two-band result: investigating the lattice structuréffchannel Section VI.
regular PULP filter banks. Preliminary results can also be found
in [14]. Throughout this paper, the number of chanélés as- B. Notations

sumed to be even, and the length of all filters is restricted to an
9 Boldfaced lower-case characters are used to denote vectors,

integer multiple ofAM. It has been proven that whéi is even, ereas boldfaced upper-case characters are used to denote ma-
anM-channel filter bank with linear-phase consists of an equ\glh T A1 upp ! .
ces. A", A7, |A], A;, A, anda;,; denote, respectively,

. . . L . 1
number of symmetric and anti-symmetric filters [6]. Since th%(1 . .
y y [6] the transpose, the inverse, the determinant;ttheow, thejth

anti-symmetric filters already have one zeravsat 0, one ex- - .
pects that for the first vanishing moment, the regularity conoiplumn’ and theth jth element of the matrid.. The symbols

tion needs to be imposed into thé/2 symmetric filters only.  /#[ Hi(2), andH(e’*) stand for theith filter's impulse re-
Two conventional approaches in designing-channel sponse, its associateetransform, and its Fourier transform.

regular filterbanks have been suggested. The first method iSeveraI special matrices with reserved symbols are the

to impose the number of zeros at mirror frequencies into thgslyphase matrix of the analysis badkz), the polyphase

lowpass filter [10], [15]. Having constructed the first filter,matr'x of the synthesis bank(z), the identity matrixI, the

the remainingM — 1 filters have to be designed such that théeversal matrixJ (I flipped left-right or up—down), the nul

overall resulting filterbank is PR. For the two-channel case, tf%amx 0’. a per_muta_t|0n matrbP, and _the _dlagonal mat_rlx
highpass channel can be uniquely determined from the Iowpé{\élsh entries being eithes-1 or _.1 D. L|kgW|se, -the spemal
filter, whereas for\/ > 2, there are more degrees of freedom i ectors are the CO'U”.‘” vector V\.”th aII.entnes being uitind '
choosing the bandpass and the highpass filters. This later s CO'UF“” vector with all ent.rles being Zero, except the first
can be accomplished using a Gram—Schmidt process [10], [1 ry being onen. When the size of a matrix or vector is not

Fowewer, 115 approach coes it guaanie the IncarprdE 17, OCK stoseis wlo ool ot e
property of the filters. Moreover, the resulting filterbank is ot aty v u 9

globally optimum since one of the filters has been preselectéagurls\;ty' ?/[nji\]/[l-chandn;alM];f-tap Fﬁ |st_orPhet|meslden.oted
Another method is to use time-domain constraints [17]. Sa X apped transtorm, whers 1S the overiapping

PR filterbank is first constructed, possibly using the Iatticf ctor. I_:or abbreviations, we often use_LP, PR, PU’ and FB to
enotelinear phase perfect reconstructignparaunitary, and

structure. Then, vanishing-moment conditions are enforced Y

time-domain side-constraints. The disadvantage ofatlisoc herbank

approach is that the optimization process becomes significantly

more complicated, leading to slow convergence (if at all), anfl L AtTice STRUCTURE FORPULP RLTER BANKS: A REVIEW
the optimization process can easily get trapped in local minima.

Moreover, regularity can only be approximately imposed. Lattice structure is an efficient implementation of PULP fil-

terbanks where both the PU and LP properties are simultane-
ously imposed into the filters’ impulse responses. It is assumed
that the number of channel®g > 4 is even, and all the fil-

In this paper, we present a novel approach of imposing tgrs have equal length= N M, whereN is an integer. It has
to two vanishing moments directly onto the lattice structure deen proven that when the number of channels is even, there are
M-channel PULP filterbanks. We begin with a review of thé//2 symmetric andV//2 anti-symmetric filters [4], [6]. The

A. Organization
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Fig. 2. Lattice structure for PULP filterbanks (GenLOT).
polyphase matrixi(z) is a degree@V — 1 polynomial matrix 6, 6 8

in z. Under the assumptions dd, &V, and the filter symmetry, cos 0

AVAVADID
AR X

define the lattice elements as \/ 8, ing
U o "R ANAY &N
I'i = , W=— , v cos 9
OL Vi \/§ IL —IL \_/'
I, O . [IL O U,, V,
A(z):[L 711‘ }, and I:[L L}
oL ~» I oL Jo Fig. 3. Orthogonal matrix parameterization.

whereL = M /2, andJ is the reversal matrixXU; andV; are

orthonormal matrices of size x L, and each can be parameterPU filterbank, the lowpass filteH,(z) hask” multiple zeros at
ized using( %) rotation angles [1]. The polyphase matliz) €ach mirror frequency if and only if the bandpass filtéx(z)
of a PULP filterbank with degre® — 1 can always be factored hasK multiple zeros at = 1 for1 < < M — 1[10].

as a product of PU matrices with degree one [7], i.e., Theorem 111.1: A filterbank hasK degrees of regularity if
and only if its polyphase matriE(z) satisfies the following

E(z) = GN 1(2)Gn _2(z) - G1(z)Eg (1) condition:
whereG;(z) = T;WA(z)W, andE = I'yWI. Fig. 2 shows il e
the complete lattice structure of PULP filterbanks. Although this dr M z 0
structure is minimal in terms of the number of delays, it does not dzn (z™) - @
minimize the number of free parameters. In [18], the authors 1;1\4
show that the matrice¥); for ¢ > 0 can be set td without any # 2=1 0
completeness violation. This more efficient structure with
wherec, are some nonzero constants fo=0, ..., K — 1

[19].
Theorem 111.2: A filterbank parameterized by the lattice
structure presented in Fig. 2 has one regularity if and only if

U; =1 fori>0

will be used in the analysis of the forthcoming sections.
Having characterized the PULP filterbanks this way, one can 3)

view the discrete cosine transform (DCT) and lapped orthog-

onal transform (LOT) as special cases wiih= 1 and.V = 2, Proof: From Theorem ll.1, in order to obtain the first reg-

respectively. This is the reason why the structure is called Gqﬂérity of the bandpass/highpass filters, the polyphase matrix
eralized LOT (GenLOT). Fig. 3 shows an example of paramgs satisfy

terization of orthogonal matrices. It should be noted that while
the above parameterization of orthogonal matrices is complete, 1 o
it is not unique, i.e., one can parameterize the same matrix with 1

different order of rotation angles.

Ao: U()].L = \/faL.

I1l. L ATTICE STRUCTURE FORREGULAR PULP FILTERBANKS S~ M1

z=1 0
Definition III.1: A filterbank hasK degrees of regularity if
its lowpass filterHy(z) has K’ multiple zeros at each mirror
frequency2nk/M for1 < k < M — 1.
The above condition is sometime called vanishing moment of .
the filterbank since it is equivalent to the number of zeros at ch(l) =I'n-1In-2-- ToWI=

of the bandpass filters. In particular, it can be proven that in a

Since

Up

0
H Vi WI
i=N—1
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/3 [Ugl{,} — conns Fig. 4. Parameterization of the orthogonal matriths.
L

where we are reminded that=[1 0 0 --- 0]. Using the fact time. The first case is the minimal length cagé £ 3), where
that Uy is orthogonal, it is clear that, = /3. Without loss there are only three vectors in the conditidn forming a fixed

of generality, we assume that the dc value of the lowpass filfgjangle (all interior angles are fixed and known). The second
is positive, which implies that, = /7. m caseiswhenthe length of the filtersli3/ (N = 4), where there

Note that the above conditiod, does not depend on thedre four vectors presented in the conditidn In this case, the
matrices V; because of the fact that the filters H (2) interior angles of the quadrilateral are not fixed and depend on
Hi(2),. .1. Hy_1(2)areantisymmetricfilters andtheref(’)rethe choices oV;. The last case is the generalization of the first
their frequency responses.at= 0 are zero. From (3), itis clear two_ cases by_which the length of the filters can be extended to
thatthe matrilJ, rotates the vectary, while preservingits norm &roitrary multiple ofif.
to the vector/L ay,. This step can be done by properly choosing
the orders and values bf- 1 rotation angles from the parameteri- V. REGULARITY IMPOSITION INTO THELATTICE STRUCTURE
zation ofthe matrilUq, as discussed inthe nextsection. A. Imposing the First Regularity

Theorem I111.3: If the filterbank in Fig. 2 (withU; = I for
¢ > 0) satisfies the conditioA,, it has two degrees of regularity
: . L . A fo
if and only if it satisfies the following condition:

The conditionA4y in (3) implies that every row otJ, except
r the top one is orthogonal tb. SinceUyg is orthonormal,
one concludes that its top row must be constant and is equal

N-1 N—j 0 to 1/+/L. Note that the popular DCT matrix used in JPEG and
Ay \/faL—H/f Z H Viar+ H Vib =01 (4) MPEG standards satisfies this condition. Let us parameterize the
j=2 i=N—2 i=N-—2 matrix Ug as in Fig. 4. Note that since the order of the rotation

T angles is not unique, the configuration in Fig. 4 is chosen for
whereb = (1/M)[1 35 --- M —1]". convenience of the rest of the development. We divide( the

Proof: Since the proof is straightforward but cumberiqaiinn angles ol into two parts. The first. — 1 rotations

some, we O_'ef‘?r it to the Appendix. We may proceed Witho%gles&' operate between the first row and the others, and the
any discontinuity. - " other(L) — (L — 1) = (¥;*) rotation angles reside in the

~ Theorem lIl.4: The minimal length for a two-regular PULP(L_l) x (L—1) matrixU, operating on the bottor— 1 rows,
filterbank is 3. as indicated in Fig. 4. It is easy to see that (3) can be enforced

Proof: Keep in mind that ir_1 order for thg_filter bar]kby usingL — 1 out of(g) degrees of freedom df as follows.
to have two degrees of regularity, both conditioAs and Theorem IV.1:Let Up be parameterized as in Fig. 4.

Aq mgst be satisfied. The first condition can be satisfied ol = vLay, if and only if the following conditions hold:

choosing Uy properly. The second condition composes o 1

N vectors forming a closed loop (zero sum). Taking into 16, = _tan_l L. . )

account thatV; are orthogonal matrices, the firsf — 1 2) 0; = + tan™ (}1/\/5) fori=2,...,L-2

vectors in (4) have equal lengtfL = /M/2, and the last 3) 01 = —sin 2T(1/\/f). o .

vector has lengthib|| = /12 4+ 3% +--- + (2L — 1)2/M = ) Proof: SlnceI_J0 aj, = ar, itis sufﬁuent.to show that
(MZ_1)J6M # +/MJ2. Therefore, in order for the Uply = _\/faL_. Since the second elementaf is zero, from

condition 4; to hold, there must be at least three vector§9- 4 it is obvious that

i.e., N > 3. This proves that the minimal length for PULP

filterbanks with two vanishing momentsig/. [ |
The N vectors in (4) form a closed loop, and hence, they must = cosf) —sinf = +v2.

obey the triangle inequality. In particular, since the matri¥gs

are orthonormal, the lengths of thé vectors are fixed, and Similarly, considering the third element af,, which is zero,

these matrices can only control the directions of these vectoikg have

For example, givenachoice ®f; fori =0, ..., N—3,itisnot 1

clear if there existd/ y_, that satisfies (4). In the next sectionfV2sinfy +cosfy =0 = 6 = Ftan~" NG

the condition4; is divided into three cases based on the length

of the filters to ensure that the triangle inequality holds at all =  +v2cos60y —sinfy = +V3.

sinf; +cosfy =0 = 6, =—tan *1
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/Tat ,&5 whereW;(e/*) are some weighting functions, afj are stop-
a band regions of the filters. Fig. 6(a) shows the frequency re-
clsu? sponses of the resulting filters. The zeros of the lowpass filter

are plotted in Fig. 6(b), showing that the filterbank has one de-
gree of regularity, which confirms the theory. Fig. 6(c) shows
the corresponding scaling function and wavelets.

1f7
Ccos j;

Fig. 5. Role of the matriXUq for the first regularity.

B. Imposing the Second Regularity: Minimal Length Case

Supposing that the first regularity has been imposedigo
of the PULP filterbank, we now discuss how to impose the
second regularity using the conditioty. Let us take the sim-
plest case when the filter length is minimal. From Theorem 111.4,
the minimal length for PULP filterbanks with two vanishing mo-
ments is3M, where) is the number of channels. Substituting
N = 3into (4), we have

Keep repeating the same procedure fodallintil ¢ = L — 2.
Wheni = L — 1, we have

++vL —1cosb;_1 —sinfr_;

=4+VL -1 <j:—VL_1> —sinf;_;

VL VLag, + VLViag +V;Vob = 0p,.

®)

L1 The question is now as follows: How can one choose the ro-

ﬁ' B tation angles ifV; so that (5) is satisfied? For convenience, let
X1 = \/Ea];, X2 = \/fVlaL, andX3 = V1V0b. These

three vectors form a bilateral triangle witkxy || = ||x2|| =

VL, as depicted in Fig. 7. Having known the three sides of the

triangle, one can determine the angles between each pair of the

three vectors. Letting, A, and\, be defined as in Fig. 7, itis

easy to see that

1 [M?—1
A =2sin~t [ ——
L= a8 <2M 3 )

1 M2 -1
Ay = cos ! <m 3

From the above definitions of; and Fig. 7, we have

=VL =

9[1,1 = —sin™

1) Geometry Interpretation:
Definition IV.1: The angle between two vectopsandq is

defined by
T
_ P q
/(p, q) = cos ™} < ) .
(. ) Ipllllall

Fact1: The angle between any two vectors does not de-

pend on their lengths, i.e/{c1p, caq) = Z(p, q),

wheree; ande; are both positive (or both negative)

scalar constants.

The angle is preserved under a rigid rotation, i.e.,

if D is an orthogonal matrix, then(Dp, Dq) =

I[.(p, q), where we have used the fact tilat D A=A+ s = (xa, x5) = £(Vyan, ViVob)
From (3), it is clear that the matrikly rotates, while pre- = /(a1,, Vob)

serving the norm, the vectay, into the direction of vectoar,.

Note that the angle betwedn, anday, is

), and A= A\{ 4+ Ao
Fact 2:

(6)

where the last equation is obtained by left-multiplying both vec-
tors by VI. From (6), it is clear that the angle between the

., 1Tag vectorsx; andxs is dependent on the matriXy only. This
v=£(1r, ap) = cos [ESIE is the key of how to parameterize the maiiy. Supposing that
V) satisfies (6), we havé(xz, x3) = A, which implies that

1 ) lx2 +x3|| = VL = ||x1]|, permitting the matrix/; to be able

= Cos N cos M to close the triangle by properly rotating the vecigr+ Vob.

Definition IV.2: Let R[p] be anL x L orthogonal matrix
Fig. 5 illustrates the roles d/§ and U3 in Uy. The first defined on thel. x 1 vectorp as follows:
L — 1 rotation angles iU} rotate the vectoty, to the direction T
of ag,. Then,Ug rotates the resulting vector in the direction R[p|=1-2 VepVp
perpendicular tay,, and thus, the resulting vector remains the

[vpll?
same. wherev,, = (p/|lp||) — ar. This matrix is called thédouse-

2) Design Example:ln this example, a one-regular eightt,o|der matrix[20], which maps the vectgs into the direction
channel 24-tap PULP filterbank is designed using the lattigg ar, while preserving its norm, i.e.

structure. The filters are optimized in order to maximize the

()

stopband attenuation, which can be given by

M-1
Cstopband attn. — — Z / [Wi(ejw)|Hi(Cjw)|2 dw]
i=0 Y%

R[p]p = [lp[lar.

1) Parameterization oVo: From (6), we have

A= /(x2, x3) = /(ar,, Vob) = /(ar, VoR[b]Tar,). (8)
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Fig. 6. Design example eight-channel PULP filterbank with one vanishing moment. (a) Frequency and impulse responses. (b) Zero locationssx fittefowpa
(c) Scaling function and wavelets.

Let us parameteriz¥ ¢ as in Fig. 8, i.e., where in the last equation, we have used the fact that
1 0
VgTaL = < _T> ar, = ar,.
Vo = V2VEVY. 0 Vo
It should be noted that the above parameterization does not in-
By choosingVd = R[b], (8) then implies crease the degree of freedom errg‘u) sinceV) is fixed.

Theorem IV.2: V§(1, 1) = cos A.
Proof: From (9), itis clear that
af Viar B Vi1, 1)
laclllViacll — llac|l?

A= é(aL, V(Z)V(l)aL) = Z(V(Z)TaL, V(l)aL) = é(aL, V(l)aL)
9)

cos\ = =Vi(1,1). =
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Fig. 9. Role of the matrice¥; for the second vanishing moment.

Fig. 7. Geometrical interpretation of (5), where the three vectersx., and

xg form a triangle. .. . . . .
? g Similar to the case oV, this parameterization does not in-

6, 6, 6, 6., 6, crease the degree of freedom fr(@é"l) since the matri®Vy has

- : > already been determined, and hence, the choid&fos fixed.

—_— - 3) Geometric Interpretation of th&; Matrices: For the
/3 V 1\ [

second vanishing moment, the condition is a little more com-

' Vi plicated, but the geometry is still simple. In this case, there are
—— 7§ — three vectors forming a closed bilateral triangle as in Fig. 7,
— ——t . .

where the values of, \;, and A, are uniquely determined as
Ve \A V? follows:
Vi 1 M2
AL =2sin7! [ = ,
Fig. 8. Parameterization of the orthogonal matri¥gs 2M 3

2 _
Let the( %) rotation angles of the matri¥} and V32 be or- Xy = cos™! <L M 1) cand A=)+ e
dered as in Fig. 8, wher¥ is an orthogonal matrix of size M 3
(L—1)x (L—1)consisting of ;) — (L—1) = (*;") rotation By rewriting (5) as
angles. From Fig. 8, it is easy to show t 1,1)=cosAif

g g y Ra}(1, 1) = cos VLag,+ Vi [VLag, + Vob| =0

and only if
the following observations can be made (see Fig. 9).

1) Vg, must rotateb in such a way that the angle between
Vb anday, is A.

2) V; rotates the two vectorg'L ag, and Vb together so
that the resulting vector is in the direction efy,.

4) Design Example:In this example, a two-regular eight-

channel PULP filterbank is designed with minimal length, i.e.,

2) Parameterization oV1: Having specifiedV o, what re- all the filters have '6”9“4 =3x8 = 24. The frequency re-
mains in (5) is how to choos¥; o thatx; = —x5 — xs. This sponses are presented in Fig. 10(a), and the zeros of the low-

step takes ouE — 1 degrees of freedom frofi, as in the case pass filters are plotted in Fig. 10(b). Fig. 10(c) shows the cor-

of imposing the first vanishing moment intd,. From (5) responding spahng function and wavelets. It can be seen 'that
the lowpass filter has (at least) double zeros at each the mirror

VLay = Vl(—\/E ar, — Vob) frequencies, which confirms that the bandpass and highpass fil-
—||- VLag — VObHVlR[_\/EaL _ Vob]TaL ters will have (at least) two vanishing moments. In this design
example, the stopband attenuation is used to optimize the fil-

= \/fle[—\/f ar, — Vob]Tag, (11) ters. One observes that frequency response of this filterbank has

where in the last equation, we have used the fact tHgwer stopband attenuation than that of the one in the design

|l-vLar — Vob|| = VL. Let Vy be parameterized as inexample 1. This is simply because of the fact that a number of
Fig. 8, i.e. free parameters have been used to impose the second vanishing

moment.

cos @ cosby---cosp_1 = cosA. (10)

Since (10) is independent from the matN, the(Lgl) rota-
tion angles ofVy can be arbitrarily chosen, and the resulting
matrix V§ still satisfies (9). In order to satisfy (10), clearly, the
degree of freedom d¥ is reduced by one. Having parameter-
ized as above, the resulting angle betwggmandxs is equal to
), and hencel|xz + xz|| = VL = ||x1].

Vi =ViViVvy . _—
C. Imposing the Second Regularity: Filter Length Is Equal
By choosingV9 = R[—+v/Lag, — Vgb], then (11) implies to 4M (N = 4)

ap = V3Viay, = Viag (12) SubstitutingV. = 4 into the conditiond; yields
where in the last equation, we have used the fact that VL [ar, + Vear, + V2 Viar] + V2V Vb = 0. (13)
V2T, — 10 A — & Similar to the minimal length case, l&y = vLag, x; =
17\ vr) VL Vzar, andxs = VLV, Viag + V2V Vob. Itis clear
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Fig. 10. Design example of two-regular minimal length PULP filterbank With= 8, i.e., the filter lengttY = 24. (a) Frequency and impulse responses. (b)
Zero locations of the lowpass filter. (¢) Scaling function and wavelets.

that the vectors; form a triangle, but unlike the previous caseSince||b|| = /(M2 —1)/6M < /L, the triangle inequality
the length ofk3 can be varied, depending on the choice¥gf becomes

In fact, it is easy to show that
Y %1l = [[x2ll =0 < |jxs|| < [[b]| + VL < 2VL
0 < |lxs]l < VL +[b]. =|fxa | + [[xz| (14)

Based on the same configuration as in Fig. 7, the anglesxd and thus, (13) is always possible, regardless of the choivg of

Ao are determined from the lengths of the three vectors. In ordgimilar to the previous case, we choose to impose the condition
to form a closed triangle of the vectats, they must satisfy the A; into V; andV2, which means thaV is free to be chosen.
triangle inequality, i.e.||||x1]| — ||x2]/l| < l|xs|| < ||x1 +x2||. The only difference between the cases\of= 3 andN =4 is



ORAINTARA et al. LATTICE STRUCTURE FOR REGULAR PARAUNITARY LINEAR PHASE FILTERBANKS 2667

! T . T

- / ‘ ’g e o : | L

_25,. %\ (‘, ‘} § . E&: R .

4\ \ \ln bl

. A\' ' ”V’ l(' i\\ ) %%*Tfjff“’b"“’" Toe T

l | ‘ |‘ M HI“ 1, ??LTLT@W ‘L 4 s w” S
(a) (b)

o0t w, (b

w,(t) w,(t)

w, () w,(t)

we(t) w.(t)

(c)

Fig. 11. lllustration of a necessary condition for the second vanishing moment and the roles of theoieatmighe exterior angles. .

that, based on the notations in Fig. 7, the angleand A, are Its frequency response, the zeros of the lowpass filter, and the

now dependent org, i.e., corresponding scaling and wavelet functions are, respectively,
shown in Fig. 11(a)—(c).
A = cos™! <M> and X\, = 2sin~! <||X3||> . (15) g- 11(@)-(©)
VL 2VL

From (15), it is clear that = \; + A\, must be calculated after D. Imposing the Second Regularity: Filter Length Is Equal to

the vectorxs is known, i.e.,V, must be already determined. VM With V> 4

OnceAis calculated, th&; andV 5 are determined in the sim-  From the two previous subsections, one can see that the same

ilar manner as in the case &f = 3, whereasVy is free to be technique can be generalized to the case where the length of the

chosen since it does not depend on either conditigior A;.  filters is longer thartM (N > 4). However, special treatment
Example: In this design example, a two-regular 32-tap eightnust be applied when the filter length is long in order to guar-

channel PULP filterbank is designed using the proposed theamtee the triangle inequality. In particular, it must be satisfied by
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the choices oV; at every step. Recall that the conditidn for :
the general case is given by (4)

\/ZaL—i-\/Ez_:( 1:[] Vi>aL+< H Vi>b:0L.

j=2 \i=N-_2 i=N-—2
(16)
From (16), it is clear that
N-1 j
a3 (L) (1)
J=N—-k \i=N =N
N-k—1 / N—j
=+VL|ag + Z < H Vi> ar,
j=2 i=N—2
<(N-k-1)VL (17)

forl < k< NV —3. Thisis why the first case aV = 3 does Design example of two-regular minimal length PULP filterbank with
not need this special treatment since the left-hand side is zeng_ 8. i.e., the filter length = 32. (a) Frequency and impulse responses. (b)
WhenN = 4, there is only one value éf, i.e.,k = 1, that needs zero locations of the lowpass filter. (c) Scaling function and wavelets.
to be checked, and sindfb|| < /L, the inequality (17) holds,
asin (14). WhenV > 5, (17) has to be taken into consideration (20)
when the matriced/; are chosen. In fact, only approximately
one half of the values of need to be checked, as stated in the
following theorem.

Theorem IV.3: The inequalities in (17) always hold if < Vi = Rlex]®
|V/2] — 1, where|z]| is the largest integer less than or equal tehe exterior angles;, can be expressed in terms of the matrices
z. Vi as follows:

Proof: Letk < |N/2] — 1. From (17), we have e = ¢(ar, View) = /(ar, VEViag)

N—1 N—j 0
VIY ( 10 vi> aL+< I vi>b ~ l(ar, Viaw), @
k

Again, let us parameteriz¥’y using the configuration pre-
Sented in Fig. 8. For eadh by choosing

j=N—k \i=N-2 i=N-2 From Fig. 8, it is obvious that
M2 —1 cos @y cosy - cosfy 1 = cosyg. (22)
< kVL+|b|| =kvVL + <(k+1)VL — o .
- bl 6M ( ) Hence,Vy can be arbitrarily chosen, and the constraints (20)

< {gJ VI < <N B {gJ) VE< (N —k— 1L can be imposed by choositig that satisfy (22).

- V. APPLICATION IN IMAGE COMPRESSION
Theorem IV.3 suggests that only wheN/2| <k <N —3,  |n this section, the novel regular filterbanks and-band

(17) needs to be checked. Supposing that the matNGeare \vavelet obtained from the design examples are evaluated in
determined in increasing order, then Theorem IV.3 |mp||es tha.ﬁ image Compression app”cation_ The test images in the

Vifori=0,..., [N/2] —2can be arbitrarily chosen. #f>  experiment are populasl2 x 512 8-bit gray-scale images

|N/2| — 1, there are some choices Wt that can violate (17), Leng Barbara Goldhill. The set partitioning in hierarchical

and hence, they have to be carefully chosen. trees (SPIHT) progressive image transmission algorithm is
To be more concrete, for eaéhlet chosen to compare the performances of the transforms. In

the decomposition stage in the encoder and the reconstruction

Ck:\/z z_: <1:fVi>aL+<H Vi

) b, (18) other words, the encoding algorithm is fixed. We only modify

J=N—k \i=k—1 i=k—1 stage in the decoder with different transformations. The five

Hence, (17) can be written as transforms chosen for the experiment are

|VLaL + Viex|| < (N — k — 2)VL. (19) « two-band 9/7 Daubechies symmetric wavelets [21], four
Supposing thaV;, for i < k— 1 have been specifiedy can be degrees of regularity, six levels of iteration;
computed. Therefore, the matit% hasto be chosenintermsof * €ight-band eight-tap DCT [22], one degree of regularity,
cx SO that (19) is satisfied. Lef, be the angles betwed, ¢, two levels of iteration;
anday,. Fig. 12 illustrates the roles of,. Squaring both sides  * eight-band 16-tap LOT [23], one degree of regularity, two
of (19) yields levels of iteration;

L+||ck||2+2\/f||ck|| cosy < (N—k—2)2L * eight-band 24-tap PULP regular F.B Iabgleg PULPV1, one
degree of regularity, two levels of iteration;

[(N=k=1)*-1]L—[lck? « eight-band 24-tap PULP regular FB labeled PULPV2, two
2v/L|cx]| ’ degrees of regularity, two levels of iteration.

cos . <
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TABLE | TABLE I
OBJECTIVE PROPERTIES OF THEPULP HLTER BANKS USED IN IMAGE OBJECTIVE CODING RESULTS (PSNRIN dB) USING DIFFERENT TRANSFORMS
COMPRESSIONEXPERIMENTS ON TESTIMAGES LENA, BARBARA, AND GOLDHILL
Transform Prop- 8 x 8|8 x 168 x 248 x 24 Lena PSNR (dB)
erty DCT | LOT | PULPvL L PULPv2 Comp. | SPIHT |8x8|8x16| 8x24 | 8x24
i in (dB 8.83 9.22 9.36 9.33
Coding gain (dB) ratio || (9/7 WL) | DCT | LOT | PULPvl | PULPv2
Deg. of regularity 1 1 1 2
1:8 40.41 39.88 | 40.02 40.33 40.18
Stopband attn.(dB) 4.43 16.32 19.48 13.00
1:16 37.21 36.31 | 36.67 37.10 36.84
42 ; . . T : 1:32 34.11 32.77 | 3345 33.86 33.48
: : : : : +=- SPIHT
QOf A R ..... . .......... v 1:64 31.10 29.45 | 30.29 30.66 30.30
: 1 ’ : 1 ' 1:100 20.35 | 27.55| 28.32 | 28.68 28.45
1:128 28.38 26.68 | 27.37 27.74 27.55

Barbara PSNR (dB)

Comp. SPIHT |8x8 |8x16| 8x24 8x24
ratio (9/7WL) | DCT | LOT | PULPvl | PULPv2

‘ 1:8 36.41 36.29 | 37.40 37.92 37.41
1:16 3140 3107 | 3266 | 3304 | 3255
1:32 27.58 27.21 | 28.72 28.99 28.65
: i : : 1:64 24.86 24.48 | 25.58 25.81 25.65
2y 2 m % % w1 1:100 23.76 | 2333 | 2423 | 2448 | 2443
Compression ratio
i o ) 128 23.35 22.53 | 23.22 23.48 23.52
Fig. 13. PSNR of the reconstruction images using (9, 7) wavelets (dash-IOteee0ene o ... ....———————————————
line), PULPvV1 (dashline), and PULPv2 (solid line) filterbanks in the progressive .
image transmission coding. The transforms are testedema Barbara, and Goldhill PSNR (dB)
Goldhill images. Comp. SPIHT 8x8 | 8x16 | 8x24 8x24

ratio || (9/7 WL) | DCT | LOT | PULPv1 | PULPv2

Table | summarizes the properties of thé-band transforms

used in the comparison. For thedé-band transforms, the 18 36.55 36.23 | 36.63 36.78 36.63
lowpass subband coefficients are collected and fed through 1:16 33.13 | 3275 | 33.17 | 33.32 33.15
another stage of transformation. Since the size of the test .35 3056 | 30.03 1 3055 | 30.69 30.53
images is limited, we can only have two levels of decompo-

sition. To avoid modification of the encoding algorithm, the 1:64 28.48 27.87 | 2831 2847 2834
M-band wavelet coefficients are rearranged and grouped into 1:100 27.38 [ 26.57 | 27.03 | 27.20 27.08
the popular quad-tree structure (each parent node in a zero-tre 1:128 26.73 25.92 | 26.40 26.56 26.45

has four descendants). This way, a two-level iteration of an
eight-band filterbank is equivalent to a six-level dyadic wavelet

iteration. For more details on the coefficient rearrangement aggh only a few degrees of freedom left in the optimization
regrouping, see [24] and [25]. _ process. The PSNR difference between the two transforms
Fig. 13 shows the ra_te—dlstortlon curves obtained frpnzrp;Uval and PULPV2) can be reduced by allowing longer
PULPv1 and PULPv2 filterbanks at various compressiqker length. In addition, note that the filterbanks used in the
ratios ranging from 8:1 to 128:1. The full sets of PSNRompression are optimized to reduce the stopband attenuation
with one vanishing moment (PULPv1) has higher objectiveyding. There are many criteria such as transform coding gain,
performance comparing with that with two vanishing momentgnequally weighted stopband attenuation, i.e., nonconstant
(PULPv2). However, the perceptual quality of the PULPVZy. (civ) mirror frequency, etc., which can improve the coding

the zoom-in part of the reconstructed Barbara images. Op@cedure of future work.

can notice that in smooth regions, the PULPv1 filterbank still
has a checkerboarding artifact, whereas the PULPV2 filterbank
yields a smoother reconstruction. Both of these filterbanks have VI. CONCLUDING REMARKS
exactly the same level of computational complexity.
We note that length 24 is the minimum length for the In this paper, the theory, design, lattice structure, and coding
two-regular eight-channel PULP filterbank. Therefore, themgplication of PULP filterbanks with one and two degrees of
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Fig. 14. Coding results at compression rate 32: 1. The first column corresponds to the original image. The second and third columns are the imsiggs coded
an eight-band 24-tap wavelet with one and two degrees of regularity, respectively.

regularity are presented. The proposed lattice structure guarguality, the filterbank with two vanishing moments consistently
tees that the resulting filterbanks have all of the desired progffers smoother reconstructed images.

erties (PR, PU, LP, and one or two vanishing moments). The

number of the channel/ is assumed to be even, and all the APPENDIX

filters have the same lengtMM for some integefV. The Con-  pygf of ConditionA;: Substitutings = 1 in (2) yields a
ditions for obtaining one and two vanishing moments from the, cessary and sufficient condition for the filterbank to have two
resulting filters are derived in terms of the lattice elements. Uhnishing moments. Hence

order to design a PULP filterbank with one degree of regularity, 1

the minimal permissible length of the filtersig, and the pop-
ular DCT satisfies this condition. It is found th@d//2) — 1
rotation angles otJy can be used to enforce the first degree of
regularity of the filterbank. This constraint reduces the degrees
of freedom in optimizing the filterbank b§a7/2) — 1. where

For a PULP filterbank with two degrees of regularity, a neces- 1
sary and sufficient condition of the lattice elements is derived inV A dE(zM)

Z_l

d
e E(zM) =va+vg (23)

1173

A%

=

z=1

the general case for arbitrary filter length. Unlike the general pa- 2 dz

raunitary filterbanks that require the minimum permissible filter

length to be2 M, the minimum permissible length in the PULP

case is proven to baM. The design method is divided into?"

three cases, where the filters’ lengths ére- 30, ¢ = 4M,

and/ > 4M. Unconstrained optimization is used in the design 5 d z

process. Many regular design examples are presented. Vs =
The novel filterbanks are then evaluated and compared '

with previously published filterbanks in the literature using a ML

progressive image transmission coding framework. With filter ; . V- .

length/ = 24 (which is the minimum length for two-regular 127 - 2 fer=-[01 - M—1]" (24)

eight-channel PULP filterbanks), the one with one vanishin .

moment yields better objective coding performance in PSNIR(1) =I'Nn—1WA(L)WIn_3 - - T1WA(1)WIoWI

(ranging from 0 to 1.5 dB). However, in terms of perceptual (25)
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Up 0
=I'n_1In_z+ - T1ToWI = 0 WI.
N-1L1 N-2 110 0 H Vi
1=N-—1
(26)
Therefore
V1
=] @7
Vi
where
0
M-1 M
1 2
vy = — Uoly, v3=—7 H Vilb
V2 V2 \\
andb = (1/M)M-1M -3 --- 1]T.
d
— E(gM
dZ (Z ) z=1
dA(zM
= I‘N1|:W # WI‘N,2WA(ZM)WI‘N,3 e
L1 WAZMYW + WA(ZM)WI'n_o W
dA(zM
) # WIn_3 [y WAEZM)W + ...
Z
+ WAZM)YWIN_ o WA(ZM)WIN_3 - -
M o~
r,w A=) W} LoWI
dz et

=I'n_1[WIN_2TNn_s---T1 +I'n_2WIN_5 -
Iy +- +In TN 3 - [T WILoWI

where
~ dA(zM M I -I
w = w =D W:-—[ L L}.
Z |,= 2 |-, I
Thus
vt [T N 0 Uy 00
r—j - .
vy = Z w Wiy
~ |0 H Vi 0 II v
i=N—1 i=N—j—1
r 0
. Uo - Vi
B M Nl i=N—j—1 1y,
P 0 or
T I vi)ue I Vs
L 1=N-—1 1=N-—1
Y e [ Uolw vl
52| (4 23
V2| - I Vi) UotL v2
L 1=N-—1
where we have
M(N — 1)
vi=—— Uyl
2 \/5 O1L
and
N-1 N-—j
M
2
vie— H V; | UplyL.
\/§ =1 i=N-1
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Substitutingve andvg back into (23) yields two matrix-vector
equations. The first equation is obtained from equating the top
half elements of all the vectors, i.e.,

MN -1

7 (28)

1 1
v+ vy =— UplLy = crag,.

Notice that this equation is exactly the same as the condition
Agp, which has already been imposed by enforcing the firstl
rotation angles olJy, as in Lemma 4.2.1. The second equation
comes from the bottom row of (23), i.e.,

M =2 N-—j
2 2
V2—|—V3I—Z H V; | Uply
V2 j=1 \i=N-1
0
M
+ — V; | b=0. (29)

Premultiplying the above equation k{2 VL, /M and taking
into account thalyg1y, = VL ag, results in the conditiont; ,
as previously described. [ |

(1]

(2]

(3]

(4]

(3]

(6]

(7]

(8]

(9]

(20]

(11]
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