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Abstract—In this paper, we propose a novel multi-task multi-
variate (MTMV) sparse representation method for multi-sensor
classification, which takes into account correlations between
sensors simultaneously while considering joint sparsity within
each sensor’s observations. This approach can be seen as the
generalized model of multi-task and multivariate Lasso, where
all the multi-sensor data are jointly represented by a sparse
linear combination of training data. We further modify our
MTMV model by including a clutter noise term that is also
assume to be sparse in feature domain. An efficient algorithm
based on alternative direction method is proposed for both
models. Extensive experiments are conducted on real data set
and the results are compared with the conventional discriminative
classifiers to verify the effectiveness of the proposed methods.

I. INTRODUCTION

Multi-sensor fusion have received considerable amount of
attentions over past few years for both military and non-
military tasks [1] [2] [3]. A particular interest of multi-sensor
fusion is classification, where the ultimate question is how
to take advantage of having related information from different
sources (sensors) recording the same physical event to achieve
improved classification performance. A variety of approaches
have been proposed in the literature to answer this question
[4] and [5]. These methods mostly fall into two categories:
Decision in - decision out (DI-DO) and feature in - feature
out (FI-FO) [3]. In [4], the authors investigated the DI-DO
method on vehicle classification problem using data collected
from acoustic and seismic sensors. They proposed to perform
local classification for each sensor signal by conventional
methods such as Support Vector Machine (SVM). These local
decisions are then incorporated via Maximum A Posterior
(MAP) estimator to make the final classification decision, thus
named DI-DO method. In [5], FI-FO method is studied for
vehicle classification using both visual and acoustic sensors.
They proposed a method to extract temporal gait patterns
from both sensor signals and utilize them as inputs for SVM
classifier. They furthermore compared DI-DO and FI-FO ap-
proaches on their dataset and showed the higher discrimination
performance of FI-FO over DI-DO.

In signal processing, most natural signals are inherently
sparse in certain bases or dictionaries where they can be ap-
proximately represented by only a few significant components
carrying the most relevant information. In other words, the

intrinsic signal information usually lies in a low-dimensional
subspace and the semantic information is often encoded in
the sparse representation. Especially with the emergence of the
Compressed Sensing (CS) framework [6] and [7], sparse repre-
sentation and related optimization problems involving sparsity
as a prior called sparse recovery have increasingly attracted
the interest of researchers in various diverse disciplines.

Though the usage of sparsity has been successfully em-
ployed in inverse problem, where sparsity acts as a strong prior
to abbreviate ill-posedness of the problem. Recent research
has pointed out that sparse representation is also useful for
discriminative applications [8] [9] [10]. These applications
rely on the crucial observation that it is possible to represent
the test sample as a linear combination of training samples
belonging to the same class as the target and not to the other
classes. Thus, if the dictionary is constructed from all the
training samples in all the classes, the test samples can be
sparsely represented by only a few columns of this dictionary.
Therefore, the sparse coefficient vector, which is recovered
efficiently via l1-minimization, can naturally be considered
as the discriminative factor. In [9], the authors successfully
applied this idea to the face recognition problem. Since then,
many more complicated techniques have been exploited and
applied to various fields such as hyperspectral target detection
[11], acoustic signal classification [12] and visual classification
[8] [13] [14]. For instance, the authors of [12] proposed a joint
sparse model for acoustic signal classification, which exploits
the fact that multiple observations from the same class could
be simultaneously represented by few columns of the training
dictionary. Thus, coefficient vectors associated with these
observations might deliver the same sparse pattern. Similarly,
[14] investigated a multi-task model for visual classification,
which also assumes tasks belonging to the same class have the
same sparse support distributions on coefficient vectors. To
improve classification performance, all these models require
efficient algorithms that take into account this precious piece
of sparsity as a prior information.

In this paper, we consider a multi-sensor classification
problem, focusing on discriminating between a human and
non-human footstep activity. The experimental setup is as
follows: A set of four acoustic, three seismic, one passive
infrared (PIR) and one ultrasonic sensors are used to measure



same physical event simultaneously on the field. The ultimate
goal is to detect whether the event is human or human and
animal footsteps. As opposed to the previous approaches on
this problem in which only one single sensor is utilized to
record data [15] [16] [17], in this paper we propose a novel
regularized regression method, namely multi-task multivari-
ate lasso, which effectively incorporates both multi-task and
multivariate Lasso ideas [8] and [18]. This technique imposes
group sparsities both within each task (sensor) and across
the tasks. Furthermore, we extend our model to deal with
sparse noise with arbitrarily large magnitude. This high-energy
environmental noise frequently appears in sensor data due to
the unpredictable or uncontrollable nature of the environment
during the data collection process. Though our technique is
designed for military purposes, it is not restricted to this
specific application. Rather, it can be applied to any set of
classification or discrimination problems, where data is usually
collected from multiple sources.

The remainder of this paper is organized as follows. Section
II briefly introduces various sparsity models with the main
focus on our proposed multi-task multivariate (MTMV) and
MTMV with sparse noise models in subsections C and D,
respectively. We present in Section III a fast and efficient
algorithm to solve convex optimizations for these models. Ex-
tensive experiments are shown in Section IV and conclusions
are drawn in Section V.

II. SPARSITY MODELS

Consider a multi-task (multi-sensor) C-class classification
problem. Suppose we have a training set of p samples in
which each sample has D different modalities of features or D
different tasks. For each task (sensor) i = 1, ..., D, we denote
XXXi = [XXXi

1,XXX
i
2, ...,XXX

i
C ] as a n × p dictionary, consisting of

C sub-dictionaries XXXi
k’s with respect to C classes. Here, each

sub-dictionary XXXi
j = [xxxij,1,xxx

i
j,2, ...,xxx

i
j,pj

] ∈ Rn×pj represents
a set of training data from the ith task labeled with jth class.
Accordingly, xxxij,k, which we usually call an atom in the dictio-
nary is the kth training sample for ith task and jth class. Notice
that pj is the number of training sample for class jth and n
is the feature dimension of each sample, therefore, the total
samples is p =

∑C
j=1 pj . Given a test sample YYY comprising of

D tasks {YYY 1,YYY 2, ...,YYY D} where each sample task YYY i consists
of di observations YYY i = [yyyi1, yyy

i
2, ..., yyy

i
di
] ∈ Rn×di , we want to

decide which class the sample YYY belongs to.

A. Sparse representation for classification (SRC)

We first review the single task (single sensor) sparse rep-
resentation for classification method. Accordingly, we remove
the subscript i representing tasks for simplicity. In this prob-
lem, a particular and effective model is to assume that the
training samples belonging to the same class approximately
lie on a low-dimensional subspace. Given a set of C distinct
classes XXX = [XXX1,XXX2, ...,XXXC ] where jth class has pj training
samples {xxxj,k}k=1,...,pj , a new test sample yyy belonging to the
jth class will approximately lie in the linear space spanned by

the training samples associated with jth class:

yyy =XXXwww +nnn, (1)

where www is the coefficient vector whose entries have value
0’s except those associated with the jth class: www =
[000T , ...,000T ,wwwTj ,000

T , ...,000T ]T , and nnn is a small noise due to
the imperfectness of the test sample.

In order to obtain the sparse vector www, it is natural to
consider the following optimization

ŵww = argmin
www

‖www‖0 subject to ‖yyy −XXXwww‖2 ≤ ε, (2)

where ‖www‖0 is l0-norm defined as the number of non-zero
entries of www and ε is the noise energy. This l0-norm mini-
mization can be interpreted as finding the sparsest solution
obeying the quadratic constraints. However, (2) is well-known
as an NP-hard problem due to the non-convexity and non-
differentiability of the l0-norm. Many alternative approaches
have been proposed to approximately solve (2) such as greedy
pursuits (Orthogonal Matching Pursuit [19], Subspace Pursuit
[20]) and Iterative Hard Thresholding (IHT) [21]. Alterna-
tively, l0-minimization can be efficiently solved by recasting it
as l1-based convex programming problem [6] [7]. In this paper,
we utilize the l1-minimization approach which is described as
follows

ŵww = argmin
www

1

2
‖yyy −XXXwww‖22 + λ ‖www‖1 , (3)

where λ is a positive regularization and l1-norm ‖www‖1 =∑p
i=1 |wi|. This optimization is also known as Lasso [22],

which can be solved efficiently in polynomial time by standard
convex optimization techniques.

Once the coefficient vector ŵww is estimated, the class label
of yyy is determined by the minimal residue between yyy and its
approximation from each class sub-dictionary

ĵ = argmin
j
‖yyy −XXXδj(www)‖2 , (4)

where δj(·) is a vector indicator function, defined by keeping
the coefficients corresponding to the jth class and setting all
others to be zero, i.e. δk(wi) = [0T , ..., 0T , wTj , 0

T , ..., 0T ]T .

B. Multivariate sparse representation for classification (MV-
SRC)

Let us first consider a single task sparse representation
where the test sample is generated by a single sensor. However,
the test sample YYY may consists of multiple observations
of the same physical event obtained by the same sensor:
YYY = [yyy1, yyy2, ..., yyyd] ∈ Rn×d. In our problem, each observation
is one segment of the test signal where each segment is
obtained by partitioning the test signal into d (overlapping)
segments. Again, suppose the test signal belongs to jth class,
it can be often assumed that each observation yyyi is a linear
combination of training samples in the sub-dictionary XXXj

which consists of training segments. That is, for all i =
1, ..., d, yyyi = XXXwwwi + nnni where XXX = [XXX1,XXX2, ...,XXXC ] is
a concatenation of C sub-dictionaries and wwwi’s are sparse



vectors whose nonzero entries are associated with the jth class:
wwwi = [000T , ...,000T ,wwwTi,j ,000

T , ...,000T ]T and nnni’s are small noises.
If we denote WWW = [www1,www2, ...,wwwd] ∈ Rn×d, then WWW is a row-
sparse matrix with only pj nonzero rows located at the jth
class.

To recover the row-sparse matrix WWW , the following joint
sparse optimization is proposed with q ≥ 1. This optimization
has been well known as group Lasso [18] [23].

ŴWW = argmin
WWW

1

2
‖YYY −XXXWWW‖2F + λ ‖WWW‖1,q , (5)

where λ is a positive regularization parameter, and ‖WWW‖1,q
is a norm defined as ‖WWW‖1,q =

∑p
k=1

∥∥wwwk∥∥
q

where wwwk’s are
row vectors ofWWW . This norm can be phrased as performing lq-
norm cross the columns (observations) and then l1-norm along
rows. It is clear that this l1/lq regularization norm encourages
shared patterns across related observations, and thus solution
of the optimization (5) has common support at column level.

The class label is determined by the following rule

ĵ = argmin
j
‖YYY −XXXδδδj(WWW )‖F , (6)

where δδδj(·) is the matrix indication function, defined by
keeping rows corresponding to the jth class and setting all
others to be zeros.

C. Multi-task multivariate sparse representation for classifi-
cation (MTMV-SRC)

In the previous section, we have employed a single source
sparse representation for classification. In the scenario where
an event is captured by multiple heterogeneous sources (sen-
sors), thus multiple observations are available in the test
sample. By exploiting correlation between different sources,
we can potentially improve classification accuracy. To handle
multiple sources, a naive approach is to utilize voting scheme
(or DI-DO method), where for each sensor the aforementioned
two-step classification algorithm described in Section II-B is
performed and a class label is assigned. The final decision is
made by selecting the label that occurs the most. It is clear
that this approach does not exploit the relationship between
different sources except at the post-processing step where
decision is made via fusion.

In this section, an alternative approach is proposed in which
we exploit a joint sparsity of coefficient vectors from different
sources in order to make a joint classification decision. To
illustrate this model, let us first consider a two-task classi-
fication with the test sample YYY consisting of two tasks YYY 1

and YYY 2 collected from 2 different sensors. Suppose that YYY 1

belongs to the jth class, it can be reconstructed by a linear
combination of the atoms in the sub-dictionary XXX1

j . That is,
YYY 1 = XXX1WWW 1 +NNN1 where WWW 1 is a sparse matrix with only
pj nonzero rows associated with jth class and NNN1 is a small
noise matrix.

Since YYY 2 represents the same event, it belongs to the same
class, and thus can be approximated by training samples inXXX2

j

with a different set of coefficients WWW 2
j , YYY 2 = XXX2WWW 2 +NNN2

where WWW 2 has the same sparsity pattern as WWW 1.
If we denote WWW = [WWW 1,WWW 2], then WWW is a sparse matrix

with only pj nonzero rows. Therefore, in order to seek for
this row-sparse matrix, we should incorporate this common
sparse pattern prior into the optimization algorithm. In the
more general case where we have D sources (sensors), if we
denote {YYY i}Di=1 as a set of D observations each consisting of d
segments collected from D sensors and let WWW ∈ Rn×pD be an
unknown matrix formed by concatenating coefficient matrices
WWW = [WWW 1,WWW 2, ...,WWWD]. This matrix WWW can be recovered by
solving the following l1/lq-regularized least square problem

ŴWW = argmin
WWW

1

2

D∑
i=1

∥∥YYY i −XXXiWWW i
∥∥2
F
+ λ ‖WWW‖1,q , (7)

where λ is a positive parameter and q is set to be greater than
1 to make the optimization convex. This optimization (7) is
called multi-task multivariate Lasso.

Once ŴWW is obtained, the class label is decided by minimal
residual rule

ĵ = argmin
j

D∑
i=1

∥∥YYY i −XXXiδδδij(WWW
i)
∥∥2
F
, (8)

where δij is the matrix indication function associated with ith
sensor, defined similarly as the aforementioned section.

D. Multi-task multivariate sparse representation with sparse
noise (MTMV-SRC+N)

During the process of collecting data in the field, there are
many environmental clutter noises such as impulsive noise or
wind noise affecting the true characteristics of the signal. Un-
fortunately, due to the imperfectness of the environment, these
noise sources are uncontrollable and can have arbitrarily large
magnitude, which sometime dominate the collected signal. It
is obvious that by removing these clutter noises it is possible to
improve overall classification performance. Fortunately, these
type of noises usually occur in certain frequency bands. We
expect that this will only affect some coefficients in our
cepstral feature domain, which is the feature space used in our
experiments. In this case, the linear model of the observation
YYY i, i = 1, ..., D with respect to the training data XXXi should
be modified as

YYY i =XXXiWWW i +EEEi +NNN i, i = 1, ..., D, (9)

where NNN i is a small dense additive noise and EEEi ∈ Rn×di
is a matrix of clutter noise with arbitrarily large magnitude.
The nonzero entries of EEEi ∈ Rn×di represents which cepstral
features of YYY i are corrupted. Note that it might be possible
that all these cepstral features are corrupted. The location of
corruption can differ for different tasks since sensors with
different characteristics will have different types of errors. In
a more general scenario, one can assume that each error EEEi is
sparsely represented with respect to some basis TTT i ∈ Rn×mi

.
That is, EEEi = TTT iZZZi for some sparse matrices ZZZi ∈ Rmi×di .

The idea of exploiting sparse prior of the error has been de-
veloped by Wright et. al. [9] in the context of face recognition,



and Candès et. al. [24] in robust principle component analysis.
In this section, we propose a new sparse representation method
that simultaneously performs classification and removes clutter
noise. By taking the advantage of knowing that errors EEEi

are sparse, we propose to solve the following optimization
to retrieve coefficients WWW i as well as errors EEEi

(ŴWW,ÊEE) = argmin
WWW,EEE

1

2

D∑
i=1

∥∥YYY i −XXXiWWW i −EEEi
∥∥2
F

+ λw ‖WWW‖1,q + λe ‖EEE‖1 , (10)

where λw and λe are positive parameters, and EEE is a matrix
formed by error matrices EEEi’s: EEE = [EEE1,EEE2, ...,EEED]. The l1-
norm of matrixEEE is defined as the sum of absolute value of the
entries: ‖EEE‖1 =

∑
ij |eij |. It is clear from this minimization

that we impose both common sparsity on WWW and entry-wise
sparsity on the error EEE.

Once the sparse solution WWW and error EEE are computed,
the clean cepstral features YYY ic is recovered by setting YYY ic =
YYY i −EEEi. To identify the class, we slightly modify the label
inference in (8) that accounts for the error EEEi

ĵ = argmin
j

D∑
i=1

∥∥YYY i −XXXiδδδij(WWW
i)−EEEi

∥∥2
F
. (11)

III. ALGORITHM

In this section, we propose a fast algorithm to solve (10).
The optimization (7) can be solved similarly by setting the
parameter λe in (10) with respect to error regularization
to zero. Our algorithm is relied on the classical alternating
direction method of multipliers (ADMM). This method has
been recently applied successfully into l1-norm minimization
[25] [26].

Denote the loss function L(WWW,EEE) =
1
2

∑D
i=1

∥∥YYY i −XXXiWWW i −EEEi
∥∥2
2
, our ultimate goal is to

solve the following optimization

min
WWW,EEE
L(WWW,EEE) + λe ‖EEE‖1 + λw ‖WWW‖1,q . (12)

One of the key ideas of the algorithm is to decouple
L(WWW,EEE), ‖EEE‖1 and ‖WWW‖1,q . This can be performed by
introducing auxiliary variables to reformulate the problem into
a constrained optimization

min
WWW,EEE,VVV ,UUU

L(WWW,EEE) + λe ‖UUU‖1 + λw ‖VVV ‖1,q

subject to WWW = VVV ,EEE = UUU.
(13)

The reason behind variable splitting method is that it might
be easier to solve the constrained problem (13) than its
unconstrained counterpart (12). Since (13) is an equality con-
strained problem, the Augmented Lagrangian method (ALM)
can be used to solve by minimizing the augmented Lagrangian
function fβE ,βW

(WWW,EEE,VVV ,UUU ;BBBE ,BBBW ) defined as

L(WWW,EEE) + λe ‖UUU‖1 + 〈BBBE ,EEE −UUU〉+
βE
2
‖EEE −UUU‖2F

+ λw ‖VVV ‖1,q + 〈BBBW ,WWW − VVV 〉+
βW
2
‖WWW − VVV ‖2F , (14)

where BBBE and BBBW are the multipliers of the two linear
constraints, and βE , βW are the positive penalty parameters.
The ALM consists in solving fβE ,βW

(WWW,EEE,VVV ,UUU ;BBBE ,BBBW )
with respect to WWW , EEE, UUU and VVV jointly, keeping BBBE and
BBBW fixed, and then updating BBBE and BBBW . However, this
minimization is often not easy. Fortunately, by considering
the separable structure of the objective function fβE ,βW

, we
can further simplify the problem by minimizing fβE ,βW

with
respect to variables WWW , EEE, UUU and VVV separately. The method
is called alternating direction method of multipliers (ADMM)
and given below

1: Choose WWW 0, UUU0, VVV 0, BBB0
E BBB0

V and βE , βW
2: While not converged do
3: WWW t+1 = argminWWW f(WWW,EEEt,UUU t,VVV t;BBBU,t,BBBV,t)
4: EEEt+1 = argminEEE f(WWW t+1,EEE,UUU t,VVV t;BBBU,t,BBBV,t)
5: UUU t+1 = argminUUU f(WWW t+1,EEEt+1,UUU,VVV t;BBBU,t,BBBV,t)
6: VVV t+1 = argminVVV f(WWW t+1,EEEt+1,UUU t+1,VVV ;BBBU,t,BBBV,t)
7: BBBU,t+1 := BBBU,t + βE(WWW t+1 −UUU t+1)
8: BBBV,t+1 := BBBV,t + βW (WWW t+1 − VVV t+1).

Algorithm 1: HMT representation via ADMM

The first optimization subproblem with respect to WWW (line
3 of the Algorithm 1) has quadratic structure, thus, easy to
solve via setting the first-order derivative to zero. Furthermore,
since the loss function L(WWW,EEE) is a sum of convex functions
associated with sub-matricesWWW i, one can simultaneously seek
for WWW i

t+1 which has explicit solution as follows

WWW i
t+1 = (XXXiTXXXi+βWIII)

−1[XXXiT (YYY i−EEEit)+βWVVV it−BBBiV,t],
(15)

where III is an identity matrix of size p × p, and
UUU it,BBB

i
U,t,VVV

i
t,BBB

i
V,t are sub-matrices of UUU t, BBBU,t, VVV t and BBBV,t,

respectively.
The second optimization subproblem with respect toEEE (line

4 of the Algorithm 1) has similar structure and can be solved
by

EEEit+1 = (1 + βE)
−1(YYY i −XXXiWWW i

t+1 + βEUUU
i
t −BBBiE,t). (16)

The third optimization subproblem with respect to UUU (line
5 of the Algorithm 1) is the standard l1-minimization. In fact,
by a simple calculus, this optimization is equivalent to

min
UUU

1

2

∥∥∥∥EEEt+1 +
1

βE
BBBE,t −UUU

∥∥∥∥2
F

+
λe
βE
‖UUU‖1 , (17)

which is well-known shrinkage problem. The explicit solution
is derived by

UUU t+1 = Shrink(EEEt+1 +
1

βE
BBBE,t, λe/βE), (18)

where the operator Shrink(·) performs entry-wise and is de-
fined by Shrink(z, ε) = sgn(z)(|z| − ε) for |z| ≥ ε and zero
otherwise.

The last optimization subproblem with respect to VVV (line 6



of the Algorithm 1) can be recast as

min
VVV

1

2

∥∥∥∥WWW t+1 +
1

βW
BBBW,t − VVV

∥∥∥∥2
F

+
λw
βW
‖VVV ‖1,q . (19)

It is clear that the objective function in (19) has separable
structure. Therefore, this optimization can be tackled by mini-
mizing with respect to each row of VVV separately. Specifically,
if we denote wwwi,t+1, bbbW,i,t and vvvi,t+1 as rows of matrices
WWW t+1,BBBW,t and VVV t+1, respectively, then for each i = 1, ..., p
we solve a sub-problem,

vvvi,t+1 = argmin
vvv

1

2
‖zzz − vvv‖2l2 + γ ‖vvv‖q , (20)

where zzz := wwwi,t+1 − bbbW,i,t/βW and γ := λw/βW .
Though (20) is sufficiently simple to derive an explicit solution
for any value of q. In this paper we only consider the simplest
situation q = 2. It is now easy to check that solution of (20)
has explicit form

vvvi,t+1 =

(
1− γ

‖zzz‖2

)
+

zzz

where (uuu)+ is a vector with entries max(ui, 0).

IV. SIMULATION RESULTS AND ANALYSIS

In this section, we perform extensive experiments on real
multi-sensor data sets and compare the results with several
conventional classification methods such as logistic regression
and SVM to verify the effectiveness of our proposed approach.

A. Experiment setup

In this part, we explain briefly the experiment setup.
1. Data collection. Footstep data collection was conducted

by two sets of nine sensors consisting of four acoustic, three
seismic, one passive infrared (PIR) and one ultrasonic sensors
in two days (see Fig. 1 for 3 different types of sensors). Tests
with human footstep include one person walking, one person
jogging, two people walking, two people running, and a group
of multiple people walking, running. Tests with human-animal
footstep include one person leading horse or dog, two people
leading a horse and a mule, three people leading a horse, a
mule and a donkey and a group of multiple people with several
dogs. In each test, people and animal could be carrying varying
amount of loads such as backpack, metal pipe. People in the
test comprise of both males and females.

During each run, test subjects are asked to follow a path
where two sets of sensors are positioned and return to the
start point. The two sensor sets are placed separately in which
each set consists of all nine sensors. A total of 69 round-
trip runs were conducted in two days, including 34 runs for
human footstep and 35 runs for human-animal footsteps. The
collected data, named DEC09 and DEC10 corresponding to
two days December 09 and 10, is presented in Table IV-A.

2. Segmentation. To accurately perform classification, it
is necessary to extract the actual events from the run series.
Although the raw signal of each run might be several minutes
in length, the event is much shorter as it occurs in a short

TABLE I
TOTAL AMOUNT OF DATA COLLECTED IN TWO DAYS.

Data Human Human lead animal
DEC09 16 15
DEC10 18 20

Fig. 1. Four acoustic sensors (top left), seismic sensor (top right) and passive
infrared (PIR) sensor (bottom).

period of time when the test subject is close to the sensors.
In addition, event can be at arbitrary locations. To extract
useful features, we need to detect time locations where the
physical event occurs. To do this, we identify the location
with strongest signal response by spectral maximum detection
method [27]. From this location, 10 segments with 75%
overlap on both sides of the signals are taken, each has 30000
samples corresponding to 3 seconds signal. This process is
performed for all sensor data. Overall, for each run, we have
9 signals captured by 9 sensors, each signal is divided into
10 overlapping segments, thus D = 9 and each di = 10,
i = 1, ..., D.

Fig. 2 visually demonstrates signals captured by four distinct
sensors where the event is one person walking. As one can see,
different sensors characterize different signal behaviors. The
seismic signal shows more clearly the cadences of the test
person while we are not able to observe this event by other
sensing signals. To have a closer look at the sensing signals,
we further show in Fig. 3 one segment extracted from each of
the 9 distinct sensing signals. In this figure, the forth acoustic
signal is corrupted due to the sensor failure during collection
process.

3. Feature extraction. After segmentation, we extract
Cepstral features [28] in each segment and keep the first
500 coefficients for classification. Cepstral features have been
proved to be effective in speech recognition and acoustic signal
classification. The feature dimension which is represented by
the number of extracted cepstral features is n = 500.

B. Two class problem

First, we demonstrate the effectiveness of exploiting correla-
tions between multiple sensors over the use of a single sensor
on two-class classification problem, in particular classifying
human and human-animal footsteps. In this experiment, we
use the DEC10 data for training and DEC09 data for testing,
which leads to 36 training and 31 testing samples. For each ith
sensor, the corresponding training dictionaryXXXi is constructed
from all the cepstral feature segments extracted from the 36
training signals. In our experiments, 10 segments are taken
from each individual sensor signal. Therefore, each training
dictionaries XXXi, i = 1, ..., 9 is of size 500 × 360 and the
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Fig. 2. Signals captured by four sensors including acoustic, seismic, PIR
and ultrasonic sensors.

associated observations YYY i is of size 500 × 10 where 500 is
the feature dimension.

Classification performance is summarized in Table II, where
the first column refers to the methods used in our experiments
which include multivariate sparse representation for classifi-
cation (MV-SRC) for all 9 sensors separately and multi-task
MV-SRC (MTMV-SRC) for different combinations of sensors.
We note here that the first four sensors are acoustic, the next
three (sensors 5 to 7) are seismic sensors and the last two
are PIR and ultrasonic sensors, respectively. The second and
third columns describe classification accuracy of human and
human-animal footsteps, and the last column is the overall
accuracy. As can be seen for the table II, MTMV-SRC using
the first two acoustic sensors simultaneously outperforms MV-
SRC when using each sensor separately. Similar behavior can
be observed with three seismic sensors. When all 9 sensors
are employed, MTMV-SRC yields the best performance.

It was noticed that during experimentation that half of the
testing data collected from two acoustic sensors 3 and 4 in
DEC09 is completely noisy due to the malfunction of these
two sensors in December 09 (see Fig. 3 for demonstration
of a noisy segment extracted from 4th acoustic sensor). This
explains why classification performance of the two sensors are
quite low compared to sensors 1 and 2.

The next experiment compares our proposed approach with
current state-of-the-art classification methods such as (group)
sparse logistic regression (SLR) [29], kernel (group) SLR
[30], linear support vector machine (SVM) and kernel SVM
[31]. In this experiment, 7 sensors, namely sensors 1, 2 5-
9 are utilized. To exploit correlation across tasks (sensors) in
logistic regression method, we utilize the heterogeneous model
proposed in [30]. The main idea is to associate each training
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Fig. 3. Signal segments of length 30000 captured by sets of 9 sensors
including acoustic, seismic, PIR and ultrasonic sensors.

dictionary XXXi ∈ Rn×p with a coefficient vector wwwi ∈ Rn

and the logistic loss is taken over the sum of all the tasks.
Lasso or group Lasso regularization can be incorporated into
the optimization to retrieve coefficient vectors wwwi, i = 1, ..., 7.
Each segment of the test sample is then assigned to a class
and the final decision is made by selecting the label that



TABLE II
CLASSIFICATION ACCURACY (%) FOR TWO CLASS PROBLEM WITH

TRAINING SAMPLES TAKEN FROM DEC10, COMPARING MV-SRC TO
MTMV-SRC WITH DIFFERENT COMBINATIONS OF SENSORS.

Methods H HA OA
MV-SRC sensor 1 75.00 46.67 60.84
MV-SRC sensor 2 75.00 53.33 64.17
MV-SRC sensor 3 37.50 73.33 55.42
MV-SRC sensor 4 75.00 33.33 54.17
MV-SRC sensor 5 50.00 66.67 58.33
MV-SRC sensor 6 56.25 66.67 61.46
MV-SRC sensor 7 56.25 66.67 61.46
MV-SRC sensor 8 31.25 73.33 52.29
MV-SRC sensor 9 68.75 53.33 61.04

MTMV-SRC sensors 1-2 81.25 60.00 70.63
MTMV-SRC sensors 5-7 75.00 66.67 70.84

MTMV-SRC sensors 1,2,5-9 81.25 66.67 73.96

TABLE III
CLASSIFICATION ACCURACY (%) FOR TWO CLASS PROBLEM WITH

TRAINING SAMPLES TAKEN FROM DEC10, COMPARING MTMV-SRC
WITH CONVENTIONAL CLASSIFIERS. 7 SENSORS 1, 2 AND 5-9 ARE USED

IN THIS EXPERIMENT.

Methods H HA OA
MTMV-SRC 81.25 66.67 73.96

SLR 81.25 53.33 67.29
Group SLR 75.00 66.67 70.84
Kernel SLR 87.50 46.67 67.09

Kernel group SLR 87.50 53.33 70.42
SVM 81.25 53.33 67.29

Kernel SVM 81.25 60.00 70.63

occurs the most. For SVM, multiple tasks are incorporated
by concatenating all 7 training dictionaries to form a large
dictionary XXX ∈ R7n×p. SVM algorithm is then performed on
XXX and voting scheme is employed to assign class label. For the
kernel versions, we use RBF kernel with bandwidth selected
via cross validation. As one can observe from Table III, our
approach outperforms all conventional classifiers.

To further show the efficiency of our approach, we repeat the
same experiments using DEC09 data for training and DEC10
data for testing. The classification performances are provided
in Table IV and V. In these experiments, we exclude 3th
and 4th sensors due to the sensor malfunction in December
09. It can be seen from Table IV that incorporating all 7
sensors yields the best classification accuracy. Table V com-
pares our approach to traditional classifiers. One can observe
that MTMV-SRC is comparable to kernel SVM and kernel
group SLR. However, we will experimentally show in the
next section that by taking clutter noise into account, our
MTMV-SRC + N algorithm considerably outperforms all other
methods.

C. Deal with arbitrarily large error

This section shows the significance of imposing additional
l1-regularization term into MTMV-SRC model. This regular-

TABLE IV
CLASSIFICATION ACCURACY (%) FOR TWO CLASS PROBLEM WITH

TRAINING SAMPLES TAKEN FROM DEC09, COMPARING MV-SRC TO
MTMV-SRC WITH DIFFERENT COMBINATIONS OF SENSORS.

Methods H HA OA
MV-SRC sensor 1 66.67 40.00 53.34
MV-SRC sensor 2 88.89 35.00 61.95
MV-SRC sensor 5 50.00 85.00 67.50
MV-SRC sensor 6 66.67 65.00 65.84
MV-SRC sensor 7 27.78 70.00 48.89
MV-SRC sensor 8 88.89 25.00 56.95
MV-SRC sensor 9 66.67 20.00 43.34

MTMV-SRC sensors 1-2 94.44 35.00 64.72
MTMV-SRC sensors 5-7 38.89 95.00 66.95

MTMV-SRC sensors 1,2,5-9 77.78 65.00 71.39

TABLE V
CLASSIFICATION ACCURACY (%) FOR TWO CLASS PROBLEM WITH

TRAINING SAMPLES TAKEN FROM DEC09, COMPARING MTMV-SRC
WITH CONVENTIONAL CLASSIFIERS. 7 SENSORS 1, 2 AND 5-9 ARE USED

IN THIS EXPERIMENT.

Methods H HA OA
MTMV-SRC 77.78 65.00 71.39

SLR 55.56 80.00 67.78
Group SLR 55.56 85.00 70.28
Kernel SLR 88.89 50.00 69.45

Kernel group SLR 88.89 55.00 71.95
SVM 77.78 60.00 68.89

Kernel SVM 77.78 65.00 71.39

ization is expected to compensate for the unwanted clutter
noises in the signals during the data collection. We conduct
similar two-class classification experiments with training sam-
ples taken from DEC10 data and report results in Table VI.
In addition, Table VII shows results with training samples
taken from DEC09 data. It can be seen from the tables that by
encouraging sparsity for the noise term, we can considerably
improve classification accuracy for both classes as well as
overall performance.

V. CONCLUSION AND DISCUSSION

In this paper, we propose a novel multi-task multivariate
joint structured sparsity-based classification method (MTMV-
SRC) for personnel footstep recognition, where the data is
collected from nine sensors including acoustic, seismic, PIR
and ultrasonic sensors. Our proposed approach shows how to
efficiently exploit correlations between sensors measuring the
same physical events. Simulation results demonstrate that our
method yields highly accurate classification performance and
outperforms many classical classifiers such as (group) sparse
logistic regression (SLR), support vector machine (SVM) and
their kernel versions. Furthermore, we extend our model to
deal with large clutter noise, which is indispensable in many
practical scenarios. We experimentally illustrate the impor-
tance of enforcing another sparse noise regularization into



TABLE VI
CLASSIFICATION ACCURACY (%) FOR TWO CLASS PROBLEM WITH

TRAINING SAMPLES TAKEN FROM DEC10, SHOWING THE SUPERIORITY
OF TAKING SPARSE NOISE INTO ACCOUNT FOR BOTH MV-SRC AND

MTMV-SRC METHODS.

Methods H HA OA
MV-SRC+N sensor 1 81.25 53.33 67.29
MV-SRC+N sensor 2 75.00 60.00 67.50
MV-SRC+N sensor 3 68.75 46.67 57.71
MV-SRC+N sensor 4 93.75 6.67 50.21
MV-SRC+N sensor 5 68.75 40.00 53.38
MV-SRC+N sensor 6 56.25 73.33 64.79
MV-SRC+N sensor 7 68.75 66.67 67.71
MV-SRC+N sensor 8 37.75 73.33 55.54
MV-SRC+N sensor 9 68.75 53.33 61.04

MTMV-SRC+N sensors 1-2 81.25 66.67 73.96
MTMV-SRC+N sensors 1-4 56.25 86.67 71.46
MTMV-SRC+N sensors 5-7 56.25 86.67 71.46

MTMV-SRC+N sensors 1,2,5-9 81.25 73.33 77.29

TABLE VII
CLASSIFICATION ACCURACY (%) FOR TWO CLASS PROBLEM WITH

TRAINING SAMPLES TAKEN FROM DEC09, SHOWING THE SUPERIORITY
OF TAKING SPARSE NOISE INTO ACCOUNT FOR BOTH MV-SRC AND

MTMV-SRC METHODS.

Methods H HA OA
MV-SRC+N sensor 1 83.33 35.00 59.17
MV-SRC+N sensor 2 88.89 40.00 64.45
MV-SRC+N sensor 5 50.00 85.00 67.50
MV-SRC+N sensor 6 61.11 65.00 63.06
MV-SRC+N sensor 7 61.11 45.00 53.06
MV-SRC+N sensor 8 83.33 25.00 54.17
MV-SRC+N sensor 9 61.11 40.00 50.56

MTMV-SRC+N sensors 1-2 83.33 55.00 69.17
MTMV-SRC+N sensors 5-7 61.11 80.00 70.56

MTMV-SRC+N sensors 1,2,5-9 72.22 80.00 76.11

MTMV-SRC to remove arbitrarily large noise. This model sig-
nificantly improves the overall classification accuracy. Lastly,
we propose a first-order fast algorithm based on classical
alternative direction method to solve aforementioned models.
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