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ABSTRACT
The low-rank matrix approximation problem involves find-
ing of a rank k version of a m × n matrix AAA, labeled AAAk,
such that AAAk is as ”close” as possible to the best SVD ap-
proximation version of AAA at the same rank level. Previous
approaches approximate matrix AAA by non-uniformly adap-
tive sampling some columns (or rows) of AAA, hoping that
this subset of columns contain enough information about AAA.
The sub-matrix is then used for the approximation process.
However, these approaches are often computationally inten-
sive due to the complexity in the adaptive sampling. In
this paper, we propose a fast and efficient algorithm which
at first pre-processes matrix AAA in order to spread out in-
formation (energy) of every columns (or rows) of AAA, then
randomly selects some of its columns (or rows). Finally, a
rank-k approximation is generated from the row space of
these selected sets. The preprocessing step is performed by
uniformly randomizing signs of entries ofAAA and transforming
all columns of AAA by an orthonormal matrix FFF with existing
fast implementation (e.g. Hadamard, FFT, DCT...). Our
main contribution is summarized as follows.

1) We show that by uniformly selecting at random d rows

of the preprocessed matrix with d = O
(

1
η
kmax{log k, log 1

β
}
)

,

we guarantee the relative Frobenius norm error approxima-
tion: (1 + η) ‖A−Ak‖F with probability at least 1− 5β.

2) With d above, we establish a spectral norm error ap-

proximation:
(

2 +
√

2m
d

)
‖A−Ak‖2 with probability at least

1− 2β.
3) The algorithm requires 2 passes over the data and runs

in time O
(
mn log d+ (m+ n)d2

)
which, as far as the best

of our knowledge, is the fastest algorithm when the matrix
AAA is dense.

4) As a bonus, applying this framework to the well-known
least square approximation problem min ‖AAAxxx− bbb‖ whereAAA ∈
Rm×r, we show that by randomly choosing d = O

(
1
η
γr logm

)
,

the approximation solution is proportional to the optimal
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one with a factor of η and with extremely high probability,
(1− 6m−γ), say.

Categories and Subject Descriptors
F.2.1 [Numerical Algorithms and Problems]: Compu-
tations on matrices

General Terms
Algorithms, Theory

1. INTRODUCTION
Low-rank matrix approximation has been widely used in

many applications involving latent semantic indexing, DNA
microarray data, facial recognition, web search, clustering,
just to name a few (see [1] for a detailed explanation of these
applications). The Singular Value Decomposition (SVD) [2]
gives the optimal rank-k approximation of a matrix AAA in the
sense of both error bound in Frobenius and spectral norm.
However, computing SVD requires the amount of memory
and time which are superlinear in the size of AAA, hence the
true SVD becomes prohibitive in many applications. Re-
cently, several developments showed that a subset of rows
(or columns) which is obtained by adaptively sampling a few
rows (or columns) of AAA is sufficient for the approximation
process, particularly the work of Frieze et al. [3], Drineas
et al. [1], [4], Har-Peled [5], Deshpande et al. [6], [7] and
Sarlós [8].

The first adaptive-sampling algorithm was originated from
Frieze et al. [3] which shows how to sample rows of AAA.
Drineas et al. [1] then proposes a simpler algorithm to com-
pute an approximation of the SVD. Both methods claim an
additive Frobenius norm error which depends on the Frobe-
nius norm of the input matrix AAA. This approach is undesir-
able as this norm of AAA is often large. Also built on Frieze
et al.’s idea, more recently Har-Peled [5] and Deshpande et
al. [7] propose more intriguing sampling techniques, one em-
ploys geometric ideas while the other pioneers the concept
of volume sampling. They both showed that the Frobenius
norm approximation error is relative, implying that the er-
ror is (1 + η) proportional to the best rank-k approximation
and the technique is far better than additive one. How-
ever, the amount of time for constructing sampling distribu-
tion seems to be costly. Most recently, Sarlós [8] proposes
a different approach based on results from fast Johnson-
Lindenstrauss transform (FJLT) [9]. The paper shows that
if a d = O(k/η + k log k) random linear combination CCC of
rows of AAA is constructed, then the rank-k approximation
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generated from row space of CCC achieves a relative error with
constant probability (at least 1/2, say). This algorithm is
the best so far in the sense of the least number of passes
over the input data AAA (only two), as well as the running
time O(Md + (n + m)d2) where M denotes the number of
non-zero elements of AAA.

With a similar flavor but from a different perspective, we
propose a new fast and efficient algorithm, demonstrating

that by uniformly sampling d = O
(

1
η
kmax{log k, log 1

β
}
)

rows ofAAA after preprocessing, the rank-k approximation also
guarantees the relative error with probability at least (1 −
5β). Moreover, the algorithm only needs two passes over the
input data and the running time isO

(
mn log d+ (m+ n)d2

)
which, as far as the best of our knowledge, is the fastest al-
gorithms when the matrix AAA is dense. Our algorithm also
produces a low-rank approximation whose spectral norm er-
ror is

√
2m/d, proportional to the best rank-k version.

Our approach is motivated from remarkable results in
the compressed sensing (CS) community. The CS prob-
lem states that one can perfectly recover a k-sparse signal
xxx ∈ Rm which has at most k-nonzero coefficients from an
observation yyy ∈ Rd, which is a random projector of x onto
a much lower dimensional space: d = O(k logm). To intu-
itively explain this magical phenomenon, it can be observed
that xxx is a low dimensional signal embedded into a high
dimensional space. Hence, under some good linear trans-
forms, yyy will preserve enough information of xxx such that the
critical information can be efficiently extracted by a good
reconstruction algorithm. In a recent paper [10], we show
that a structurally random matrix (SRM) is a promising
candidate for compressed sensing. Mathematically, SRM ΦΦΦ
of size d×m is a product of three matrices

ΦΦΦ =

√
m

d
SSSFFFDDD (1)

where

• DDD, the local randomizer, is a diagonal matrix whose di-
agonal entries are i.i.d Rademacher random variables:
P(Dii = ±1) = 1/2.

• FFF is any m×m orthonormal matrix. In practice, one
can chooseFFF among many with efficient fast-computable
algorithms, for instance, Hadamard transform, FFT,
DCT, and DWT.

• SSS, the uniformly random downsampler, is an d × m
matrix whose d rows are randomly selected from rows
of an m×m identity matrix.

The intuition behind SRM is the Uncertainty Principle
which states that a signal whose energy is spread out in
time/spacial domain is concentrated in frequency domain
and vice versa. From this observation, it is necessary to
randomize all entries of xxx to produce a noise-like signal be-
fore applying a fast transform to it.

In our proposed algorithm, we utilize SRM ΦΦΦ as a pre-
processor. By projecting columns of AAA onto ΦΦΦ, we hope
that the row space of ΦΦΦAAA will contain a good approximation
of the row space of the entire matrix AAA. In a later section
of the paper, we will show that a sufficient selection of rows
of FFFDDDAAA will produce a fast approximation matrix and with
a relative error in the Frobenius norm as well as small error
in the spectral norm.

It is necessary to note that our algorithm is different from
the one of Sarlós [8] in terms of the last pre-processing step.
The later uses the so-called FJLT which is basically a com-
bination of three matrices: ΦΦΦ = PPPFFFDDD where FFF and DDD are
both defined above, and PPP is a sparse matrix whose en-
tries are chosen with distribution specified in [9]. Hence,
the projections of columns of AAA on ΦΦΦ are obtained by multi-
plication operators on PPP . In our algorithm, however, instead
of using matrix multiplication, d rows of matrix FFFDDDAAA are
uniformly selected in a random manner. Hence, if FFF is a
fast transform like Hadamard or FFT, the computational
time can be reduced from O(mnd) to O(mn log d)[11] with
a dense input matrixAAA. Our proofs are also significantly dif-
ferent: we use remarkable results in Banach space to claim
for our results, while Sarlós arguments based on Johnson-
Lindenstrauss lemma. In addition, unlike previously adap-
tively sampling techniques [3], [1], [4], [5], [7] whose sam-
pling distributions base mostly on the characteristics of rows
(columns) of AAA, our algorithm sample rows of FFFDDDAAA uni-
formly at random which is superior in the simplicity sense.

While preparing this paper, we are awared of two closely-
related efforts on constructing a similar preprocess as SRM
[11], [12]. However, there are still several significant dif-
ferences from our approach. In the first effort [11], entries
of the diagonal matrix DDD are complex and distributed uni-
formly on the unit circle. However, they were only able to
prove approximation bound if the matrix SSS is sampled with
an order of k2 coordinates (d = O(k2)) which is far over
k log k. Not only the techniques are different, our resulting
spectral norm bound is also better by a factor of

√
d. More-

over, our approach is more general in the choice of the fast
transform FFF . In the second effort [12], the problem is dif-
ferent: the authors apply a pre-processing step to improve
the least square approximation. Actually, by applying our
technique, the number of samples here can be decreased by
a factor of log(r logm) and the probability of success is ex-
tremely higher. We will present this result in another version
in the near future.

The paper is organized as follows. The next section covers
critical background materials on matrix norms and linear al-
gebra. In section III, we introduce the algorithm and present
our main results for matrix approximation. We devote the
last sections for our arguments and concluding remarks.

2. NOTATIONS AND REVIEW OF LINEAR
ALGEBRA

Here are some notations used throughout the paper. Ma-
trices are represented by bold capital letters while vectors
are bold lower-case. Matrix and vector entries are not bold,
just like any scalar. For instance, AAA is a matrix, and its en-
try at row ith and column jth is Aij . Similarly, aaa is a vector,
and ai is its ith entry. When we mention about a vector aaa,
we assume that it is the row vector while aaa∗ is its transpose.
In a matrix AAA, aaai is defined as the ith-row of the matrix AAA.

2.1 Matrix and vector norms
Several different matrix norms are used throughout this

paper. The spectral norm of a matrix XXX is denoted by ‖XXX‖
whereas the Frobenius norm is represented as ‖XXX‖F . If we
denote the Euclidean inner product between two matrices
is 〈XXX,YYY 〉 = trace(XXX∗YYY ), then ‖XXX‖F = 〈XXX,XXX〉. It can be
easily verified that: ‖XXX‖F = sup‖YYY ‖F=1 〈XXX,YYY 〉.
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1: Input: Matrix AAA ∈ Rm×n, error parameter η and prob-
ability success β

2: Output: Matrix ÃAAk ∈ Rm×n of rank at most k

1. Set d=O
(

1
η
µ2m2max

{
k,
√
k logm

β

}
max

{
logk,log 1

β

})
where µ = maxi,j |Fij |2

2. Randomly pick up a subset Ω of d entries from
a set {1, 2, ...,m} with probability of each entry
selection is d/m

3. Compute CCC =
√

m
d
FFFΩDDDAAA = ΦΦΦAAA.

4. Project rows of AAA onto CCC to obtain PCCC (AAA)

5. Compute the best rank-k approximation of
PCCC (AAA), ÃAAk = PCCC,k (AAA)

Algorithm 1: Low-rank matrix approximation algorithm

Another useful norm for our purpose is the Schatten norm.
Given a parameter q ≥ 1, the Schatten q-norm of a matrix

XXX is defined as: ‖XXX‖Sq =
(∑

i s
q
i

)1/q
where si’s are singular

values of the matrix XXX.
Note that when q =∞, the Schatten q-norm is the spec-

tral norm: ‖XXX‖S∞ = ‖XXX‖. Schatten 2-norm is the Frobe-
nius norm: ‖XXX‖S2

= ‖XXX‖F . The following properties of
Schatten p-norm are used in the paper:

1) When p ≤ q, the inequality occurs: ‖XXX‖Sq ≤ ‖XXX‖Sp .

2) If r is a rank of XXX, then with q ≥ log(r), it holds that
‖XXX‖ ≤ ‖XXX‖Sq ≤ e ‖XXX‖.

With vectors, the only norm we consider is the l2-norm, so
we simple denote l2-norm of a vector by ‖xxx‖ which is equal

to
√
〈xxx,xxx〉, where 〈xxx,yyy〉 is the Euclidean inner product be-

tween two vectors. Like matrices, we can straightforwardly
establish: ‖xxx‖ = sup‖yyy‖=1 〈xxx,yyy〉.

2.2 Singular value decomposition
The Singular Value Decomposition (SVD) of a matrixAAA ∈

Rm×n is denoted by AAA = UUUΣΣΣVVV ∗ where UUU ∈ Rm×ρ, ΣΣΣ ∈
Rρ×ρ, VVV ∈ Rρ×n with ρ being the rank ofAAA. The best rank-k
approximation with respect to spectral and Frobenius norm
of AAA turns out to be AAAk = UUUkΣΣΣkVVV

∗
k, where UUUk is the first k

columns of UUU .
The orthogonal projector of rows of a matrix AAA onto a

matrix CCC is denoted by PCCC(AAA) = AAACCC†CCC where CCC† is the
Moore-Penrose pseudoinverse of CCC. A best rank-k approxi-
mation of PCCC(AAA) is defined by PCCC,k(AAA).

3. OUR ALGORITHM AND MAIN RESULTS
Our Algorithm 1 takes matrixAAA ∈ Rm×n, an error param-

eter η and a probability success β as inputs. At first the AAA
is preprocessed by randomizing signs its columns and pass-
ing through a fast linear transform, for instance, Hadamard,
FFT, DCT, Wavelet, to name a few. A matrixCCC is then con-
structed by uniformly randomly sampling a subset of rows
from the FFFDDDAAA matrix. Next steps are followed similarly
as the algorithms of A. Deshpande et al. [7] and T. Sarlós
[8]. The low-rank approximation matrix is constructed by
projecting AAA onto CCC and computing the best rank-k approx-
imation of this projector.

Remark 1. It is important to understand the signifi-
cance of the parameter µ here. µ can be seen as a measure
of how concentrated and expanded magnitude of rows of the
transform FFF are. The value of µ ranges from 1/m to 1. In
the worse case when µ = 1 and FFF is a diagonal matrix with
|Fii| = 1, it implies that most of the entries of AAA are totally
lost in the random selection process, except when d = m.
Hence, the matrixCCC is certainly not able to represent a good
approximation of AAA at small d. On the other hand when
µ = 1/m, FFF is a Hadamard or Fourier matrix, entries of FFF
are spread out uniformly and number of rows to select is op-

timal: d = O
(

1
η

max
{
k,
√
k log 2m

β

}
max

{
log k, log 3

β

})
.

Our main result for the Algorithm 1 is presented in the
following theorem. Its proof is delayed to the next section.

Theorem 1. Suppose AAA ∈ Rm×n, let η ∈ (0, 1] and β ∈
(0, 1). Running the Algorithm 1 will return a rank-k approx-

imation matrix ÃAAk. Then the three following claims hold:

1.
∥∥∥AAA− ÃAAk∥∥∥

F
≤ (1 + η) ‖AAA−AAAk‖F with probability at

least 1− 5β

2.
∥∥∥AAA− ÃAAk∥∥∥ < (2 +

√
2m
d

) ‖AAA−AAAk‖ with probability at

least 1− 2β,

3. The algorithm requires two passes over the data and
runs in time O

(
mn log d+ (m+ n)d2

)
Remark 2. Recently, there appears two inspiring works

of N. Ailon and E. Liberty [13] [14] which significantly im-
prove the running time of Johnson-Lindenstrauss (JL) trans-
form. Particularly, they showed that by connecting results in
coding theory, a fast linear mapping ΦΦΦ ∈ Rd×m which guar-
antees JL Lemma is efficiently designed [13]. The ’efficiency’
implies complexity of the projection of AAA onto ΦΦΦ is reduced
to O(mn log d) (the efford of [14] even archive a more de-
creasing complexity which is a order O(mn). Nevertheless,
maximum entries of each column of AAA need to be strictly
restricted). These FJLT can be applied directly to Sarlós’s
algorithm [8] to obtain less running time. Hence, it is now
essential to evaluate the proposed algorithm with Sarlós’s
one. For a fair comparison, we fix the transform matrix to be
Hardarmard and set probability of success to 1−m−1. Then

our algorithm needs d = O
(

1
η

max
{
k logm,

√
k log2 m

})
and O

(
mn log(k logm) + (m+ n)(k logm)2

)
for computa-

tional complexity (when k is less than O(log2 m)), while
applying the best FJLT so far [13] to Sarlós’s algorithm will
requires

O
([
mn log(k log k) + (m+ n)(k log k)2] logm

)
complexity which is still higher than that of our by approx-
imately a factor of logm.

4. PROOF OF THEOREM 1
Suppose matrix AAA has rank ρ. Let AAA = UUUΣΣΣVVV ∗. Denote

pairs UUUk, VVV k and UUUρ−k, VVV ρ−k the matrices of the first k
and last (ρ− k) singular vectors of UUU , VVV , respectively. Also
denote ΣΣΣk and ΣΣΣρ−k diagonal matrices of the first k and
last (ρ − k) singular values of ΣΣΣ. In order to establish the
Theorem 1, we use the two following lemmas and theorems.
These lemmas will be proven at the end of the section. We
leave the proofs of Theorem 2 and 3 for the next section.
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The two following lemmas consider the Frobenius and
spectral norm bounds of (AAA− ÃAAk).

Lemma 1. Let HHH = UUUρ−kΣΣΣρ−k. If matrix (ΦΦΦUUUk) is full
column rank, then the following inequality holds

‖AAA− PCCC,k (AAA)‖F ≤ ‖AAA−AAAk‖F +
∥∥∥(ΦΦΦUUUk)†ΦΦΦHHH

∥∥∥
F

In the next lemma, we consider the spectral norm bound.

Lemma 2. Let HHH = UUUρ−kΣΣΣρ−k. If matrix (ΦΦΦUUUk) is full
column rank, then the following inequality holds

‖AAA− PCCC,k (AAA)‖ ≤ 2 ‖AAA−AAAk‖+
∥∥∥(ΦΦΦUUUk)†ΦΦΦHHH

∥∥∥
From the fact that for any two matricesXXX and YYY , ‖XXXYYY ‖F ≤
‖XXX‖ ‖YYY ‖F , we have∥∥∥(ΦΦΦUUUk)†ΦΦΦHHH

∥∥∥
F
≤
∥∥∥(UUU∗kDDD

∗FFF ∗ΩFFFDDDUUUk)
−1
∥∥∥ ‖UUU∗kΦΦΦ∗ΦΦΦHHH‖F

(2)
Similar result can be obtained with the spectral norm of
(ΦΦΦUUUk)†ΦΦΦHHH.

We now denote random variables for random signs and
sampling processes. Let εi = Dii be i.i.d Rademacher ran-
dom variables with P(εi = ±1) = 1/2. Also let δj be
i.i.d Bernoulli 0/1 random variables with P(δj = 1) = d/m
whose subscript j represents the entry selected from a set
{1, 2, ...,m}. As mentioned above, j ∈ Ω. For consistence,
we define uuui and hhhk are row vectors of UUUk and HHH, respec-
tively. Also denote {eeej ∈ Rm}1≤j≤m the standard basis in
the Euclidean space. It is followed thatFFF ∗ΩFFFΩ =

∑
j∈Ω fff

∗
jfff j =∑m

j=1 δjfff
∗
jfff j . Hence,

(UUU∗kDDD
∗) (FFF ∗ΩFFFΩ) (DDDHHH)

=

(
m∑
i=1

εiuuu
∗
ieeei

)(
m∑
j=1

δjfff
∗
jfff j

)(
m∑
k=1

εkeee
∗
khhhk

)

=

m∑
j=1

m∑
i=1

m∑
k=1

δjεiεkuuu
∗
i

(
eeeifff
∗
j

)
(fff jeee

∗
k)hhhk

=

m∑
j=1

δj

m∑
i=1

m∑
k=1

εiεkF
∗
ijFjkuuu

∗
ihhhk

=

m∑
j=1

δj

(
m∑
i=1

εiF
∗
ijuuu
∗
i

)(
m∑
k=1

εkFjkhhhk

)
=

m∑
j=1

δjxxx
∗
jyyyj

(3)

where row vectors

xxxj :=

m∑
i=1

εiFijuuui and yyyj :=

m∑
k=1

εkFjkhhhk. (4)

Hence,

UUU∗kΦΦΦ
∗ΦΦΦHHH =

m

d

m∑
j=1

δjxxx
∗
jyyyj (5)

Likewise, UUU∗kΦΦΦ
∗ΦΦΦUUUk = m

d

∑m
j=1 δjxxx

∗
jxxxj

In order to prove the Theorem 1, it is sufficient to

1. find a condition on d such that matrix
∑m
j=1 δjxxx

∗
jxxxj is

invertible.

2. find the spectral norm bound of
(∑m

j=1 δjxxx
∗
jxxxj
)−1

.

3. find the Frobenius norm bound of
∑m
j=1 δjxxx

∗
jyyyj .

The next theorem is dedicated for showing the bound of
d upon which

∑m
j=1 δjxxx

∗
jxxxj is invertible and establish the

probabilistic bound of
∥∥∥I − m

d

∑m
j=1 δjxxx

∗
jxxxj

∥∥∥.

Theorem 2. Let S =
∥∥I − m

d

∑m
i=1 δixxx

∗
ixxxi
∥∥. Suppose the

number of samples d obeys: d ≥ 25mqmax ‖xxxj‖2 for q ≥
log k. Then,

(ESq)1/q ≤ 5

√
m

d

√
qmax

i
‖xxxi‖ (6)

If d ≥ C1
a
µmmax

{
k, log 2m

β

}
log k for a positive constant

C1 ≤ 25. Then,

P (S ≤ a) ≥ 1− 2β (7)

where a is any constant in (0, 1)

In the next theorem, we consider the Frobenius norm
bound of the sum

∑m
j=1 δjxxx

∗
jyyyj .

Theorem 3. Let SF =
∥∥∥∑m

j=1 δjxxx
∗
jyyyj

∥∥∥
F

and denote α =

‖AAA−AAAk‖2F . Then,

ESF ≤4.65 max
i
‖xxxi‖max

i
‖yyyi‖

+ 2.56

√
d

m
max

{√
αmax

i
‖xxxi‖ , k1/4 max

i
‖yyyi‖

}
(8)

Also, there is a small numerical constant C such that,

P
(
SF ≤ Cµ

√
α

√
d
√
kmax{

√
k, log

2m

β
} log

3

β

)
≥ 1− 3β.

(9)

Proof. (Theorem 1)
We are now ready to verify arguments in Theorem 1. The-

orem 2 states that as we sample enough rows of ΦΦΦ (d ≥
C1
a
µmmax

{
k, log 2m

β

}
log k, say), ‖III −UUU∗kΦΦΦ∗ΦΦΦUUUk‖ < 1 with

high probability, which implies that ΦΦΦUUUk is full column rank.
Furthermore, every singular values of ΦΦΦUUUk are bounded in
the range

√
1− a ≤ smin(ΦΦΦUUUk) ≤ smax(ΦΦΦUUUk) ≤

√
1 + a (10)

It can be easy to verify that for a matrix BBB,
∥∥(BBB∗BBB)−1

∥∥ ≤
1/s2

min(BBB). Therefore with the choice of a = 1/5, we obtain

P
(∥∥∥(UUU∗kΦΦΦ

∗ΦΦΦUUUk)
−1
∥∥∥ ≤ 5

4

)
≥ 1− β (11)

Based on the above inequalities, we now simply bound the
second term of the Lemma 2 as follows∥∥∥(ΦΦΦUUUk)†ΦΦΦHHH

∥∥∥ ≤ ∥∥∥(UUU∗kΦΦΦ
∗ΦΦΦUUUk)

−1
∥∥∥ ‖ΦΦΦUUUk‖ ‖ΦΦΦUUUρ−k‖ ‖ΣΣΣρ−k‖

<

√
2m

d
‖AAA−AAAk‖

with probability at least (1 − 2β). This inequality in com-
bination with the Lemma 2 proves the second statement of
Theorem 1.

Combine second claim of Theorem 3 and (2), (11), we
have with probability at least 1− 5β∥∥∥(ΦΦΦUUUk)†ΦΦΦHHH

∥∥∥
F
≤ C 5m

4d

√
d
√
kmax{

√
k, log

2m

β
} log

3

β
µ
√
α

:= η
√
α
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where η < 1. Set C2 := C2(5/4)2, we get

d = C2
1

η
µ2m2 max

{
k,
√
k log

2m

β

}
log

3

β

In combination with a condition on d that ΦΦΦUUUk is full row
rank, d must satisfies

d = C
1

η
µ2m2 max

{
k,
√
k log

2m

β

}
max

{
log k, log

3

β

}
where C := max{5C1, C2} is a small numerical constant.

Also from Lemma 1, we conclude the first statement of
Theorem 1

The running time can be bound similarly as in [8] and
[7]. Note that with our SRM, we do not have to use matrix
multiplication. Hence, the computational time is reduced
by a factor of d/ log d.

4.1 Proof of Lemma 1
Proof. The proof is similar to the proof of Theorem 1

in [4] with small modifications (see also Theorem 14 in [8]).
Note that PCCC,k (AAA) is the best rank-k approximation of AAA
on the row space spanned by CCC. Therefore,

‖AAA− PCCC,k (AAA)‖F ≤ ‖AAA−BBB‖F
where BBB is any matrix of rank-k whose rows are on the row
space of CCC. We also have

‖AAA−BBB‖F ≤ ‖AAA−AAAk‖F + ‖AAAk −BBB‖F

We choose BBB = AAAk(ΦΦΦAAAk)†CCC = AAAk(ΦΦΦAAAk)†ΦΦΦAAA. In [4], the
author showed that∥∥∥AAAk −AAAk(ΦΦΦAAAk)†ΦΦΦAAA

∥∥∥
F

=
∥∥∥(ΦΦΦUUUk)†ΦΦΦUUUρ−kΣΣΣρ−k

∥∥∥
F

The proof is completed.

4.2 Proof of Lemma 2
Before proving the Lemma 2 , we show that orthogonal

projection of rows of a matrix AAA onto a matrix CCC also pre-
serves the optimality of the spectral norm.

Proposition 1.∥∥∥AAA−AAACCC†CCC∥∥∥ ≤ ‖AAA−BBB‖
where BBB is any matrix whose rows are on the space spanned
by rows of CCC

Proof. Denote x̂xx = argmax‖xxx‖=1

∥∥xxx∗AAA− xxx∗AAACCC†CCC∥∥ and
let BBB = PPPCCC. We have

‖AAA−PPPCCC‖ = sup
‖xxx‖=1

‖xxx∗AAA− xxx∗PPPCCC‖

= sup
‖xxx‖=1

‖xxx∗AAA− zzz∗CCC‖ (denote zzz∗ = xxx∗PPP )

≥ ‖x̂xx∗AAA− zzz∗CCC‖ ≥
∥∥∥x̂xx∗AAA− x̂xx∗AAACCC†CCC∥∥∥

=
∥∥∥AAA−AAACCC†CCC∥∥∥ (by definition of xxx∗)

The last inequality holds since x̂xx∗AAACCC†CCC is the orthogonal
projection of x̂xx∗AAA onto CCC, and thus

∥∥x̂xx∗AAA− x̂xx∗AAACCC†CCC∥∥ is
minimal.

The next proposition which has been stated in Theorem
1.6 of [15] and is simple to verify. It is said that if BBB is
a matrix with bounded norm, then for any bounded-norm
matrix AAA, singular values of AAABBB satisfy

Proposition 2. For every i = 1, ..., rank(AAA)

si(AAABBB) ≤ ‖BBB‖ si(AAA)

Proof. (Lemma 2) From the triangular inequality, we
have

‖AAA− PCCC,k (AAA)‖ ≤
∥∥∥AAA−AAACCC†CCC∥∥∥+

∥∥∥AAACCC†CCC − PCCC,k (AAA)
∥∥∥

Recall that PCCC,k (AAA) =
(
AAACCC†CCC

)
k

is best rank-k approxima-

tion of AAACCC†CCC. Hence,∥∥∥AAACCC†CCC − PCCC,k (AAA)
∥∥∥ = sk+1(AAACCC†CCC)

By Proposition 2, sk+1(AAACCC†CCC) ≤
∥∥CCC†CCC∥∥ sk+1(AAA) = sk+1(AAA) =

‖AAA−AAAk‖
In addition, from triangular inequality,∥∥∥AAA−AAACCC†CCC∥∥∥ ≤ ∥∥∥AAAk −AAAkCCC†CCC∥∥∥+

∥∥∥(AAA−AAAk)− (AAA−AAAk)CCC†CCC
∥∥∥

≤
∥∥∥AAAk −AAAkCCC†CCC∥∥∥+ ‖AAA−AAAk‖

Proposition 1 addresses that
∥∥AAAk −AAAkCCC†CCC∥∥ ≤ ‖AAAk −BBB‖

where BBB is any matrix whose rows are on the row space
spanned by CCC. As in Lemma 1, we choose BBB = AAAk(ΦΦΦAAAk)†CCC.
The proof in Theorem 1 of [4] also holds with spectral norm.
We obtain∥∥∥AAAk −AAAk(ΦΦΦAAAk)†ΦΦΦAAA

∥∥∥ =
∥∥∥(ΦΦΦUUUk)†ΦΦΦUUUρ−kΣΣΣρ−k

∥∥∥
The Lemma is followed.

5. PROOFS OF THEOREMS 2 AND 3
At the moment, we admit that expectation bounds (6) and

(8) of Theorem 2 and 3 holds. We now focus on verifying (7)
and (9). The arguments for these expectation bound will be
postponed to the Appendix.

At first, we state two lemmas for bounding maxi ‖xxxj‖ and
maxi ‖yyyj‖ where xxxj and yyyj are the sum of vectors with ran-
dom ±1 weights. We leave the proof to the end of the sec-
tion.

Lemma 3. Let xxxj be defined in (4),

P
(

max
1≤j≤m

‖xxxj‖ ≤
√
µk + 4

√
µ

√
log

2m

β

)
≥ 1− β (12)

Lemma 4. Let yyyj be defined in (4),

P
(

max
1≤j≤m

‖yyyj‖ ≤
√
µα+ 4

√
µα

rk

√
log

2m

β

)
≥ 1− β (13)

where α = ‖AAA−AAAk‖2F , rk is the numerical rank of (AAA−AAAk)
which is defined as: rk = α/δ2

k+1.

5.1 Proof of Theorem 2
Proof. Take q = log k and apply Markov’s inequality.

For each t > 0, P (S ≥ tES) ≤ t−q. By choosing t = e and
β ≥ t−q, we attain

P
(
S ≤ 5e

√
m

d

√
log kmax

j
‖xj‖

)
≥ 1− β.
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Combine with Lemma 3 and let

a = C1

√
m

d

√
log k

√
µmax{k, 4 log 2m/β}

with C1 ≤ 10e we conclude the proof.

5.2 Proof of Theorem 3
In order to bound Frobenius norm of the sum of

∑m
j=1 δjxxx

∗
jyyyj ,

one of the easy way is to apply a simple Markov’s inequal-
ity. However, the probabilistic bound is not tight. Instead,
we use a remarkable result from Talagrand [16] (see also
Corollary 7.8 of [17] which bound the supremum of a sum
of independent random variables Z1, Z2, ..., Zm in Banach
space

S = sup
g∈G

m∑
i=1

g(Zi)

Lemma 5. If |g| ≤ η for every g ∈ G and {g(Zi)}1≤i≤m
have zero mean for every g ∈ G. Then for all t ≥ 0,

P (|S − ES| ≥ t) ≤ 3 exp

(
− t

Cη
log

(
1 +

ηt

σ2 + ηES

))
,

(14)
where σ2 = supg∈G

∑n
i=1 Eg2(Zi), S = supg∈G

∣∣∑n
i=1 g(Zi)

∣∣,
and C > 0 is a small numerical constant.

In the next Lemma, we claim that with high probability

the deviation of
∥∥∥∑m

j=1 δjxxx
∗
jyyyj

∥∥∥
F

is small. This implies that

the Frobenius norm of the sum is highly concentrated around
its expectation

Lemma 6. With SF defined in Theorem 3, its probabilis-
tic bound is

P
(
SF ≤ C1

√
log

3

β
· ESF

)
≥ 1− β (15)

where C1 is a small numerical constant.

Proof. At first we note that ‖XXX‖F = sup‖GGG‖F=1 trace(XXX∗GGG)

= sup‖GGG‖F=1 〈XXX,GGG〉. Let ZZZj := δjxxx
∗
jyyyj , we have

SF =

∥∥∥∥∥
m∑
j=1

ZZZj

∥∥∥∥∥
F

= sup
‖GGG‖F=1

m∑
j=1

〈ZZZj ,GGG〉 = sup
‖GGG‖F=1

m∑
j=1

g (ZZZj)

Since SF > 0, the expected value of SF is equal to the ex-
pected value of SF . That means ESF = ESF . The absolute
value of g(ZZZj) can be bounded

|g(ZZZj)| =
∣∣〈δjxxx∗jyyyj ,GGG〉∣∣ ≤ ∥∥δjxxx∗jyyyj∥∥F ≤ ∥∥xxx∗jyyyj∥∥F = ‖xxxj‖ ‖yyyj‖

Hence, we can take η := maxj ‖xxxj‖maxj ‖yyyj‖. We now
compute

Eg2 (ZZZj) = Eδj
〈
xxx∗jyyyj ,GGG

〉2
=

d

m

〈
xxx∗jyyyj ,GGG

〉2 ≤ d

m

∥∥xxx∗jyyyj∥∥2

F

and therefore,

m∑
j=1

Eg2 (Zj) =
d

m

m∑
j=1

∥∥xxx∗jyyyj∥∥2

F
=

d

m

m∑
j=1

trace
(
xxx∗jyyyjyyy

∗
jxxxj
)

=
d

m

m∑
j=1

‖yyyj‖2 trace
(
xxx∗jxxxj

)
≤ d

m
max
j
‖yyyj‖2 trace

(
m∑
j=1

xxx∗jxxxj

)

Combine with (23) (see section 6), we conclude

m∑
j=1

Eg2 (Zj) ≤
d

m
kmax

j
‖yyyj‖2

Prove similarly and combine with (24), we also attain

m∑
j=1

Eg2 (Zj) ≤
d

m
max
j
‖xxxj‖2 trace

(
m∑
j=1

yyy∗jyyyj

)
=

d

m
αmax

j
‖xxxj‖2

So, we choose

σ2 = sup
g∈G

n∑
i=1

Eg2(Zi) :=
d

m
max

{
αmax

j
‖xxxj‖2 , kmax

j
‖yyyj‖2

}

Apply the powerful Talagrand’s result (14) and note that
from expectation inequality (8), σ2+ηESF ≤ σESF+ηESF =
E2SF

P (SF ≥ t+ ESF ) ≤ 3 exp

(
− t

Cη
log

(
1 +

ηt

E2SF

))
≤ 3 exp

(
− 1

C

t2

E2SF

)
.

The last inequality comes from a simple observation that
log (1 + x) ≥ 2x/3 at 0 ≤ x ≤ 1. Hence, t must be selected
such that ηt ≤ E2SF .

Choose t = C
√

log 3
β

ESF where C is a small numerical

constant. By simple algebraic calculation, one can show that
ηt ≤ E2SF as d ≥ C2µm log 3

β
. Therefore,

P
(
SF ≥

(
C

√
log

3

β
+ 1

)
ESF

)
≤ 3 exp

(
− log

3

β

)
= β

There will exist a small constant such that C1

√
log 3

β
=

C
√

log 3
β

+ 1. The proof is now concluded.

We are now ready to prove the Theorem 3

Proof. (Theorem 3)
Lemmas 3 and 4 imply that with the probability at least

1− β

max
1≤j≤m

‖xxxj‖ ≤ C1
√
µ

√
max

{
k, log

2m

β

}
and

max
1≤j≤m

‖yyyj‖ ≤ C2
√
µα

√
log

2m

β

where C1 ≤ 5 and C2 ≤ 5. We consider two cases: k ≥
log 2m

β
and k < log 2m

β
. For the former, define probabilistic

evens

M =

{
max

1≤j≤m
‖xxxj‖ ≤ 5

√
µk

}
and

N =

{
max

1≤j≤m
‖yyyj‖ ≤ 5

√
µα

√
log

2m

β

}

220



then from (8), suppose M and N hold, we have

ESF ≤ 4.56C1C2µ
√
α

√
k log

2m

β

+ 2.56

√
d

m
max

{
C1

√
α
√
µk,C2k

1/4

√
µα log

2m

β

}
≤ µ
√
α

[
C3k + C4

√
d
√
kmax{

√
k, log

2m

β
}
]

≤ C5µ
√
α

√
d
√
kmax{

√
k, log

2m

β
}

where C3 = 4.56C1C2 ≤ 114, C4 = 2.56 ∗ C1 < 13 and
C5 = C3 + C4 < 127. The second inequality follows from
µ ≥ 1/m

We define the even

P =

{
ESF ≤ C5µ

√
α

√
d
√
kmax{

√
k, log

2m

β
}
}

which occurs as both evens M and N hold.
We have P(P c) ≤ P(Mc ∪ Nc) ≤ P(Mc) + P(Nc) ≤ 2β.

Hence P(P ) ≥ 1− 2β.
Combine with Lemma 6 and set C = C5×C1, we conclude

that with probability no less than (1− 3β)

SF ≤ Cµ
√
α

√
d
√
kmax{

√
k, log

2m

β
} log

3

β

Likewise, if k < log 2m
β

, we obtain with probability at least

(1− 3β)

SF ≤ Cµ
√
α

√
d
√
k log

2m

β
log

3

β

Combine both condition on k, we complete the proof of
Theorem 3.

Remark 3. It is important to compare the use of un-
complicated Markov’s inequality to the beautiful Talagrand
concentration measurement (Lemma 5) applied in Lemma 6.
If the former is utilized, then Lemma 6 is guaranteed with a
small constant probability, for instant, 1/2. This leads to the
conclusion of Theorem 3 with probability 1/2. However, in
this case the running time will be boosted by a logarithmic
proportion of m (logm) in order for the algorithm to success
with extremely high probability, 1 −m−1, say (see also re-
mark 2 for a fair comparison with other’s works and how our
technique is better in term of computational complexity).

5.3 Proofs of Lemma 3 and 4
In order to bound maxi ‖xi‖ and maxi ‖yi‖, we use a pow-

erful result from Theorem 7.3 of [17] which strongly bound
the supremum of a sum of vectors bbb1, bbb2, ..., bbbm with random
weights in Banach space.

Lemma 7. Let {ηi}1≤i≤m be a sequence of independent
random variable such that ‖ηi‖ ≤ 1 almost surely with i =
1, 2, ...,m and let bbb1, bbb2, ..., bbbm be vectors in Banach space.
Then for every t ≥ 0,

P

(∥∥∥∥∥
m∑
i=1

ηibbbi

∥∥∥∥∥ ≥M + t

)
≤ 2 exp

(
− t2

16σ2

)
, (16)

where M is either the mean or median of
∥∥∑m

i=1 ηibbbi
∥∥ and

σ2 = sup‖ggg‖≤1

∑m
i=1 〈ggg, bbbi〉

2

Lemma 7 asserts that the sum is distributed like Gaussian
around its mean or median, with standard deviation 2

√
2σ.

Applying Lemma 7, we can bound the maximum of ‖xxxj‖
and ‖yyyj‖

Proof. (Lemma 3) We have ‖xj‖ =
∥∥∑m

i=1 εiFijuuui
∥∥ =∥∥∑m

i=1 εibbbi
∥∥ where bbbi := Fijuuui. The bound for σ2 can be

obtained by

σ2 = sup
‖ggg‖≤1

m∑
i=1

〈ggg, bbbi〉2 = sup
‖ggg‖≤1

ggg

(
m∑
i=1

F ∗ijFijuuu
∗
iuuui

)
ggg∗

≤ µ sup
‖ggg‖≤1

ggg

(
m∑
i=1

uuu∗iuuui

)
ggg∗ = µ ‖UUUk‖2 = µ

From Jensen’s inequality: EZ ≤
√

EZ2 we have that M =

E ‖xxxj‖ ≤
√

E ‖xxxj‖2 where

‖xxxj‖2 =

n∑
i,k=1

εiεkF
∗
ijFkjuuu

∗
iuuuk

=
∑
i

ε2iF
∗
ijFijuuu

∗
iuuui +

∑
i 6=k

εiεkF
∗
ijFkjuuu

∗
iuuuk

Since {εi} is an i.i.d Rademacher sequence, ε2i = 1 and
Eεiεk = 0 with i 6= k. Hence,

E ‖xxxj‖2 =
∑
i

F ∗ijFijuuu
∗
iuuui ≤ µ

m∑
i=1

uuu∗iuuui = µ ‖UUUk‖2F = µk

which leads M ≤
√
µk. Lemma 7 now gives us

P (‖xxxj‖ ≥M + t) ≤ 2 exp

(
− t2

16µ

)
Apply a union bound for a supremum of a random process

P
(

max
1≤j≤m

‖xxxj‖ ≤M + t

)
≤ 2m exp

(
− t2

16µ

)
By choosing t = 4

√
µ
√

log 2m
β

, we obtain

P
(

max
1≤j≤m

‖xxxj‖ ≤
√
µk + 4

√
µ

√
log

2m

β

)
≤ 2me

− log 2m
β = β

The Lemma follows.

Proof. (Lemma 4) Following the same line of proof as
in Lemma 3 with yyyj =

∑m
i=1 εiFjihhhi, we can obtain a upper

bound for σ2

σ2 = sup
‖ggg‖=1

m∑
i=1

〈ggg, Fjihhhi〉 = sup
‖ggg‖=1

ggg

(
m∑
i=1

F ∗jiFjihhh
∗
ihhhi

)
ggg∗

≤ µ sup
‖ggg‖=1

ggg

(
m∑
i=1

hhh∗ihhhi

)
ggg∗ = µ ‖HHH∗HHH‖ ,

where HHH∗HHH = ΣΣΣ∗ρ−kUUU
∗
ρ−kUUUρ−kΣΣΣρ−k = ΣΣΣ2

ρ−k. Hence,

σ2 ≤ µ
∥∥ΣΣΣ2

ρ−k
∥∥ = µ ‖AAA−AAAk‖2 = µδ2

k+1 = µ
α

rk
,

and M = E ‖yyyj‖ ≤
√

E ‖yyyj‖2 where

E ‖yyyj‖2 =

m∑
i=1

F ∗jiFjihhh
∗
ihhhi ≤ µ

m∑
i=1

hhh∗ihhhi = µ · trace (HHH∗HHH)

= µ · trace
(
ΣΣΣ2
ρ−k
)

= µ ‖AAA−AAAk‖2F = µα
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Therefore, M ≤ √µα. Apply Lemma 7 and then take the
union bound for the supremum of ‖yj‖, we attain

P
(

max
1≤j≤m

‖yyyj‖ ≤M + t

)
≤ 2m exp

(
− t2

16µα/rk

)
Choose t = 4

√
µα
rk

√
log 2m

β
and combine with M <

√
µα,

P
(

max
1≤j≤m

‖yyyj‖ ≥
√
µα+ 4

√
µ

√
α

rk

√
log

2m

β

)
≤ 2me

− log 2m
β = β

The proof is now completed.

6. EXPECTATION BOUNDS
Our main arguments are mostly based on Noncommuta-

tive Khintchine inequality which bounds the Schatten norm
of a sum of Rademacher series [18].

Lemma 8. (Noncommutative Khintchine inequality)
Let {XXXi} (1 ≤ i ≤ n) be a set of matrices of the same dimen-
sion and let {εi} be an independent Rademacher sequence.
For each q ≥ 2,Eε

∥∥∥∥∥∑
i

εiXXXi

∥∥∥∥∥
q

Sq

1/q

≤ Cq×

max


∥∥∥∥∥∥
(∑

i

XXX∗iXXXi

)1/2
∥∥∥∥∥∥
Sq

,

∥∥∥∥∥∥
(∑

i

XXXiXXX
∗
i

)1/2
∥∥∥∥∥∥
Sq

 ,

(17)

where the constant Cq ≤ 2−1/4
√

π
e

√
q.

The next theorem is used to prove the expectation bound
of (8). We now state a stronger result

Theorem 4. Let XXX and YYY be two matrices of size m×k1

and m × k2 which satisfy XXX∗YYY = 0 and let {xxxi} and {yyyi}
be row vectors of XXX and YYY , respectively. Denote {δi} to
be a sequence of independent identically distributed {0/1}
Bernoulli random variables with P(δi = 1) = δ. Then at
q ≥ 2Eδ

∥∥∥∥∥∑
i

δixxx
∗
iyyyi

∥∥∥∥∥
q

Sq

1/q

≤ 2
√

2C2
q max

i
‖xxxi‖max

i
‖yyyi‖+

2
√
δCq max

max
i
‖xxxi‖

∥∥∥∥∥∑
i

yyy∗iyyyi

∥∥∥∥∥
1/2

Sq

,max
i
‖yyyi‖

∥∥∥∥∥∑
i

xxx∗ixxxi

∥∥∥∥∥
1/2

Sq

 ,

(18)

where the constant Cq is defined in Lemma 17.

At first, we start with a Lemma which is useful for the
proof of the above Theorem

Lemma 9. Let {xxxi}1≤i≤m be a set of row vectors of the
same length k and denote {δi} to be a sequence of inde-
pendent identically distributed {0/1} Bernoulli random vari-
ables with P(δi = 1) = δ. The following inequality is satisfiedEδ

∥∥∥∥∥∑
i

δixxx
∗
ixxxi

∥∥∥∥∥
q

Sq

1/q

≤ 2C2
q max

i
‖xxxi‖2 + δ

∥∥∥∥∥∑
i

xxx∗ixxxi

∥∥∥∥∥
Sq

(19)
where q ≥ 2 and the constant Cq is defined in Lemma 17.

Proof. The line of proof is similar to Theorem 3.1 of
Rudelson and Vershynin [19]. Let {δ′i} be an independent
copy of the sequence {δi}. By first applying the Holder’s
inequality and then Jensen’s inequality

E1 =

Eδ

∥∥∥∥∥∑
i

δixxx
∗
ixxxi

∥∥∥∥∥
q

Sq

1/q

≤

Eδ

∥∥∥∥∥∑
i

(
δi − δ

)
xxx∗ixxxi

∥∥∥∥∥
q

Sq

1/q

+ δ

∥∥∥∥∥∑
i

xxx∗ixxxi

∥∥∥∥∥
Sq

=

Eδ

∥∥∥∥∥Eδ′
(∑

i

(
δi − δ′i

)
xxx∗ixxxi

)∥∥∥∥∥
q

Sq

1/q

+ δ

∥∥∥∥∥∑
i

xxx∗ixxxi

∥∥∥∥∥
Sq

≤

EδEδ′

∥∥∥∥∥∑
i

(
δi − δ′i

)
xxx∗ixxxi

∥∥∥∥∥
q

Sq

1/q

+ δ

∥∥∥∥∥∑
i

xxx∗ixxxi

∥∥∥∥∥
Sq

.

(20)

Define {εi} to be an independent Rademacher sequence
and independent of the sequences {δi} and {δ′i}. Since (δi − δ′i)
is symmetric, (δi − δ′i) has the same distribution as εi (δi − δ′i).
Therefore, the first term of (20) is bounded by

EδEδ′

∥∥∥∥∥∑
i

(
δi − δ′i

)
xxx∗ixxxi

∥∥∥∥∥
q

Sq

1/q

=

EδEδ′Eε

∥∥∥∥∥∑
i

εi
(
δi − δ′i

)
xxx∗ixxxi

∥∥∥∥∥
q

Sq

1/q

≤ 2

EδEε

∥∥∥∥∥∑
i

εiδixxx
∗
ixxxi

∥∥∥∥∥
q

Sq

1/q

= 2 (EδE2)1/q ,

where the second inequality is followed from Holder’s in-
equality.

Apply Khintchine inequality (17) to bound E2, we obtain

E2 = Eε

∥∥∥∥∥∑
i

εiδixxx
∗
ixxxi

∥∥∥∥∥
q

Sq

≤

Cq
∥∥∥∥∥∥
(∑

i

δixxx
∗
ixxxi ‖xxxi‖2

)1/2
∥∥∥∥∥∥
Sq


q

≤

Cq ∥∥∥∥∥∑
i

δixxx
∗
ixxxi ‖xxxi‖2

∥∥∥∥∥
1/2

Sq

q

Each term xxx∗ixxxi ‖xxxi‖2 of the sum is positive definite, so
from Weyl’s result (Theorem 4.3.1 of [20]) which mentions
that by adding a positive definite matrix to a positive defi-
nite matrix, all singular values will be increasing. Therefore,
we can replace all the weights ‖xj‖2 by maxj ‖xj‖2 and move
outside the norm

Eε

∥∥∥∥∥∑
i

εiδixxx
∗
ixxxi

∥∥∥∥∥
q

Sq

≤
(
Cq max

i
‖xxxi‖

)q∥∥∥∥∥∑
i

δixxx
∗
ixxxi

∥∥∥∥∥
1/2

Sq

q

.
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Hence,

(EδE2)1/q ≤ Cq max
i
‖xxxi‖

Eδ

∥∥∥∥∥∑
i

δixxx
∗
ixxxi

∥∥∥∥∥
q/2

Sq

1/q

≤ Cq max
i
‖xxxi‖


Eδ

∥∥∥∥∥∑
i

δixxx
∗
ixxxi

∥∥∥∥∥
q

Sq

1/q


1/2

= Cq max
i
‖xxxi‖

√
(EδE2)1/q,

(21)

where the last inequality follow from E
√
Z ≤

√
E(Z).

From (21), one can see that: (EδE2)1/q ≤ C2
q maxi ‖xxxi‖2.

The Lemma 9 is now followed.

Proof. (Theorem 4) As the above proof, define {δ′i} as
an independent copy of the sequence {δi}. Since XXX∗YYY = 0,
then following similarly as the above Lemma’s proof, we
obtain

E1 =

Eδ

∥∥∥∥∥∑
i

δixxx
∗
iyyyi

∥∥∥∥∥
q

Sq

1/q

=

Eδ

∥∥∥∥∥∑
i

(
δi − δ

)
xxx∗iyyyi

∥∥∥∥∥
q

Sq

1/q

=

Eδ

∥∥∥∥∥Eδ′
(∑

i

(
δi − δ′i

)
xxx∗iyyyi

)∥∥∥∥∥
q

Sq

1/q

≤ 2

EδEε

∥∥∥∥∥∑
i

εiδixxx
∗
iyyyi

∥∥∥∥∥
q

Sq

1/q

= 2 (EδE2)1/q ,

where {εi} is an independent Rademacher sequence.
Applying Khintchine’s inequality to E2, we obtain

E2 ≤ Cqq max {B1, B2}q = Cqq max {Bq1 , B
q
2}

where B1 =
∥∥∥(∑i δixxx

∗
ixxxi ‖yyyi‖2

)1/2∥∥∥
Sq

and B2 is defined the

same as B1 except xxxi is replaced by yyyi. Expectation of E2

is now bounded by

EδE2 ≤ CqqEδ (max {Bq1 , B
q
2}) ≤ C

q
q max {EδBq1 ,EδB

q
2} ,

where the second inequality follows from: E max{a, b} ≤
max{Ea,Eb} with nonnegative a, b. We have

E1 ≤ 2Cq max
{

(EδBq1)1/q , (EδBq2)1/q
}

It is sufficient to bound (EδBq1)1/q, (EδBq2)1/q can be at-
tained likewise. Also from Theorem 4.3.1 of [20], one can

see that: B1 ≤ maxi ‖yyyi‖
∥∥(∑

i δixxx
∗
ixxxi
)∥∥1/2

Sq
. Hence,

(EδBq1)1/q ≤ max
i
‖yyyi‖

√√√√√Eδ

∥∥∥∥∥
(∑

i

δixxx∗ixxxi

)∥∥∥∥∥
1/q

Sq

:= max
i
‖yyyi‖

√
E3

where the inequality holds from E
√
Z ≤

√
E(Z).

Upper bound for
√
E3 is followed from the Lemma (9),

and with nonnegative a and b,
√
a+ b ≤

√
a+
√
b

√
E3 ≤

√
2Cq max

i
‖xxxi‖+

√
δ

∥∥∥∥∥∑
i

xxx∗ixxxi

∥∥∥∥∥
1/2

Sq

The proof is completed.

One can observe that the first claim of the Theorem 3 is
a corollary of Theorem 4. The condition XXX∗YYY = 0 obeys
since

XXX∗YYY =

m∑
i=1

xxx∗iyyyi = (UUU∗kDDD
∗) (FFF ∗FFF ) (DDDHHH)

= UUU∗kHHH = UUU∗kUUUρ−kΣΣΣρ−k = 0

where the third equality holds due to the orthonormality of
FFF and DDD (see (3)).

We restate in a corollary.

Corollary 1. With the same notations as in the Theo-
rem 4. Denote {δi} to be a sequence of independent identi-
cally distributed {0/1} Bernoulli random variables with P(δi =
1) = d

m
. Then

Eδ

∥∥∥∥∥∑
i

δixxx
∗
iyyyi

∥∥∥∥∥
F

≤ 4.65 max
i
‖xxxi‖max

i
‖yyyi‖

+ 2.56

√
d

m
max

{√
αmax

i
‖xxxi‖ , k1/4 max

i
‖yyyi‖

}
.

(22)

Proof. Applying Theorem 4 to this case, one can find
the equations for the expected spectral and Frobenius norm
of the sums

∑
j xxx
∗
jxxxj and

∑
j yyy
∗
jyyyj . We first compute

xxx∗jxxxj = UUU∗kDDD
∗FFF ∗FFFDDDUUUk = UUU∗kUUUk = IIIk

Hence, the spectral and Frobenius norms of this sum are
as follows∥∥∥∥∥

m∑
j=1

xxx∗jxxxj

∥∥∥∥∥ = 1 and

∥∥∥∥∥
m∑
j=1

xxx∗jxxxj

∥∥∥∥∥
F

=
√
k (23)

Similarly,
∑m
j=1 yyy

∗
jyyyj = HHH∗HHH = VVV ρ−kΣΣΣ

2
ρ−kVVV

∗
ρ−k. There-

fore, ∥∥∥∥∥
m∑
j=1

yyy∗jyyyj

∥∥∥∥∥ = s2
k+1 and,∥∥∥∥∥

m∑
j=1

yyyjyyy
∗
j

∥∥∥∥∥
F

=
∥∥ΣΣΣ2

ρ−k
∥∥
F
≤ ‖AAA−AAAk‖2F = α

(24)

So far, we only consider the Schatten q-norm with 2 ≤ q <
∞ of a sum of matrices with random Bernoulli weights. As
q =∞, the Schatten norm is the spectral norm. In the next
Theorem, we derive another useful result which is analogue
to the Theorem 3.1 of Rudelson and Vershynin [19]. The
Theorem guarantees the invertibility of a sub-matrix which
is formed from sampling a few columns (or rows) of a matrix
XXX.

Theorem 5. Let {xxxi}1≤i≤m be rows of a matrix XXX of
size m×k which obeys XXX∗XXX = III and denote {δi} to be a se-
quence of independent identically distributed {0/1} Bernoulli
random variables with P(δi = 1) = δ. Then with q ≥ log k,
the following inequality is satisfied(

Eδ

∥∥∥∥∥Ik×k − 1

δ

m∑
i=1

δixxx
∗
ixxxi

∥∥∥∥∥
q)1/q

≤ C
√
q

δ
max
i
‖xxxi‖ (25)

provided that the right-hand side of (25) and the constant

C = 23/4√πe ≈ 5
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Proof. Denote E the expectation of the left-hand side.
Remark that ‖XXX‖ ≤ ‖XXX‖Sq , we have

E ≤ 1

δ

Eδ

∥∥∥∥∥∑
i

(
δi − δ

)
xxx∗ixxxi

∥∥∥∥∥
q

Sq

1/q

Following precisely the proof of the Lemma 9 and remark
that ‖XXX‖Sq ≤ e ‖XXX‖ as q ≥ log (rank (XXX)), we obtain

E ≤ 2

δ
Cq max

i
‖xxxi‖

(Eδ

∥∥∥∥∥∑
i

δixxx
∗
ixxxi

∥∥∥∥∥
q)1/q

Sq

1/2

≤ 2eCq

√
1

δ
max
i
‖xxxi‖

(Eδ

∥∥∥∥∥1

δ

∑
i

δixxx
∗
ixxxi

∥∥∥∥∥
q)1/q

1/2

From the Minkowski’s inequality: (E‖X + Y ‖q)1/q ≤
(E‖X‖q)1/q + (E‖X‖q)1/q we see that(

Eδ

∥∥∥∥∥1

δ

∑
i

δixxx
∗
ixxxi

∥∥∥∥∥
q)1/q

≤

(
Eδ

∥∥∥∥∥Ik×k − 1

δ

∑
i

δixxx
∗
ixxxi

∥∥∥∥∥
q)1/q

= E + 1

Therefore, E ≤ 2eCq
√

1

δ
maxi ‖xxxi‖

√
E + 1. If E ≤ 1, then

√
E + 1 ≤

√
2 which leads to

E ≤ 2
√

2eCq

√
1

δ
max
i
‖xxxi‖

provided that the right-hand side is less than 1. Substitute
the value of Cq in Lemma 17, we finish the proof.

The first claim of Theorem 2 is the exact corollary of the
Theorem 5 with δ = d/m.

7. CONCLUSION
In this paper, we presented a fast and efficient algorithm

for low-rank matrix approximation as well as least-square
approximation. Using remarkable techniques in Banach space,
we showed that our algorithm can produce a rank-k matrix
approximation which achieves relative error bound in Frobe-
nius norm. In experiments, we observe that our algorithm
also obtain the relative error bound in spectral norm as sin-
gular values somehow decay in power laws. We leave the
problem of how to prove this bound for future research.
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