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Abstract—The dual-tree complex wavelet transform (CWT)
has recently received significant interest in the wavelet commu-
nity, owing primarily to its directional selective and near-shift
invariant properties. It has been shown that with two separate
maximally decimated and dyadic decompositions where filters are
offset by a half sample, the resulting CWT wavelet bases form an
approximate Hilbert transform pair. In this paper, we present the
design, implementation and applications of several families of or-
thogonal as well as biorthogonal rational-coefficient wavelet filters
that satisfy the Hilbert transform pair condition and meet other
desirable properties such as high coding gain, good directional
sensitivity, and sufficient degree of regularity. The wavelet filters
presented here, which confirm to Selesnick’s and Kingsbury’s
design schemes, are designed and implemented directly in the
lattice and lifting domain using VLSI-friendly dyadic coefficients.
We confirm the fact that rational-coefficient constraint does not
impose a significant loss in terms of energy compaction, wavelet
smoothness, time-invariance, or directionality. We also propose
the time-reversal relationships between the two CWT filter pairs
in lattice and lifting domain, thereby facilitating both the design
and implementation process. In the end, we present several ap-
plications and evaluations to illustrate the performance of the
proposed designs.

Index Terms—Complex wavelet transform, dual-tree, Hilbert
transform, lattice structure, lifting scheme, rational coefficient.

I. INTRODUCTION

T HE discrete wavelet transform (DWT) has been shown to
offer solutions to a wide variety of multiresolution image

and signal processing applications, including compression, de-
noising, classification, and many others. During the last couple
of years, there has been significant progress in the theory and
design of filter banks [1] and especially wavelets [2]. Since
wavelets are now part of the JPEG-2000 standard, the popu-
larity for wavelet-based codecs is expected to grow in future.
However, there are well known limitations in the conventional
wavelet design, for example the lack of directionality, poor shift
invariance and lack of phase information. The aim of research in
the domain of complex wavelet transform (CWT) is to explore
solutions to these limitations, while benefiting from the existing
advantages that wavelets have to offer.
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Fig. 1. Kingsbury’s dual-tree CWT.

Several authors have proposed that in a formulation where
two dyadic wavelet bases form a Hilbert transform pair, CWT
can provide answer to some of the aforementioned limitations
[3]. Shown in Fig. 1, Kingsbury’s pioneering complex dual-tree
[4] and [5] has received considerable interest. As shown, two
sets of wavelet filters are used. The pair forms
a dyadic tree that implements the real part of the transform.

is another analysis filter pair that generates the
imaginary part of the transform. The filter pairs considered here,
also referred to as quadrature mirror filter (QMF) pairs, can be
orthogonal or biorthogonal, are real-valued and capable of per-
fect reconstruction (PR). A detailed overview of the dual-tree
formulation is available in [6].

We will denote the wavelets associated with real and imag-
inary filter banks as and with Fourier transforms

and . It has been shown in [3] that if filters in both
trees can be made to be offset by half-sample, the wavelets re-
sulting from the filter pair satisfy Hilbert transform condition.
In other words, if we have

then

In this paper, we enforce the rational-coefficient constraint on
top of the aforementioned desirable properties of the dual-tree
CWT. Each of the proposed designs can be implemented
efficiently using only binary shift and add operations. All of
the popular performance metrics investigated such as coding
gain, wavelet smoothness, and Hilbert energy condition show
that rational-coefficient filters are a close approximation to
previously published irrational CWT filters [4], [5], [7], [8].
Some of these properties, e.g., perfect reconstruction, are not
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affected if the filter bank is quantized in the lattice/lifting
domain; others like wavelet smoothness are affected. The
objective is to obtain a tradeoff between these properties and
computational complexity. However, since the proposed filters
are designed directly in the lattice/lifting domain, their practical
implementations have the lowest level of complexity reported
in literature. Finally, applications such as image denoising and
directional feature extraction confirm that our multiplierless
CWT designs retain all practical CWT features such as high
energy compaction, good directionality, and improved shift
invariance.

This paper is organized as follows. In Section II, we briefly
offer preliminary background materials on CWT and review
fundamentals of polyphase matrix factorization using lattice
structure and lifting scheme. Section III presents the overall
design methodology. Section IV presents orthogonal designs in
the lattice domain. In Section V, we present biorthogonal de-
signs implemented via the lifting scheme. Section VI presents
some of the evaluations and applications that quantify the
proposed designs. Finally, Section VII concludes the paper
with a summary and several final remarks.

II. PRELIMINARIES

A. Review

Let represent the filters for the analysis stage
of a real coefficient wavelet expansion. Let the corresponding
filter pair that implements the synthesis stage be denoted by

. The conditions for perfect reconstruction imply
that (in the -transform domain) [2]

For simplicity, we assume that all filters are causal, and there-
fore, we introduce the term in the above equation.

The filter pair represents dyadic expansion in
the analysis stage of the imaginary-coefficient tree. Their cor-
responding synthesis filters are . These filters are
defined in a similar way.

In polyphase notation, these filters can be written in terms of
their even and odd phases according to the following relations:

(1)

(2)

(3)

(4)

Let and be the polyphase matrices of
and pairs, respectively.

and are usually written in terms of even and
odd phases of these filters. For instance, the polyphase matrix

is given by

(5)

The 2 2 identity matrix is indicated with the symbol . The
symbol is reserved for the 2 2 antidiagonal (reversal) matrix,

i.e., . Finally, we define the matrix as the

delay matrix of high-pass subband such that

and .
Assume that length of filters is , while the

length of is . In case when the filters are or-
thogonal and power-complimentary, all filters have same length

(i.e., ). Orthogonality implies that the resulting
polyphase matrices are paraunitary, thus

and the high-pass filters are alternate time reversals of the low-
pass filters

For the case when filters are biorthogonal, the length of filters
may be different. One interesting class of biorthogonal solutions
is one in which the low-pass filters are related to

by a time reversal, thus

The biorthogonal filters that will be presented in this paper con-
firm to the above constraint. Further insight into the design of
such filters is available in [7].

B. Lattice Structure

The lattice structure has been widely studied as a tool for ef-
ficient implementation of two-channel PR filter banks [9]. It is
well known that every orthogonal QMF filter pair can be repre-
sented as a cascade of plane rotations. This implementation can
further be optimized using a two-multiplier approach, as shown
in Fig. 2 (top). Thus, in matrix notation, the lattice transforma-
tion can be written as

where is called the lattice coefficient, and if im-
plemented by only shifts and additions, it can provide a very
fast approximation of the original transform. By convention,
will denote the number of the stage (zero being the number of
the stage that is applied immediately on the input). The inverse
of this lattice is rotation by angle and that will be denoted
by .
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Fig. 2. Lattice structure (top) and lifting scheme (bottom).

To realize higher-order filters, multiple lattice stages need to
be cascaded together. In that case, all the scaling fac-
tors can be combined together and absorbed in the quantization
stage. Let and be the scaling parameters for and

, respectively, and they can be expressed in terms of their
respective rotation angles according to the following relation:

where is the total number of lattice stages.

C. Lifting Scheme

Shown in Fig. 2 (bottom), the lifting scheme [10] is another
popular architecture for building fast and efficient signal decom-
positions. In matrix notation, this implementation can be written
as

The inverse of lifting step is simple: We simply subtract out
what was added in at the forward transform. Like lattice, lifting
structure is very robust to quantization and structurally enforces
prefect reconstruction. Another advantage of lifting is that it
can be used to build wavelet transforms that map integers to
integers, a very desirable feature for lossless image compres-
sion [11]. It has been shown in [12] that any finite-impulse-re-
sponse (FIR) wavelet filter pair can be realized using the lifting
scheme. It is particularly attractive when used in implementing
symmetric/antisymmetric filters, because in that case, the lifting
polynomials may be simplified to be of the form .
Lifting scheme can be used in several other ways. For example,
it can realize any lattice structure [12] and even -channel filter
banks, e.g., in [13], a family of multiplierless approximations of
the DCT, called the binDCT, was implemented entirely in the
lifting domain.

D. Rational-Coefficient Design Considerations

It is well known that quantizing filter coefficients directly
in FIR form satisfies aliasing cancellation, because filter co-
efficients get quantized by the same amount. However distor-
tion elimination fails because filters do not remain power com-
plimentary any more [9]. As a result, PR cannot be achieved.
However, when quantization is performed in lattice domain, the
power-complementary property is preserved and PR is possible.
The price paid is mostly in the degree of regularity, because
zeros for vanishing moments get perturbed from their actual lo-
cations. Therefore, the design goal is to keep these zeros as close
as possible to , while maintaining minimum hardware
cost. Another important consideration is that the round-off noise
between filter coefficients and the quantized coefficients is more
sensitive to the quantization of lifting/lattice structures that are
located closer to the input. Thus, more quantization accuracy is
needed for structures that are closer to the input, while the later
stages in the cascade structure can be aggressively quantized.
There has also been interest in designing filters with reduced
implementation complexity. Approaches in which coefficients
are based on sum of power of two coefficients are particularly
interesting because floating-point multiplications can be trans-
formed into simple VLSI-friendly shifts and additions. In [14],
an effective design approach is discussed, according to which
a multiplierless approximation can be found by using coeffi-
cients of the form , where indicates the resolution of the
approximation.

III. DESIGN PROCEDURE

Our design procedure is governed by global optimization of
four parameters: i) coding gain; ii) Hilbert transform properties;
iii) dc leakage; and iv) hardware complexity. These quantities
will be introduced shortly.

We used the software Singular [15] to develop a framework
to solve the nonlinear equations that would enable us to switch
from filter domain to lattice/lifting domain, and vice versa. Two
filter sets presented here are based upon Selesnick’s and Kings-
bury’s schemes, quantized and exhaustively searched to opti-
mize the design parameters, while another set is obtained by
searching directly in lattice or lifting domain. Furthermore, we
have also presented designs that are based upon the time-re-
versal theorems. The time-reversal theorem in the lattice do-
main establishes that for orthogonal designs, the computational
complexity of filters and is sim-
ilar. Similarly, the time-reversal theorem in lifting domain states
that for biorthogonal designs, the computational complexity of
filters and is similar. Finally the
designs are applied in several image processing applications.

A. Coding Gain

Transform coding gain is a very desirable property in building
transforms, especially the ones that are intended for compres-
sion applications. Coding gain relates to the ability of a subband
coder to compress most of the signal energy in the least number
of bands, also referred to as energy compaction property. As a
result, the quantization and entropy coding can be tailored ap-
propriately to obtain the highest rate-distortion performance.
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The biorthogonal coding gain , is defined as [16]

where

number of subbands;

variance of input;

variance of th subband;

L-2 norm of th synthesis basis function.

In above calculation, the input is assumed to be a first-order
Gaussian–Markov process with unit variance and correlation
coefficient of 0.95 (usually a good approximation for natural
images). The input variance does not affect the optimization re-
sults; however, unit input variance simplifies calculation.

B. Hilbert Transform Properties

In signal processing theory, for the CWT wavelet bases to
form an ideal Hilbert transform pair, the frequency response of
the function should have high attenuation for all
frequencies in the region . Due to the fact that it
is not possible to design an FIR filter that is an exact half-
sample delay of , a perfect Hilbert transform pair is not
possible [7]. Thus, one has to compromise for a Hilbert trans-
form approximation. There are several ways to measure this ap-
proximation. For instance, for the function ,
we can measure i) the stop-band attenuation for negative fre-
quencies; ii) the peak ripple in the region ; or
iii) the total energy present in the negative frequency range of

.
We propose two measures that are related to the energy and

maxima of the function in the passband. These
quantities are termed as Hilbert Energy (HE) and Hilbert PSNR
(HPSNR). They are defined as

HE

HPSNR

Hilbert transform properties directly correspond to better di-
rectional and denoising performances, as will be explained to-
wards later part of this letter.

C. DC Leakage or Vanishing Moments

A key property that distinguishes wavelets from classical filter
banks is the number of zeroes at [2], [17]. It is also re-
ferred to as regularity or the vanishing moments. In particular, for
a -regular filter bank, the high-pass filter has vanishing mo-
ments, i.e., for . In other
words, the high-pass filter attenuates all the polynomials of de-
gree less than . As perfect reconstruction has to be ensured, all
of these polynomials have to be captured by the low-pass filter.

By enforcing certain constraints on the filters, we can en-
sure that at least one zero is always located at . This

would imply that no dc component would be picked up in the
high-pass subband. If is the high-pass filter, then this also
implies that . In the lattice domain, the same can
be achieved by utilizing the fact that sum of all the lattice an-
gles, must confirm to the following:

To measure the energy picked up in the high pass sub-band
when a constant is presented at the input, we define dc leakage
(DCPSNR). It is mathematically defined as

DCPSNR

D. Hardware Complexity

When a number is multiplied by an integer, this multiplica-
tion can be transformed into additions of its bit-shifted versions.
The number of additions can then be minimized by using the
classical Booth’s algorithm for signed multiplication [18]. For
example, a multiplication by can be implemented by only
one shift and one addition, as it can be written as .

The hardware complexity of an algorithm is generally deter-
mined by the number of additions and shifts required in its im-
plementation. From a hardware perspective, adders are consid-
ered to be the most expensive modules in a CPU’s arithmetic
logic unit. Likewise, smaller amount of shifts allow the algo-
rithm to be mapped on a CPU with narrower bus width, a very
attractive feature for portable devices where bus width and bat-
tery power are limited. This topic is further explored in [14],
where the authors present an algorithm to generate multiplier-
less approximation of transforms.

IV. ORTHOGONAL DESIGNS VIA LATTICE STRUCTURE

A. Design via Exhaustive Search

Our first design is termed Lattice-6 and it is obtained by
an exhaustive search involving three lattice stages. This de-
sign conforms to the Kingsbury’s -shift scheme, so the
filter set is taken to be a time reversal of

. We will soon show that under this constraint,
the lattice coefficients of can be directly
derived from those of . The dc leakage condi-
tion introduced above allows us to express one of the angles
in terms of the other two. Thus, the optimization problem
reduces to a search in 2-D space (shown in Fig. 3). In this
search, the coding gain and Hilbert PSNR are plotted in 3-D,
against first two lattice coefficients ( and ). The point
that corresponds to the best overall compromise is marked with
a black cylinder (lattice values corresponding to that point are

and ). The polyphase
factorization of this implementation is as follows:
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Fig. 3. Exhaustive search results for coding gain (top) and Hilbert PSNR
(bottom). The black cylinders mark the point that corresponds to Lattice-6
implementation.

The filter coefficients are displayed in Table IV (column 3). In
Table IV, we also list and , which are quantized and un-
quantized values of normalization constants. These have to be
multiplied to filter coefficients to enforce normalization, so in
this case, and .

B. Design via Approximation

The next design, called Lattice-12, is an approximation of
one of the filters designed using Selesnick’s approach in [7]
where the author described a systematic design procedure
based on spectral factorization. In this procedure, a flat-delay
all-pass filter is used to approximate half-sample delay between

and . The problem reduces to the design of only
two filters: and . Presented as Example 1A in [7],
the two filters have 12-taps with four vanishing moments and

TABLE I
SELESNICK’S LATTICE AND LATTICE-12 APPROXIMATIONS

TABLE II
KINGSBURY’S LATTICE AND LATTICE-14 APPROXIMATIONS

second-order all-pass characteristics. We first map the original
filter coefficients to the lattice-coefficient domain, then subse-
quently approximate each resulting irrational lattice coefficient
by a dyadic rational, making sure that filters obtained are the
best compromise of the four design parameters. As shown in
Table I, the dyadic rationals of Lattice-12 are very good approx-
imations of the irrationals originally proposed by Selesnick.
The filter coefficients are displayed in Table IV (column 1). As
expected, for the original filters, the zeros at move
from their original positions, however the DC leakage condition
enforces one zero to be in the vicinity of .

The second approximation, called Lattice-14, is based on a
14-tap -shift filter proposed by Kingsbury [8].1 -shift filters
are surprisingly neat filters, in a sense that they are orthogonal,
the imaginary part of the complex wavelet is the time-reverse of
the real part, (i.e., ) and the filter is
the time-reverse of . The -shift filters have a group delay
of 1/4 or 3/4. This condition ensures that the difference in delay
between filter and its time reverse is always 1/2. The original
and quantized coefficients of Lattice-14 are listed in Table II.

The next approximation is Lattice-14 T. It utilizes the fact
that filters in imaginary CWT tree are the time-flips of the fil-
ters in real CWT tree. This approximation uses the time reversal
theorem in the lattice domain, according to which, the lattice
coefficients of filters that are time reversals of each other are re-
lated. The theorem and its proof are presented in the next subsec-
tion. For Lattice-14T, the filter pair is the same
as Lattice-14; however, lattice coefficients of
are directly derived from those of . Table III
displays the lattice coefficients for this design while in Fig. 4,
the exact implementation is shown. It can be seen that one of
the lattice coefficients is , which is not a dyadic rational
number. The most common method to deal with the rational

1Matlab files for generating these filters are available at http://www-sigproc.
eng.cam.ac.uk/~ngk/
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TABLE III
KINGSBURY’S LATTICE AND LATTICE-14T APPROXIMATIONS

Fig. 4. Implementation of the Lattice-14T. Top structure implements
�� ����� ���� while bottom one implements �� ����� ����.

8/11 in a practical multiplierless implementation is to approxi-
mate it by a close dyadic-rational such as 93/128. Since this is
simply a scaling factor, the only sacrifice we have to make is that
the filters will not be the exact time-re-
versed versions of the filters: They will
be off by a tiny margin in a scaling sense. The rounding results
in movement of zero at by less than 1%, and it does not
affect the magnitude of filter coefficients, directionality, coding
gain, or HPSNR.

C. Time-Reversal Relationship in the Lattice Domain

Theorem 1: For Kingsbury’s -shift designs [19], the filter
pair is related to by a time
reversal. Let be a set of lattice
coefficients that realizes the filter pair , where

is associated with the last rotation (closest to the filters’
outputs). Then, the time-reversed filter pair
can be realized with the following set of lattice coefficients:

.
In other words, inverting the last lattice coefficient and re-

versing the polarity of the rest yield the time-reversed filters.
The lattice-domain time-reversal theorem is also evident from
observing unquantized coefficients in Table III (and also from
Fig. 4), where the product of the coefficients for and

is one. For , the rotations have opposite sign
but same magnitude.

Two important implications result from this elegant relation-
ship. First, pair has nearly the same computa-
tional complexity as the pair. Second, if there
exists a wavelet system where all coefficients are sums of power
of two (e.g., the Daubechies-5/3), the pair will
be equally efficient in complexity.

Proof: Since the length of all filters is (where is
even), the number of lattice stages required to realize the filters

is . Since the filter is a time-reverse of ,
we have

In the -transform domain, we have equivalently

Since the filters are of even length and time-flip of each other,
the polyphase components are also related. That is

(6)

(7)

(8)

(9)

Using (5) and from (6)–(9), even/odd phases of
can be expressed in terms of even/odd phases

of , according to the following:

Therefore can be expressed in terms of as

(10)

In terms of lattice factorization, the polyphase matrix can
be written as

(11)

where

Using a very similar argument, can be written in terms
of lattice coefficients and scaling factor
as follows:

(12)

where

(13)

(14)
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Substituting and from (11) and (12) in (10) yields

(15)

From (15), we can simplify to be

Since , and by using the fact

that , the above equation can be simplified as

(16)

From the value of above, (15) now can be
written as

(17)

Equating the scaling terms separately from (17), we get

(18)

Comparing (18) with (13) yields

(19)

Similarly, by equating -terms in (17), we get

(20)

So, from (14) and (20), it is clear that , and therefore
for ,

Thus the last lattice coefficient of the imaginary tree can be
simply inverted while the polarity of the remaining can be
simply reversed.

V. BIORTHOGONAL DESIGNS VIA LIFTING SCHEME

The biorthogonal families of dual-tree CWT that are studied
here are based on the spectral factorization approach proposed
by Selesnick in [7]. Using this algorithm, biorthogonal filters
with certain regularity and approximation to the flat all pass
delay filter can be constructed. One important constraint that
this design imposes is that is always a time reversal of

. Because of constraints discussed in the cited paper, Se-
lesnick’s design procedure cannot produce linear phase filters.
However, for the interested reader, biorthogonal linear phase fil-
ters for CWT are discussed in [20] and [4].

A. Design Via Exhaustive Search

The first biorthogonal approximation is called Lifting-5/3. Its
analysis low-pass and high-pass filters are of order four and two,

respectively. Similar to the Daubechies-5/3 filters, Lifting-5/3 is
very efficient. The polyphase matrices for Lifting-5/3 have the
following form:

By utilizing that and , we can
represent and in terms of and , respectively,

(21)

(22)

The above conditions also enforce one zero at exactly
(i.e., no dc component leaks into the high pass subband). There-
fore, the filters can be designed using an exhaustive search that
maximizes coding gain and Hilbert performance from two free
parameters. Fig. 5 depicts the results from this search. Coding
gain and Hilbert PSNR are plotted in 3-D against variables and
. The optimal area is marked with black cylinder and this corre-

sponds to values and .
It turns out that this is also a very close solution to the 5/3 filter
pair that can be designed using Selesnick’s construction (called
Selesnick-5/3). With one vanishing moment and all pass filter of
order one, Selesnick-5/3 is one of the simplest designs that can
be achieved using dual-tree CWT construction. Thus, if we start
with Selesnick’s 5/3 filters and perform Euclidean factorization
algorithm [12], the result is a solution that is close to the our 5/3
solution.

Shown in Fig. 6, the implementation has one update and one
prediction stage, followed by a scaling factor. As expected, the
lifting polynomials for time-reversed filters are also related.
This relationship will be described and proved in the next
section.

B. Design via Approximation

Our final design via approximation is called Lifting-9/3.
Lifting-9/3 uses the same high-pass filter as the 5/3, but im-
proves on the number of vanishing moments of the low-pass
filter. Table V shows filter coefficients for this approximation.
The polyphase factorization is given by

C. Time-Reversal Relationship in the Lifting Domain

Theorem 2: Consider a biorthogonal dual-tree CWT design
where the low-pass filter pair is related to
the low-pass filter pair by a time reversal. If
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Fig. 5. Exhaustive search results for coding gain (top) and Hilbert PSNR
(bottom). The black cylinders mark the point that corresponds to Lifting-5/3
implementation.

Fig. 6. Implementation of the Lifting-5/3. Top structure implements
�� ����� ���� while bottom structure implements �� ����� ����.

and
are respectively update and prediction polynomials that
implement , then the set of update/predict
polynomials that can realize are

and
.

In other words, by time-reversing all update/predict stages in
a lifting scheme, we can implement time-reversed filters. Note
that to satisfy causality, some delay has to be introduced into
subbands. This holds for odd-length as well as even-length fil-
ters, except that in even-length case, the polyphase matrix has
to be postmultiplied by antidiagonal (reversal) matrix.

Proof: Since low-pass filter pair is a time
reversal of , we have

From simple algebra, it can easily be calculated that

First, consider the case when filters have odd lengths. For this
case, since filters are odd-length and time-reversed, their even
and odd phases are related by

(23)

(24)

(25)

(26)

The polyphase matrix can be written in terms of
by

(27)

where

For the case when filters have even-lengths, even and odd phases
are related by

(28)

(29)

(30)

(31)

Again, the polyphase matrix takes a very similar form

(32)

where is slightly different

Equations (27) and (32) imply that if has lifting decom-
position of the form

then can be factored as follows:

has to be postmultiplied by if filters are even-length
and by if filters are odd-length.

VI. EVALUATIONS AND APPLICATIONS

In this section, we evaluate the performance of proposed de-
signs with the originals and the separable DWT wavelets.
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TABLE IV
QUANTIZED FILTER COEFFICIENTS FOR ORTHOGONAL DESIGNS

TABLE V
QUANTIZED FILTER COEFFICIENTS FOR BIORTHOGONAL DESIGNS

Fig. 7. Lattice-12: (a) � ���; (b) � ���; (c) � ���; (d) � ���. Lifting-5/3:
(e) � ���; (f) � ���; (g) � ���; (h) � ���.

A. Smoothness in Wavelet and Scaling Functions

Since most natural images have smooth transitions, the
smoothness of the resulting scaling and wavelet bases is a
desirable property for every image processing application.
The precise relationship between regularity and smoothness
is unknown, however generally a higher number of vanishing
moments results in smoother bases. The rational-coefficient
designs presented here generate functions that exhibit smooth-
ness and are very close approximations with low complexity. In
Fig. 7, the Lattice-12 and Lifting-5/3 wavelet and scaling func-
tions (for analysis stage) are plotted. The Lattice-12 designs

are orthogonal, so the synthesis scaling and wavelet functions
are the time-reversals of analysis functions. For Lifting-5/3, the
imaginary-tree scaling and wavelet functions are the time-re-
versals of the real-tree functions. Table VIII (D) lists the dc
leakage of all the filters discussed in this paper. It can be seen
that all of them are very good at attenuating dc.

B. Hilbert Performance and Directional 2-D Wavelets

Fig. 8 shows a frequency response of the four-level decompo-
sition using Lattice-12 filters, where the real and imaginary co-
efficients are combined to form complex coefficients

. We have found that the Hilbert performance of all
of the proposed designs is almost as good as the original ones.
Measurements of Hilbert energy and Hilbert PSNR, as shown in
Table VIII (B, C), illustrate that Lattice-12 design outperforms
all discussed filter sets.

A direct consequence of good Hilbert transform pair is better
directional selectivity in the 2-D domain [5]. In a separable 2-D
wavelet, the directional wavelets for filters are
defined as

Horizontal edges

Vertical edges

Diagonal edges.

The directional bases
for are defined similarly. An application that
demonstrates the power of directional properties of the pro-
posed designs is the directional feature extraction, as shown in
Fig. 9. For this test, Lifting-9/3 was used along with the zone-
plate image, which has frequency content from dc to . The
traditional separable 2-D DWT only captures edges along hori-
zontal, vertical, and diagonal directions (shown in the top row).
Edges along several other directions can be more efficiently
captured by adding and subtracting with

. These angles are given by

15 edges

75 edges

105 edges

165 edges
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Fig. 8. Plot of �� ��� � �� ���� for Selesnick-12 and Lattice-12.

Fig. 9. Directional feature extraction for the zoneplate image. Clockwise
from top-left: original image, � ��� ��� � ��� ��� � ��� ��� � ��� �� �
� ��� ��� � ��� �� � � ��� ��� � ��� �� � � ��� ��� � ��� �� �
� ��� ��.

Fig. 10. Directional wavelets from Lattice-12 (top) and Lifting-5/3 (bottom).
From left to right, edges at angles: 15 � 75 � 45 � 165 � 105 � 135 .

Another example is illustrated in Fig. 10, where the six direc-
tional wavelets for Lattice-12 and Lifting-5/3 are plotted. The
filter sets succeed in isolating different orientations, without the
checkerboard effects (checkerboarding appears in separable 2-D
DWT wavelets because it mixes the 45 and 45 orienta-
tions [6]).

C. Denoising Performance

The dual-tree complex wavelet transform is a powerful tool
for image and video denoising due to its near shift and rotation
invariance [21], [20]. Fig. 11 shows2 PSNR versus threshold
point plot for the Stonehenge image. For this experiment, the
thresholds were applied globally across all the wavelet coeffi-

2Most of our denoising experiments were based on the Matlab code available
at http://taco.poly.edu/WaveletSoftware/index.html

Fig. 11. PSNR versus threshold points plot for Stonehenge. The original image
with an additive white Gaussian (AWG) noise of � � �� (noisy �	
� �
27.16 dB) was denoised using CWT filters. The best achievable PSNR with
Daubechies-9/7 2-D separable DWT was 29.13 dB.

TABLE VI
DENOISING RESULTS FROM THE DWT FILTER SETS ARE COMPARED WITH THE

NOISE-ADDED VERSION (� dB IS REPORTED)

TABLE VII
HARDWARE COMPLEXITY PER DWT COEFFICIENT IN TERMS OF ADDITIONS

��� AND SHIFTS �	� FOR 1-DIMENSIONAL, 1-LEVEL DWT

cients. It is more effective to apply the thresholding nonlinearity
to the magnitude of the transform (as opposed to denoising real
and imaginary parts separately), since the magnitudes are less
sensitive to aliasing distortion. Table VI presents a comparison
of denoising performance for two different values of noise stan-
dard deviations, of 15 and 25.

D. Hardware Complexity

Table VII summarizes the complexity of all approxima-
tions. The complexity of a reasonable approximation of the
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TABLE VIII
FILTER PROPERTY COMPARISONS OF THE PROPOSED DESIGNS

Daubechies-9/7 in the lifting domain is also illustrated. The
Lifting-5/3 design requires only 6 additions and four shifts per
wavelet coefficient for both real and imaginary DWT trees.

VII. CONCLUSION

In summary, we have presented the following key original
contributions in this paper.

• Several performance measures were reported which will be
helpful in evaluating future dual-tree CWT filter pairs.

• Using the lifting scheme and lattice structure, several fast
new designs and implementations of the dual-tree CWT
wavelet bases were presented. Since all lifting and lattice
parameters were chosen to be dyadic rationals, a very ef-
ficient implementation with only shift and addition opera-
tions is possible. Many of our new dual-tree wavelet filter
designs have the lowest level of computational complexity
ever reported in the current literature.

• We show that filters that are time reversals of each other are
also related in lattice and lifting domain. These interesting
theorems are further validated by observing lattice/lifting
coefficients of the proposed designs. The observations are
vital in simplifying the design process as well as the final
implementation of many of our proposed filter pairs.

• Our new rational-coefficient designs have been eval-
uated with various performance measures, including
denoising and directional feature extraction. The results
confirm that rational designs outperform the 2-D sep-
arable Daubechies-9/7 in both the applications. There
is little difference, if any, between the previously pub-
lished irrational-coefficient dual-tree solutions and the
rational-coefficient dual-tree designs presented in this
paper. In other words, the rational coefficient constraints
do not impose a severe penalty on the dual-tree’s most de-
sirable properties such as time-invariance, directionality,
wavelet smoothness, and energy compaction.

When compared to the Daubechies’ filters, the performance
of CWT filters in image compression is not as interesting as the
applications discussed here. The interested reader is, however,
referred to [22] and [23], where results for JPEG-2000 image
compression for the dual-tree CWT were reported.

For future work, we will continue to explore the close re-
lationships between the wavelet coefficients from the real and
imaginary tree of the dual-tree CWT. This exploitation can re-
duce the level of redundancy that currently exists in a dual-tree

wavelet system. For example, can we obtain the imaginary dual-
tree wavelet coefficients from a set of approximated wavelet
coefficients from the real tree (typical in compression applica-
tions)? How does quantization affect vital dual-tree properties
such as directionality and shift invariance? Another problem
under investigation is an efficient method to recover a subset of
wavelet coefficients of one tree from the other. The answers to
these questions will not only benefit practical applications, but
they will also improve our understanding of complex wavelets.
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