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Abstract—A new sparsity-based algorithm for the classification
of hyperspectral imagery is proposed in this paper. The proposed
algorithm relies on the observation that a hyperspectral pixel can
be sparsely represented by a linear combination of a few training
samples from a structured dictionary. The sparse representation
of an unknown pixel is expressed as a sparse vector whose nonzero
entries correspond to the weights of the selected training samples.
The sparse vector is recovered by solving a sparsity-constrained
optimization problem, and it can directly determine the class label
of the test sample. Two different approaches are proposed to
incorporate the contextual information into the sparse recovery
optimization problem in order to improve the classification per-
formance. In the first approach, an explicit smoothing constraint
is imposed on the problem formulation by forcing the vector Lapla-
cian of the reconstructed image to become zero. In this approach,
the reconstructed pixel of interest has similar spectral character-
istics to its four nearest neighbors. The second approach is via a
joint sparsity model where hyperspectral pixels in a small neigh-
borhood around the test pixel are simultaneously represented by
linear combinations of a few common training samples, which
are weighted with a different set of coefficients for each pixel.
The proposed sparsity-based algorithm is applied to several real
hyperspectral images for classification. Experimental results show
that our algorithm outperforms the classical supervised classifier
support vector machines in most cases.

Index Terms—Classification, hyperspectral imagery, joint spar-
sity model, simultaneous sparse recovery, sparse representation,
spatial correlation.

I. INTRODUCTION

S PARSITY OF signals has been an extremely powerful tool
in many classical signal processing applications, such as

compression and denoising [1], as most natural signals can be
compactly represented by only a few coefficients that carry
the most important information in a certain basis or dictionary.
Recently, applications of sparse data representation have been
extended to the area of computer vision and pattern recognition
[2] with the development of the compressed sensing (CS)
framework [3], [4] and sparse modeling of signals and images
[5]. These applications are mainly based on the observation that
despite the high dimensionality of natural signals, the signals
in the same class usually lie in a low-dimensional subspace.
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Therefore, for every typical sample, there exists a sparse rep-
resentation with respect to some proper basis which encodes
the semantic information. The CS theories ensure that a sparse
signal can be recovered from its incomplete but incoherent
projections with a high probability. This enables the recovery
of the sparse representation by decomposing the sample over a
usually overcomplete dictionary generated by or learned from
representative samples. Once the sparse representation vector
is obtained, the semantic information can be directly extracted
from the recovered vector. Applications of sparse representation
in computer vision and pattern recognition can be found in
various fields, including motion segmentation [6], [7], image
super-resolution [8], image restoration [9], [10], and discrim-
inative tasks including face recognition [11], iris recognition
[12], tumor classification [13], and hyperspectral unmixing [14]
and target detection [15]. In these applications, the usage of
sparsity as a prior often leads to state-of-the-art performance.

In the hyperspectral case, the remote sensors capture dig-
ital images in hundreds of narrow spectral bands spanning
the visible to infrared spectrum [16]. Pixels in hyperspectral
imaging (HSI) are represented by vectors whose entries cor-
respond to the spectral bands. Different materials usually re-
flect electromagnetic energy differently at specific wavelengths.
This enables discrimination of materials based on the spectral
characteristics. HSI has found many applications in various
fields, such as military [17]–[19], agriculture [20], [21], and
mineralogy [22]. A very important application of HSI is image
classification where pixels are labeled to one of the classes.
Various techniques have been developed for HSI classification.
Among these previous approaches, support vector machines
(SVMs) [23], [24] have been a powerful tool to solve super-
vised classification problems for high-dimensional data and
have shown a good performance for hyperspectral classification
[25], [26]. Variations of the SVM-based algorithms have also
been proposed to improve the classification accuracy. These
variations include semisupervised learning which exploits both
labeled and unlabeled samples [27], postprocessing of the indi-
vidually labeled samples based on certain decision rules [28],
[29], and incorporating spatial information directly in the SVM
kernels [30], [31]. More recent HSI classification techniques
can be found in [32]–[39].

In this paper, we propose a classification algorithm for HSI
that utilizes the sparsity of the input sample with respect to a
given overcomplete training dictionary. The proposed algorithm
is based on a sparsity model where a test spectral pixel is
approximately represented by a few training samples (atoms)
among the entire training dictionary. The sparse vector rep-
resenting the atoms and their associated weights for the test
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spectral pixel can be recovered by solving an optimization
problem constrained by the sparsity level and reconstruction
accuracy. The class of the test pixel can then be determined by
the characteristics of the recovered sparse vector.

HSI usually have large homogeneous regions where the
neighboring pixels within the regions consist of the same type
of materials (same class) and have a similar spectral character-
istics. Previous works have shown that it is important to take
into account the contextual information in HSI classification
[28]–[31], [40], [41]. This is usually done by either combining
the spatial and spectral information in the classification stage or
postprocessing the decisions obtained from individual pixels. In
this paper, during the recovery of the sparse vector, in addition
to the constraints on sparsity and reconstruction accuracy, we
also exploit the spatial smoothness across neighboring HSI pix-
els. Two different approaches are proposed to incorporate the
contextual information directly in the sparse recovery problem.
In the first approach, a local smoothing constraint is imposed
to the optimization problem by forcing the vector Laplacian
at the reconstructed pixel to be zero. Thus, the reconstructed
pixel of interest is forced to have spectral characteristics sim-
ilar to its four nearest neighbors. The proposed reconstruction
problem with the explicit smoothing constraint can be reformu-
lated as a standard sparsity-constrained optimization problem
and then solved efficiently by available optimization tools.
In the second approach, we exploit the interpixel correlation
between neighboring HSI pixels by adopting a joint sparsity
model [42], [43], where pixels in a small neighborhood are
assumed to be simultaneously represented by a few common
training samples, but for each pixel, these selected training
samples are weighted with a different set of coefficients. In
this way, the sparse vector representations of neighboring pixels
are forced to have a common support corresponding to the
common atoms in the given training dictionary. The support
is recovered by simultaneously decomposing the neighboring
pixels over the given training dictionary. In both approaches,
labels of the test samples are determined by the property of
the recovered sparse vectors. Both proposed approaches enforce
the smoothness constraint across neighboring pixels within the
optimization process during the classification stage, rather than
employing a postprocessing scheme to exploit the contextual
information.

The remainder of this paper is structured as follows. The
proposed sparsity-based classification algorithm is introduced
in Section II. The details of the two approaches used to
incorporate the spatial information in the proposed sparsity-
based classification techniques are described in Section III.
The effectiveness of the proposed method is demonstrated in
Section IV by simulation results on several real hyperspectral
images. Finally, Section V summarizes this paper and makes
some closing remarks.

II. CLASSIFICATION OF HSI VIA SPARSE REPRESENTATION

In this section, we first introduce a sparsity-based HSI clas-
sification algorithm by representing the test sample by a sparse
linear combination of training samples from a dictionary. We
then discuss the standard algorithms used to solve for the sparse

representation, as well as the procedure used for determining
the label of the test pixel.

A. Sparsity Model

In the proposed sparsity model, the spectral signatures of
pixels belonging to the same class are assumed to approxi-
mately lie in a low-dimensional subspace. Suppose we have
M distinct classes, and the mth class has Nm training samples
{am

j }
j=1,...,Nm

. Let x be a B-dimensional hyperspectral pixel
observation. If x belongs to the mth class, then its spectrum
approximately lies in a low-dimensional subspace spanned by
the training samples {am

j }
j=1,...,Nm

in the mth class. The pixel
x can be compactly represented by a linear combination of
these training samples

x ≈αm
1 am

1 + αm
2 am

2 + . . .+ αm
Nm

am
Nm

=
[
am
1 am

2 . . . am
Nm

]
︸ ︷︷ ︸

Am

[
αm
1 αm

2 . . . αm
Nm

]T
︸ ︷︷ ︸

αm

=Amαm (1)

where Am is a B ×Nm class subdictionary whose columns are
the training samples in the mth class; and αm is an unknown
Nm-dimensional vector whose entries are the weights of the
corresponding atoms in Am. In the sparsity model, αm is a
sparse vector (i.e., αm has only a few nonzero entries).

Therefore, an unknown test sample can be modeled to lie in
the union of the M subspaces associated with the M classes.
By combining the class subdictionaries {Am}m=1,...,M , a test
sample x can

x =A1α1 +A2α2 + . . .+AMαM

= [A1 . . . AM ]︸ ︷︷ ︸
A

⎡
⎣

α1

...
αM

⎤
⎦

︸ ︷︷ ︸
α

= Aα (2)

where A is a B ×N structured dictionary consisting of training
samples from all classes with N =

∑M
m=1 Nm; and α is an N -

dimensional sparse vector formed by concatenating the sparse
vectors {αm}m=1,...,M . Note that ideally if x belongs to the
mth class, then αj = 0, ∀j = 1, . . . ,M, j �= m. The sparse
representation of x can also be written as a linear combination
of only the K active dictionary atoms aλk

corresponding to the
K nonzero entries αλk

, k = 1, . . . ,K

x =αλ1
aλ1

+ αλ2
aλ2

+ . . .+ αλM
aλK

= [aλ1
. . . aλK

]︸ ︷︷ ︸
AΛK

⎡
⎢⎣
αλ1

...
αλK

⎤
⎥⎦

︸ ︷︷ ︸
αΛK

= AΛK
αΛK

(3)

where K = ‖α‖0 denotes the �0-norm (or sparsity level) of α
which is defined as the number of nonzero entries in α; the
index set ΛK = {λ1, λ2, . . . , λK} is the support of α; AΛK

is
a B ×K matrix whose columns are the K atoms {ak}k∈ΛK

;
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and αΛK
is a K-dimensional vector consisting of entries of α

indexed by ΛK .
In this paper, the dictionary A consists of training samples

collected directly from the image of interest. However, a more
robust dictionary can be designed by dictionary-learning tech-
niques [44], [45], or by creating dedicated subspaces for each
class through principal component analysis [46], [47]. Next, we
show how to obtain α and how to classify a test sample from α.

B. Reconstruction and Classification

We first consider the reconstruction problem of finding the
sparse vector α for a test sample x. Given the dictionary of
training samples A, the representation α satisfying Aα = x is
obtained by solving the following optimization problem:

α̂ = argmin ‖α‖0 subject to Aα = x. (4)

To account for approximation errors in empirical data, the
equality constraint in (4) can be relaxed to an inequality one

α̂ = argmin ‖α‖0 subject to ‖Aα− x‖2 ≤ σ (5)

where σ is the error tolerance. The aforementioned problem
can also be interpreted as minimizing the approximation error
within a certain sparsity level

α̂ = argmin ‖Aα− x‖2 subject to ‖α‖0 ≤ K0 (6)

where K0 is a given upper bound on the sparsity level [48].
The aforementioned problems are NP-hard, but they can be
approximately solved by greedy pursuit algorithms, such as
Orthogonal Matching Pursuit (OMP) [49] or Subspace Pursuit
(SP) [50]. Both OMP and SP algorithms are used to locate
the support of the sparse vector that approximately solves the
problem in (6), but the atoms are selected from the dictionary
in different ways. The OMP algorithm augments the support
set by one index at each iteration until K0 atoms are selected
or the approximation error is within a preset threshold. The
SP algorithm maintains a set of K0 indices. At each iteration,
the index set is refined by adding K0 new candidates to the
current list and then discarding K0 insignificant ones from the
list of 2K0 candidates. With the backtracking mechanism, SP is
able to find the K0 most significant atoms. The computational
complexity is in the order of O(BNK0) for OMP and is upper-
bounded by O(BNK0) for SP.

The NP-hard problem in (4) can also be relaxed to a linear
programming problem, called basis pursuit (BP), by replacing
‖ · ‖0 by ‖ · ‖1 [51]

α̂ = argmin ‖α‖1 subject to Aα = x. (7)

Similarly, the problems in (5) and (6) can also be relaxed to
convex programming problems as

α̂=argmin ‖α‖1 subject to ‖Aα−x‖2≤σ (8)

and α̂=argmin ‖Aα−x‖2 subject to ‖α‖1≤τ (9)

respectively. The aforementioned problems can be solved ef-
ficiently by an Interior Point method [52] or Gradient Projec-
tion method [53], [54] in polynomial time. In this paper, we
have employed the OMP and SP greedy algorithms to solve
the sparsity-constrained optimization problem in (6) and the
SPG-L1 optimization toolbox [54] to solve the BP denoising
problem in (8).

The class of x can be determined directly by the character-
istics of the recovered sparse vector α̂. Define the mth residual
(i.e., error between the test sample and the reconstruction from
training samples in the mth class) to be

rm(x) = ‖x−Amα̂m‖2, m = 1, 2, . . . ,M (10)

where α̂m denotes the portion of the recovered sparse coeffi-
cients corresponding to the training samples in the mth class.
The class of x is then determined as the one with the minimal
residual

Class(x) = arg min
m=1,...,M

rm(x). (11)

III. SPARSE REPRESENTATION WITH

CONTEXTUAL INFORMATION

Neighboring hyperspectral pixels usually consist of similar
materials; and thus, their spectral characteristics are highly
correlated. Previous work has shown that by taking into account
this interpixel correlation in HSI, the classification accuracy can
be significantly improved [29], [31]. Therefore, it is necessary
to incorporate the contextual information into the proposed
sparsity model as well. In this section, we show two different
approaches to achieve this within the sparsity-constrained prob-
lem formulation.

A. Laplacian Constraint

Let I represent the hyperspectral image. Let x1 be a pixel of
interest in I , xi, i = 2, . . . , 5 be its four nearest neighbors in the
spatial domain, as shown in Fig. 1, and αi be the sparse vector
associated with xi (i.e., xi = Aαi). Define vector Laplacian at
the reconstructed point x̂1 to be the B-dimensional vector

�2(x̂1) = 4x̂1 − x̂2 − x̂3 − x̂4 − x̂5

=A(4α̂1 − α̂2 − α̂3 − α̂4 − α̂5). (12)

In order to incorporate the smoothness across the neighbor-
ing spectral pixels, we propose to force the vector Laplacian
at x̂1 to become zero in addition to the constraints on sparsity
level and reconstruction accuracy in (4). In this way, the re-
constructed test sample x̂1 is forced to have a similar spectral
characteristics to its four nearest neighbors. The new sparse re-
covery problem with the smoothing constraint is formulated as

minimize
5∑

i=1

‖αi‖0

subject to : A(4α1 −α2 −α3 −α4 −α5) = 0

xi = Aαi, i = 1, . . . , 5. (13)
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Fig. 1. Four nearest neighbors of a pixel x1.

In (13), the first set of linear constraints forces the recon-
structed image vector Laplacian to become zero such that
the reconstructed neighboring pixels have similar spectral
characteristics, and the second set minimizes reconstruction
errors. The optimization problem in (13) can be rewritten as

minimize ‖α̃‖0
subject to : Ãα̃ = x̃ (14)

where

Ã =

⎡
⎢⎢⎢⎢⎢⎣

4λA −λA −λA −λA −λA
A

A
A

A
A

⎤
⎥⎥⎥⎥⎥⎦

α̃ =

⎡
⎣
α1
...
α5

⎤
⎦ x̃ =

⎡
⎢⎢⎣

0
x1
...
x5

⎤
⎥⎥⎦

and λ > 0 is a weighting factor that controls the relative
importance between the smoothing constraint and the recon-
struction accuracy.

In practice, the equality constraints in (13) (or equivalently
in (14)) cannot be satisfied. Similar to the previous case in
Section II-B, the problem in (14) can be relaxed to allow one
for smoothing and approximation errors in the form of (5) or
(6) as

ˆ̃α=argmin ‖α̃‖0 subject to ‖Ãα̃−x̃‖2≤σ (15)

or ˆ̃α=argmin ‖Ãα̃−x̃‖2 subject to ‖α̃‖0≤K0 (16)

respectively. The aforementioned problems are standard sparse
recovery problems and can be solved using the aforementioned
optimization techniques. In this paper, we implemented OMP
and SP to solve the problem in (16).

Once the sparse recovery problem in (16) is obtained, the
total error residuals between the original test samples and the
approximations obtained from each of the M class subdic-
tionaries are calculated as

rm(x) =

√√√√ 5∑
i=1

‖xi −Amα̂m
i ‖22, m = 1, 2, . . . ,M (17)

where x represents a concatenation of the five pixels x1, . . . ,x5

in the four-connected neighborhood centered at x1; and α̂m
i

denotes the portion of the recovered sparse vector for xi

associated with the mth-class subdictionary Am. The label of
the center pixel x1 is then determined to be the class that yields
the minimal total residuals

Class(x1) = arg min
m=1,...,M

rm(x). (18)

B. Joint Sparsity Model

An alternative way to exploit the spatial correlation across
neighboring pixels is through a joint sparsity model [42],
[43]—assuming that the underlying sparse vectors associated
with the neighboring pixels share a common sparsity pattern.
That is, HSI pixels in a small spatial neighborhood are approx-
imated by a sparse linear combination of a few common atoms
from a given structured dictionary, but these atoms are weighted
with a different set of coefficients for each pixel.

To illustrate the joint sparsity model, consider two neigh-
boring hyperspectral pixels xi and xj consisting of similar
materials. The sparse representation of xi with respect to a
given B ×N structured dictionary A can be written as

xi = Aαi = αi,λ1
aλ1

+ αi,λ2
aλ2

+ . . .+ αi,λK
aλK

where the index set ΛK = {λ1, λ2, . . . , λK} is the support of
the sparse vector αi. It is assumed that xi and xj consist of
similar materials. Therefore, xj can also be approximated by
the same set of training samples {ak}k∈ΛK

, but with a different
set of coefficients {αj,k}k∈ΛK

xj = Aαj = αj,λ1
aλ1

+ αj,λ2
aλ2

+ . . .+ αj,λK
aλK

.

This can be extended to pixels in a small neighborhood Nε

consisting of T pixels. Let X = [x1 x2 . . . xT ] be a B × T
matrix, where the columns {xt}t=1,...,T ∈ Nε are pixels in a
spatial neighborhood in the hyperspectral image. Now, using
the joint sparsity model, X can be represented by

X = [x1 x2 . . . xT ] = [Aα1 Aα2 . . . AαT ]

=A [α1 α2 . . . αT ]︸ ︷︷ ︸
S

= AS. (19)

The sparse vectors {αt}t=1,...,T share the same support ΛK ;
and thus, S ∈ R

N×T is a sparse matrix with only K nonzero
rows. For convenience, we call the support ΛK of αt as also
the support of the row-sparse matrix S.

Given the training dictionary A, the matrix S can be recov-
ered by solving the following joint sparse recovery problem

minimize ‖S‖row,0

subject to : AS = X (20)

where the notation ‖S‖row,0 denotes the number of nonzero
rows of S (also called the diversity of S as in [43]). The solution
to the earlier problem Ŝ = [α̂1 α̂2 . . . α̂T ] is an N × T
sparse matrix with only few nonzero rows. For empirical data,
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the problem in (20) can also be rewritten to account for the
approximation errors [55], as it was done in (5) and (6)

Ŝ = argmin ‖S‖row,0 subject to ‖AS −X‖F ≤ σ (21)

or

Ŝ=argmin ‖AS−X‖F subject to ‖S‖row,0≤K0 (22)

where ‖ · ‖F denotes the Frobenius norm. Similar to the pix-
elwise sparse recovery problems, the simultaneous sparse re-
covery problems (20)–(22) are NP-hard problems, which can
be approximately solved by greedy algorithms [42], [43], or
relaxed to convex programming which can be solved in poly-
nomial time [56], [57].

In this paper, two greedy pursuit algorithms are used
to approximately solve the problem in (22). The first
one is a generalized OMP algorithm, called Simultaneous
OMP (SOMP) [42], which is summarized in Algorithm 1.
In SOMP, the support of the solution is sequentially updated
(i.e., the atoms in the dictionary A are sequentially selected).
At each iteration, the atom that simultaneously yields the best
approximation to all of the residual vectors is selected. Partic-
ularly, at the kth iteration, we calculate an N × T correlation
matrix C = ATRk−1, where Rk−1 is the residual between
the data matrix X and its approximation. The (i, t)th entry
in C is the correlation between the ith dictionary atom ai

and the residual vector for xt at the current iteration k. In
SOMP, we need to compute the �p-norm for some p ≥ 1 for
each of the N rows of C [Step (1) in Algorithm 1]. The row
index corresponding to the largest �p-norm is then selected
to augment the support set. In the literature, p = 1 is used in
[42], and p = 2 is used in [43]. In [58], p = 2 and p = ∞ are
also proposed for weak matching pursuit. The SOMP algorithm
usually terminates when the residual is sufficiently small or the
desired level of sparsity (controlled by the number of iterations)
is achieved, corresponding to the problem in (21) or (22), re-
spectively. The implementation details of SOMP is summarized
in Algorithm 1. It should be noted that the normalization of
samples is not a requirement in SOMP and SSP. Normalization
is implicitly implemented by these greedy algorithms since the
atoms are selected from the training dictionary by maximal
correlation, regardless of the magnitude of the atoms.

Algorithm 1: SOMP
Input: B ×N dictionary A = [a1 a2 . . . aN ], B × T data

matrix X = [x1 x2 . . . xT ], a stopping criterion {
Make sure all columns in A and X have unit norm}

Initialization: residual R0 = X , index set Λ0 = ∅,
iteration counter k = 1
while stopping criterion has not been met do

(1) Find the index of the atom that best approximates all
residuals: λk = arg max

i=1,...,N
‖RT

k−1ai‖p, p ≥ 1

(2) Update the index set Λk = Λk−1

⋃
{λk}

(3) Compute P k=(AT
Λk

AΛk
)
−1
AT

Λk
X ∈ R

k×T , AΛk

∈ R
B×k consists of the k atoms in A indexed in Λk

TABLE I
16 GROUND-TRUTH CLASSES IN AVIRIS INDIAN PINES AND THE

TRAINING AND TEST SETS FOR EACH CLASS

(4) Determine the residual Rk = X −AΛk
P k

(5) k ← k + 1
end while

Output: Index set Λ = Λk−1, the sparse representation Ŝ
whose nonzero rows indexed by Λ are the K rows of the
matrix (AT

ΛAΛ)
−1
AT

ΛX

The second simultaneous sparse recovery algorithm is our
proposed simultaneous version of the SP algorithm (SSP),
summarized in Algorithm 2. Similar to the pixel-wise SP al-
gorithm [50], SSP also maintains a list of K0 candidates. At
each iteration, the K0 atoms that yield the best simultaneous
approximation to all of the T residual vectors are selected as
the new candidates. Similar to SOMP, we also need to compute
the �p-norm for some p ≥ 1 for each of the N rows of the
correlation matrix C = ATRk−1 [Step (1) in Algorithm 2].
The row indices corresponding to the rows with the K0 largest
�p-norm are then selected as the new candidates to augment the
support set. A backtracking step is then implemented, where
the K0 significant atoms are selected in a similar fashion from
the 2K0-candidate list [Step (4) in Algorithm 2]. The SSP
algorithm terminates when the residual begins to increase, or
a maximum number of iterations is reached.

Algorithm 2: Simultaneous Subspace Pursuit (SSP)
Input: B ×N dictionary A = [a1 a2 . . . aN ], B × T data

matrix X = x1 x2 . . . xT , sparsity level K0, a stopping
criterion {Make sure all columns in A and X have
unit norm}

Initialization: index set Λ0 = {K0 indices corresponding
to the K0 largest numbers in ‖XTai‖p, p ≥ 1, i = 1,

. . . , N}, residual R0 = X −AΛ0
(AT

Λ0
AΛ0

)
−1
AT

Λ0
X ,

iteration counter k = 1
while stopping criterion has not been met do

(1) Find the indices of the K0 atoms that best approx-
imate all residuals: I = {K0 indices corresponding
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Fig. 2. For the Indian Pines image: (a) training set and (b) test set. Classification maps obtained by (c) SVM, (d) SVM-CK, (e) SP, (f) SP-S, (g) SSP, (h) OMP,
(i) OMP-S, and (j) SOMP.

TABLE II
CLASSIFICATION ACCURACY (%) FOR THE INDIAN PINES IMAGE ON THE TEST SET

to the K0 largest numbers in ‖RT
k−1ai‖p, p ≥ 1,

i = 1, . . . , N}
(2) Update the candidate index set Λ̃k = Λk−1

⋃
I

(3) Compute P k = (AT
Λ̃k

AΛ̃k
)
−1
AT

Λ̃k
X ∈ R

2K0×T

(4) Let pi
k denote the ith row in P k. Update the index set

Λk = {K0 indices corresponding to the K0 largest
numbers in ‖(pi

k)
T ‖p, p ≥ 1, i = 1, . . . , 2K0}

(5) Determine the residual

Rk = X −AΛk

(
AT

Λk
AΛk

)−1
AT

Λk
X

(6) k ← k + 1
end while

Output: Index set Λ = Λk−1, the sparse representation Ŝ
whose K0 nonzero rows indexed by Λ are the rows of
the matrix (AT

ΛAΛ)
−1
AT

ΛX

Once the row-sparse matrix Ŝ in (20) is obtained, we cal-
culate the error residuals between the original test samples and
the approximations obtained from each class subdictionaries as
follows:

rm(X) = ‖X −AmŜ
m‖F , m = 1, 2, . . . ,M (23)

where Ŝ
m

consists of the Nm rows in Ŝ that are associated with
the mth-class subdictionary Am. The label of the center pixel
x1 is then determined by the minimal total residual as it was
done previously in Section II-B

Class(x1) = arg min
m=1,...,M

rm(X). (24)

IV. EXPERIMENTAL RESULTS AND ANALYSIS

In this section, we demonstrate the effectiveness of the
proposed sparsity-based classification algorithms on three
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Fig. 3. Effect of the weighting factor λ of the Laplacian constraint for Indian
Pines.

Fig. 4. Effect of the sparsity level K0 and size of neighborhood T for Indian
Pines. (a) SOMP and (b) SSP.

Fig. 5. Effect of the number of training samples for Indian Pines.

TABLE III
NINE CLASSES IN UNIVERSITY OF PAVIA

AND THE TRAINING AND TEST SETS

hyperspectral images. For each image, we solve the sparse
recovery problems in (4), (14), and (20) for each test sample
and then determine the class by the minimal residual. The clas-
sification results are then compared visually and quantitatively
to those obtained by the classical classifier SVMs, which has
proven a very powerful tool to solve supervised classification
problems and have shown good performances in hyperspectral
classification [26], [30].

The SP [50] and OMP algorithms [49] are used to ap-
proximately solve the sparsity-constrained problems in (6) and
(16), and the results are denoted as SP, OMP, SP-S (SP with
smoothing), and OMP-S (OMP with smoothing). For compari-
son, the classification performance using the SPG-L1 package
[54], which solves the linearized sparse recovery problem in
(7), is also included. Algorithms 1 (SOMP) and 2 (SSP) are
implemented to approximately solve the simultaneous sparse
recovery problem in (22). For SVM, we use a composite
kernel (denoted by SVM-CK) that combines the spectral and
spatial information via a weighted kernel summation, which
has been shown to outperform the spectral-only SVM in HSI
classification [30], [31]. The SVM parameters (RBF-kernel
parameter γ, regularization parameter C, and weight μ for
composite kernels) are obtained by cross-validation. Details of
these parameters are explained in [26], [30]. The one-against-
one strategy is employed for M -class classification using SVM
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Fig. 6. For the University of Pavia image: (a) training set and (b) test set. Classification maps obtained by (c) SVM, (d) SVM-CK, (e) SP, (f) SP-S, (g) SSP,
(h) OMP, (i) OMP-S, and (j) SOMP.

and SVM-CK. That is, a total of M(M − 1)/2 binary clas-
sifiers are constructed for each pair of classes in the training
stage. These classifiers are then applied to each test sample and
vote for the winning class. The class label of the test sample is
determined by majority voting. The sparsity-based algorithms,
unlike SVM, do not involve a training stage. They search for
dedicated atoms in the training dictionary for each test pixel
(i.e., the support of the sparse vector is dynamic). Therefore, the
sparsity-based algorithms are more computationally intensive
than SVM.

A. AVIRIS Data Set: Indian Pines

The first hyperspectral image in our experiments is the
commonly-used Airborne Visible/Infrared Imaging Spectrom-
eter (AVIRIS) Indian Pines image [59]. The AVIRIS sensor
generates 220 bands across the spectral range from 0.2 to
2.4 μm. In the experiments, the number of bands is reduced
to 200 by removing 20 water absorption bands [25]. This
image has spatial resolution of 20 m per pixel and spatial
dimension 145 × 145. It contains 16 ground-truth classes, most
of which are different types of crops (e.g., corns, soybeans,
and wheats), as seen in Table I. For each of the 16 class,

we randomly choose around 10% of the labeled samples for
training and use the rest 90% for testing. The number of training
and test samples for each class is shown in Table I and the
training, and test sets are visually shown in Fig. 2(a) and (b),
respectively.

The classification accuracy for each class, the overall ac-
curacy, average accuracy, and the κ coefficient measure [60]
are shown in Table II using different classifiers on the test
set. The overall accuracy is computed by the ratio between
correctly classified test samples and the total number of test
samples, and the average accuracy is the mean of the 16 class
accuracies. The κ coefficient is computed by weighting the
measured accuracies. It incorporates both of the diagonal and
off-diagonal entries of the confusion matrix and is a robust
measure of the degree of agreement.

The parameters for SVM and SVM-CK are obtained by
fivefold cross-validation. For the sparsity-based algorithms, the
sparsity level K0 is chosen between K0 = 5 to K0 = 30. For
SP-S and OMP-S, the weighting factor λ is fixed to 1. Since
the Indian Pines image consists of large homogenous regions,
a large window of size 9 × 9 (T = 81) is used in SSP and
SOMP. For pixelwise algorithms, the �1-relaxation technique
(7) yields comparable results to SP. In most cases, the proposed
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TABLE IV
CLASSIFICATION ACCURACY (%) FOR UNIVERSITY OF PAVIA ON

THE TEST SET USING DIFFERENT CLASSIFIERS

sparsity-based algorithm with spatial information outperforms
the classical SVM and overall the SOMP algorithm provides
the best performance. However, both SSP and SOMP fail to
identify any samples belonging to the ninth class consisting
of oats. This is partly due to the lack of training samples
(20 ground-truth samples in total, and only two are used for
training). Moreover, Oat pixels cover a very narrow region of
size 10 × 2 located in the midleft of the image. In SSP/SOMP,
the 9 × 9 local window centered at each Oat pixel is dominated
by the population of the pixels in the two adjacent classes,
which are Class 3 of Corn-min (on the left) and Class 6 of
Grass/Trees (on the right), where each of them occupies a large
homogenous region. By forcing the joint sparsity within this
window size, the Oat-covered region is completely smoothed
and misclassified as Corn-min and Grass/Trees. More results
for this image using SVM and other supervised classifiers can
be found in [31].

The classification maps on labeled pixels obtained from the
various techniques are shown in Fig. 2(c)–(j). Fig. 2(c) and (d)
show the results of the one-against-one multiclass SVM tech-
nique using a spectral-only kernel and a composite kernel com-
bining both spectral and spatial information through a weighted
summation, respectively. Fig. 2(e)–(j) show the visual results
obtained by solving the original �0-norm minimization problem
in (6), the Laplacian-constrained sparse recovery problem in
(16) and the simultaneous sparse recovery problem in (22)
using the SP-based and OMP-based reconstruction algorithms
SP/OMP, SP-S/OMP-S, and SSP/SOMP, respectively. One can
see from Fig. 2 that by incorporating the spatial information,
the sparsity-based algorithm leads to a much smoother classifi-
cation map than the pixelwise algorithms.

For the sparsity-based algorithm with the Laplacian con-
straint, the scalar value λ in matrix Ã used in (16) controls
the relative importance between smoothness and reconstruction
accuracy, leading to different classification results. Now we
demonstrate how λ affects the classification accuracy. As pre-
viously done, 10% of the data are chosen as training samples,
and the remaining 90% are used for testing. The sparsity level
K0 is fixed to K0 = 10 for SP-S and K0 = 5 for OMP-S.
The weighting factor λ varies from 10−2 to 10. The overall
accuracy as a function of λ is shown in Fig. 3. For both SP-S
and OMP-S, with λ ≤ 1, there is only a slight difference in the
classification accuracy. As λ increases (i.e., more weight on

TABLE V
NINE GROUND-TRUTH CLASSES IN Center of Pavia AND

THE TRAINING AND TEST SETS

smoothness and less weight on approximation accuracy), the
classification performance degrades quickly.

Next, we demonstrate the effect of the sparsity level K0

and the neighborhood size T on the performance of the si-
multaneous sparse approximation algorithms SOMP and SSP.
In this experiment, we randomly choose 10% of the data in
each class as training samples and use the remaining 90%
as test samples. In each test, we apply the SOMP and SSP
algorithms with different sparsity level K0 and neighborhood
size T to solve the problem in (22). The sparsity level K0

ranges from K0 = 5 to K0 = 80, and the neighborhood ranges
from the four-connected neighborhood (T = 5) to a 13 × 13
window (T = 169). The overall classification accuracy plots
on the entire test set for Indian Pines are shown in Fig. 4(a)
and (b) for SOMP and SSP, respectively. The horizontal axis
indicates the size of the neighborhood T and the vertical axis
is the overall accuracy (%). For small sparsity level K0, if the
neighborhood size T is too large, then the neighboring pixels
cannot be faithfully approximated by few training samples and
the classification accuracy is significantly reduced. On the other
hand, as K0 increases toward the size of the dictionary, the solu-
tion converges to the pseudoinverse solution, which is no longer
sparse and may involve atoms in multiple subdictionaries,
leading to a performance degradation. One can also see that for
sufficiently large sparsity level K0, in general the classification
performance increases almost monotonically as T increases.
However, large neighborhood may cause oversmoothing over
neighboring classes, which would lead to a decrease in the
overall classification accuracy.
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Fig. 7. For Center of Pavia: (a) training set and (b) test set. Classification maps obtained by (c) SVM, (d) SVM-CK, (e) SP, (f) SP-S, (g) SSP, (h) OMP,
(i) OMP-S, and (j) SOMP.

Next, we show how the number of training samples affects
the classification performance for various algorithms. The pa-
rameters are fixed to be the same as those used to generate
the maps in Fig. 2. In each test, we randomly choose 1 to
50% of the labeled data in each class as the training samples
and the remaining samples as the test ones. The classification
accuracy plots under various conditions are shown in Fig. 5,
where the x-axis denotes the percentage of training samples in
all labeled samples, and the y-axis is the overall classification
accuracy on the test set. The accuracy are averaged over ten
runs at each percentage to avoid any bias induced by random
sampling. It is obvious from Fig. 5 that in most cases the overall
accuracy increases monotonically as the percentage of training
samples increases. The pixelwise sparsity model in (2) for HSI
does not lead to better performance than the standard kernel
SVM. However, by incorporating the contextual information
via either the explicit smoothing term or the joint sparsity

model, the sparsity-based algorithms constantly outperform
SVM. Note that in the training stage of SVM-CK, in order to
extract the spatial features for each training sample, SVM-CK
requires knowledge of the neighboring pixels which may not
be available in the training set. Therefore, we could say that
SVM-CK is using more training samples than the other meth-
ods, especially in our experiment setting where the training sets
are randomly selected.

B. ROSIS Urban Data Over Pavia, Italy

The next two hyperspectral images used in our experi-
ments, University of Pavia and Center of Pavia, are urban
images acquired by the Reflective Optics System Imaging
Spectrometer (ROSIS). The ROSIS sensor generates 115 spec-
tral bands ranging from 0.43 to 0.86 μm and has a spatial
resolution of 1.3 m per pixel [31].
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TABLE VI
CLASSIFICATION ACCURACY (%) FOR Center of Pavia ON THE TEST SET USING DIFFERENT CLASSIFIERS

The University of Pavia image consists of 610 × 340 pixels,
each having 103 bands with the 12 noisiest bands removed.
There are nine ground-truth classes of interests, as shown in
Table III. For this image, we follow the same experiment
settings for the training and test sets as used in [29], in which
about 9% of all labeled data are used as training and the rest
are used for testing. Details about the training and test sets are
shown in Table III and in Fig. 6(a) and (b), respectively.

The classification results using SVM, SVM-CK, SP, SP-S,
SSP, OMP, OMP-S, SOMP, and SPG-L1 are summarized in
Table IV. The classification maps on labeled pixels are shown
in Fig. 6(c)–(j). For SVM and SVM-CK, we use a one-against-
one strategy with RBF kernels, and the parameters are obtained
by tenfold cross-validation. The sparsity level for the SP-
and OMP-based algorithms is chosen between K0 = 5 and
K0 = 30, and the weighting factor λ is fixed to 1 for SP-S
and OMP-S. Since this image is obtained from an urban area
with small buildings, it lacks the large spatial homogeneity
that was present in the Indian Pines image. Thus, a smaller
neighborhood (3 × 3 to 5 × 5 window) is used in the ex-
periment for SOMP and SSP for joint sparse recovery. The
proposed sparsity-based classification algorithms with spatial
information achieve better or comparable performance in most
cases than the SVM classifier. However, SVM-CK yields the
best overall performance and a smoother visual effect.

The third image, Center of Pavia, is the other urban image
collected by the ROSIS sensor over the center of Pavia City.
This image consists of 1096 × 492 pixels, each having 102
spectral bands after 13 noisy bands are removed. The nine
ground-truth classes and the number of training and test sam-
ples for each class are shown in Table V and in Fig. 7(a) and (b),
respectively. For this image, about 5% of the labeled data are
used as training samples.

The classification results are summarized in Table VI, and
the classification maps are shown in Fig. 7(c)–(j). For SVM and
SVM-CK, again, the one-against-one strategy is applied and the
parameters are optimized by tenfold cross-validation. For all
sparsity-based algorithms, the sparsity level is chosen between
K0 = 5 to K0 = 25. For SP-S and OMP-S, the weighting factor
λ is set to 1. For SSP and SOMP, similar to the case of Univer-
sity of Pavia, we use a small neighborhood of T = 5 for SSP
and T = 25 for SOMP. In this case, all of the sparsity-based
algorithms SP-S, SSP, OMP-S, and SOMP outperform SVM
and SVM-CK, and SOMP yields the best overall performance.

V. CONCLUSION

In this paper, we have proposed a new algorithm for HSI
classification based on sparse representation. In the proposed
algorithm, an HSI pixel is assumed to be sparsely represented
by a few atoms in a given training dictionary. The sparse
representation of a test spectral sample is recovered by solving
a sparsity-constrained optimization problem via greedy pursuit
algorithms. To improve the classification performance, we pro-
pose two different ways to incorporate the contextual informa-
tion of HSI. One approach is to explicitly include a smoothing
term through the vector Laplacian at the reconstructed pixel of
interest in the optimization formulation, and the other is through
a joint-sparsity model for neighboring pixels centered at the
pixel of interest. Experimental results on three hyperspectral
images show that the proposed algorithm yields highly accurate
classification results, especially for images with large homoge-
neous areas.
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