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Abstract—It has been well established that critically sampled
boundary pre-/postfiltering operators can improve the coding
efficiency and mitigate blocking artifacts in traditional discrete
cosine transform-based block coders at low bit rates. In these
systems, both the prefilter and the postfilter are square matrices.
This paper proposes to use undersampled boundary pre- and
postfiltering modules, where the pre-/postfilters are rectangular
matrices. Specifically, the prefilter is a “fat” matrix, while the post-
filter is a “tall” one. In this way, the size of the prefiltered image
is smaller than that of the original input image, which leads to
improved compression performance and reduced computational
complexities at low bit rates. The design and VLSI-friendly imple-
mentation of the undersampled pre-/postfilters are derived. Their
relations to lapped transforms and filter banks are also presented.
Two design examples are also included to demonstrate the validity
of the theory. Furthermore, image coding results indicate that the
proposed undersampled pre-/postfiltering systems yield excellent
and stable performance in low bit-rate image coding.

Index Terms—Discrete cosine transform (DCT), downsampling,
interpolation, low bit-rate coding, pre-/postfiltering, pre-/postpro-
cessing, undersampled.

1. INTRODUCTION

LOCK coders based on the discrete cosine transform

(DCT) [1] are widely used in image and video compres-
sion. Their success stems from the DCT’s excellent energy
compaction capability, low computational complexity, and a
high degree of flexibility. However, the main disadvantage of
block coders is that the correlation between neighboring blocks
has not been taken into account, which leads to suboptimal
coding efficiency and the manifestation of blocking artifacts at
low bit rates. To overcome these shortcomings, several postpro-
cessing algorithms have been proposed to mitigate the blocking
artifacts [2]-[11]. These algorithms work well for medium to
high bit-rate compression, but most of them fail to produce
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satisfactory results at low bit rates. Recently, several works
have been proposed to integrate both pre- and postprocessing
to improve low bit-rate coding performance. Among them,
two simple and effective schemes include 1) using boundary
pre-/postfilters [7], [8] and 2) using the downsampling/interpo-
lation techniques [12], [13]. Since the pre-/post-operators are
completely outside the DCT and the inverse DCT (IDCT), both
approaches can easily achieve the compliance to the DCT-based
standards (e.g., the JPEG) with modest modifications. In what
follows, we will briefly review these two schemes. For sim-
plicity, we will only consider the pre-/postprocessing of 1-D
signals. The 2-D signals can be handled by processing rows
and columns separately.

As shown in Fig. 1(a), the first approach [7], [8] adds a
boundary prefilter P before the DCT and a boundary postfilter
T after the IDCT, respectively. P and T are the exact inverse of
each other and they are of size N x N (N = 2n) each, which
is the same as that of the DCT and the IDCT. The prefilter P
is utilized to decorrelate the inter-block correlations, while the
postfilter T is applied to reduce the quantization mismatches
along block boundaries. It was demonstrated in [14] and [15] that
by turning on boundary pre-/postfiltering and optimizing adap-
tive context-based entropy coding appropriately, a DCT-based
block coder can achieve competitive coding performance as
the wavelet-based JPEG2000 coder [16], [17] at a much lower
computation cost. In fact, boundary prefilter combined with the
DCT performs the time-domain lapped transform (LT) [7], [8],
which have been well known to be effective in image processing
[18]-[20]. The system in Fig. 1(a) can be also viewed as an
N -channel critically sampled linear-phase filter bank (FB) with
each filter of the same length L = 2N.

The second approach through the downsampling and interpo-
lation techniques is shown in Fig. 1(b). Here, the input signal is
first filtered through a decimation filter Hp(z) and downsam-
pled by a rational factor k (k > 1). The low-resolution signal is
then passed through the block codec. At the output of the IDCT,
the signal is upsampled and convoluted by the interpolation filter
H/(z) to yield the reconstructed image. As the size of the input
image to the block coder is only (1/k)? of the original image,
this approach leads to significant complexity reduction of the
coding/decoding processes. As shown in [12], by choosing an
appropriate decimation factor k, both the PSNR and the visual
quality of reconstructed images can be substantially improved.
In addition, even better performance can be achieved by using
optimal decimation filter Hp(z) and interpolation filter H(z)
in the least square sense [13].

To take advantages of both approaches, an intuitive way is
the cascading approach as shown in Fig. 1(c), where the down-
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Fig. 1. Existing pre-/postfiltering schemes for DCT-based codecs. For simplicity, only the implementation diagram for 1-D signals is shown. For 2-D signals, they
can be processed in a separable approach. (a) Critically sampled boundary pre-/postprocessing [71, [8], where the N X N (N = 2n) matrices P and T are the
prefilter and postfilter, respectively. (b) The downsampling/interpolation approach [12], [13], where H p(z) and H; (=) are the decimation and the interpolation
filter, respectively, and k (k > 1) is the sampling factor. (¢) The cascading approach, which is a combination of (a) and (b). Here, the downsampling/interpolation

operations are conducted outside the boundary pre-/postprocessing.
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Fig. 2. Our proposed undersampled boundary pre-/postprocessing scheme for
block DCT codecs. The prefilter P and the postfilter T are of sizes N x M and
M x N (M > N), respectively.

sampling/interpolation operations are conducted outside the
boundary pre-/postprocessing. This is equivalent to replacing
the DCT and the IDCT in Fig. 1(b) with the LT and the inverse
LT, respectively. Instead of doing so, this paper proposes to
use undersampled boundary pre-/postfilters, as shown in Fig. 2,
which is an extension of Fig. 1(a) from critically sampled
systems to undersampled systems. In the proposed system, the
original input signal x is now divided into short sequences xy,
with length of M = 2m each, which is greater than the DCT’s
dimension N = 2n. Likewise, the reconstructed segment zy,
is of length M = 2m (M > N) each. Accordingly, the sizes
of the prefilter P and the postfilter T change into N x M and
M x N, respectively. Although M can be any integer greater
than IV, for simplicity, this paper only investigates the case of
even M. Extension to odd M is a trivial task. Some preliminary
results of undersampled systems were reported in [21]. In

this paper, we will further investigate their design, implemen-
tation and applications. For image compression, simulation
results show that the proposed undersampled pre-/postfiltering
scheme can offer a remarkable gain over the critically sampled
counterpart at high compression ratio. It also consistently out-
performs the conventional downsampling/interpolation scheme
in Fig. 1(b) by a large margin at various bit rates experimented.
Compared with the cascading approach in Fig. 1(c), although
the results at low bit rates are about the same, the proposed
undersampled prefiltering/postfiltering approach has a much
better performance at high bit rates. Besides, as the proposed
scheme retains the merits of block-by-block processing, it is
more advantageous for hardware parallel processing.

The rest of this paper is organized as follows. Section II
presents the general framework of undersampled pre-/postfil-
ters. Their relations to existing pre-/postfiltering schemes are
discussed, followed by the analysis of their connections with
LTs and FBs. Section III investigates the characterizations of
the pre-/postfilters. P and T were constructed to possess the
linear-phase property, and they are restricted to be the pseudo
inverse of each other. A closed-form solution is also derived
to yield minimum reconstruction error due to undersampled
pre-/postprocessing. Design criteria and examples are provided
in Section IV, followed by image coding results in Section V.
Finally, conclusions are presented in Section VI.

Notations: Bold-faced letters indicate vectors and matrices.
The following notations are used to describe submatrices of a
p X ¢ matrix X. The jth (1 < 57 < ¢ — 1) column is de-
noted as X(:, 7). The submatrix consisting of elements in the
ith through the jth columns is given by X(:,7 : j). The sub-
matrix consisting of elements in the ¢1th through ¢5th rows and
jith through joth columns is represented as X(i1 : 42, j1 : jo2).
The size of a matrix is omitted when it is clear from the context.
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rank(X) denotes the rank of matrix X, i.e., the largest number
of columns (or rows) of X that constitute a linearly independent
set. Trace(X) stands for the trace of X, i.e., the summation of
its diagonal elements. For a p X p Hermitian matrix X, denote
Ai(X) (fori =1,...,p) as its eigenvalues, and without loss of
generality, \;(X) are sorted in an ascending order, i.e.,
M(X) < X(X) < <A (X) < AX). ()
Special matrices are defined as follows: I,,J,,0,, and C,, de-
note the p x p identity matrix, the reversal matrix, the null ma-
trix and Type-II DCT matrix,! respectively. Besides, W), rep-
resents the following butterfly matrices:
L [ L,
V2 [Jp

Jp

%

II. UNDERSAMPLED PRE-/POSTFILTERING FRAMEWORK

W, = @

A. Relations to Existing Pre-/Postfiltering Schemes

1) Connections With the Critically Sampled System: The un-
dersampled system in Fig. 2 is an extension of the critically sam-
pled system in Fig. 1(a), where P and T are generalized to be
rectangular matrices. For an 1-D signal, the N x M (M > N)
prefilter P maps every M samples into N ones. Thus, the length
of prefiltered signal is N/M of the original input. In the 2-D
case, the size of the prefiltered signal is (N/M)? as the original
one. The size reduction can be significant when M is large. For
example, for an L, x L, input image, by applying an N x 2N
(i.e., M = 2N) undersampled prefilter, the DCT block codec
just needs to process (1/4)L? samples. Intuitively, due to the
size reduction, the DCT-block codec can be much faster than
that of a critically sampled one. In addition, finer quantization
can be used to meet the target bit rate.

However, in the undersampled system, as M > N, it is
impossible to achieve TP = I,,. Thus, unlike the critically
sampled systems, the pre-/postfiltering operation in undersam-
pled systems is a lossy process. Even without any compression
(quantization), there will be some distortion in the reconstructed
image. If the input signal is assumed to be uncorrelated with the
quantization noise, then the total distortion (i.e., the mean square
error) in the reconstructed signal can be given by

2 2 2
Ototal — Or + Uq (3)
where o2 is the distortion introduced by undersampled pre-/

postfiltering, and crg is the quantization distortion. For high bit-
rate coding, the undersampled pre-/postfiltering is not desirable
due to the existence of af. However, at low bit rates, with a finer
quantizer, the total distortion can be less than that in the criti-
cally sampled system.

2) Relations to the Downsampling/Interpolation and the
Cascading Schemes: In the downsampling/interpolation and
the cascading schemes, when k& = N/M, the length of the

IThere are four types of DCT [1]. Type II refers to the one widely used in
various image and video compression standards.
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Fig. 3. Filtering process in the downsampling scheme and the proposed un-
dersampled system. Here, W” indicates the input samples x[]. “A” denote the
output samples, where z4[¢] and w,[i] represent the output of the decimator
and undersampled prefilter, respectively. (a) The downsampling scheme with
k = 2 and decimation filter length . = 3. The vector x'[] takes the form of
x'[i] = [#[2i — 2] #[2¢ — 1] 2[24]]”. It is an overlapped operation. (b) The
undersampled system with a 2 X 4 (i.e.,, N = 2 and M = 4) prefilter. The
process is a nonoverlapped block operation.

prefiltered signal is the same as that in the undersampled
system. However, it should be emphasized that in Fig. 1(b) and
(c), the size reduction is conducted through the single-input,
single-output scalar filter Hp(z), followed by a decimator,
while in the proposed scheme of Fig. 2, it is achieved by
applying a multiple input, multiple output “fat” matrix filter P.
To have a better understanding of their filtering operations, let
us consider the systems with & = 2 in Fig. 1(b) and (c) and
M = 2N in Fig. 2.

Denote the decimation filter as Hp(z) = Zﬁ;& hln]z",
where L is the filter length. Suppose that the original input is
x[i]. When k = 2, the decimator’s output z4[¢] can be written
as

L—1
zalil = hljla2n — j]
7=0

= [plL 1] R[] R{O]X[i]
where x’[i] denotes the vector which includes all required input
samples to produce z4[7], i.e.,

x'[i) =[z[2i —L+1] =z[2i— L+2] z[2i]%.
The process can be described by using a sliding window over
the input signal, as shown in Fig. 3(a) (for L = 3). As can be
seen, x'[i + 1] can be obtained by shifting x'[] by two samples.
It is clear that x’[¢] has no overlap with x'[i — 1] when L <
2. Their overlap occurs when L > 2. On the other hand, for
the proposed system in Fig. 2, the prefiltering stage is always
a nonoverlapped block-by-block operation. That is, every block
of M input samples is mapped into N prefiltered ones. Fig. 3(b)
illustrates this process for M = 4 and N = 2.

Hence, when the filter length L < 2, Fig. 1(b) and (c) can be

viewed as two special cases of Fig. 2. To be more accurate, in
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(b)

Fig. 4. N-channel undersampled filter bank with sampling factor /. (a) Direct-form implementation. (b) Polyphase implementation.

the proposed undersampled system, if the N x 2N prefilter P
takes the form of

h[0]  h[1]

ho] A1

“

it is boiled down to the downsampling scheme in Fig. 1(b) with
Hp(z) = h[0] + h[1]z and k = 2, and when P is set to be

h[0] - h[1]
_— hlo] ]
hl0]  A[1]

&)

it is equivalent to the cascading scheme in Fig. 1(c) with
Hp(z) = h[0]+ h[1]z,k = 2 and an N x N boundary prefilter
P... However,, when L > 2, since the filtering operation in
Fig. 1(b) and (c) is conducted in an overlapped manner, it
cannot be represented through the undersampled system.

B. Links to Lapped Transforms and Filter Banks

Note that the system in Fig. 2 consists of two simple stages
of nonoverlapped block operations, i.e., the undersampled pre-/
postfiltering stage and the DCT/IDCT stage. From the transform
point of view, it generates an N-band (N = 2n), 2M-tap (N X
2M) undersampled LT. Let the prefilter P and the postfilter T
be partitioned as follows:

P
P:[PZ} and T=[T; T.]

where P; and Py, represent n X M submatrices of P, while T
and T, are M x n submatrices of T'. The corresponding forward
transform matrix H and the backward transform matrix F can
be expressed as [7], [8]

Py,  Onxm
H=C
N [Oan P,
and
T’I’ 0M><n -1
F= C 6
[OMXTL T, ] N ©

respectively. Each row in H and each column in F are the basis

. L X}
functions. Denote the M -point input segment as x; = [xf, ],
k

where x} and x¢ contain the first m and the last m points in
X, respectively. The kth output of the DCT c;. can be com-
puted as ¢, = Hsy, where the input segment s; is s =
[(x{_)T (xe)T  (x},1)T]". The term “lapped” is so called
as s has an overlap of M samples with its adjacent neigh-
bors s;_; and sy each. Accordingly, at the output, the recon-
structed segment X, can be recovered from ¢y, in an overlap-add
fashion [7], [8], [18]-[20]. The term “undersampled” implies
that the total number of DCT coefficients c;, is less than that of
the original input x;. Note that it has been widely known that
by replacing the DCT with the LT, the blocking artifacts can be
effectively reduced [18]-[20]. With the extension to undersam-
pled systems, we aim to get even better performances for low
bit-rate coding.

From the perspective of multirate signal processing, the un-
dersampled LT is linked to an N -channel undersampled FB with
the sampling factor of M, as shown in Fig. 4(a). The analysis
filters H;(z) (fori = 1,..., N) and synthesis filters F;(z) (for
1=1,...,N)areoflength L = 2M each, which can be written
into

[Hi(z) Ha(z) Hy(2)]"
=H[l =z MIT,
[F1(2)  Fa(2) Fn(2)]
=[zM M1 1]F. @)

Here, H1(z) and Fi(z) are low-pass filters and the remaining
ones are band-pass/high-pass filters. An equivalent, but alterna-
tive, form of Fig. 4(a) is through the polyphase representation in
Fig. 4(b), where the analysis polyphase matrix E(z) and the syn-
thesis polyphase matrix R(z) can be written through the trans-
form matrix H and the inverse transform matrix F as follows:

L.
21,

E(z)=H { ] R(z) =[21,, L,]F. ®)
By the definitions of H and F in (6), the explicit expressions of
E(z) and R(z) are

E(z) = CnAn(2)P, R(z)=TAJ(2)CL 9

in which Cy is the Type-Il DCT matrix and Ay(z) =
[zIn 0,
is first downsampled, the processing speed is much faster than
that in the direct-form implementation. In addition, one can
easily get a VLSI-friendly hardware implementation structure
through the polyphase representation [22].

]. In the polyphase implementation, as the input signal
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Fig. 5. Structures of the prefilter and the postfilter with the linear-phase prop-
erty (N = 8 and M = 10). Here, W5 and V\(m are butterfly matrices defined
asin (2). {U, V} are 4 x 5 matrices while {U, V} and 5 X 4 ones.

III. EXPRESSIONS OF PRE-/POSTFILTERS

This section derives the expressions of P and T. Just as in
critically sampled systems, the linear-phase and the (pseudo) in-
verse conditions are imposed. As we have mentioned before, the
undersampled pre-/postfiltering is an irreversible process. Even
without any quantization, it will lead to the reconstruction error
o2, as shown in (3). To further simplify the design, a closed-form

e
solution is derived to minimize the reconstruction error o2,

A. Linear-Phase Property

The linear-phase property is crucial in many applications of
image processing. Not only does it lead to reconstructed image
and video signals with good visual quality, it also offers an ef-
fective representation of finite-length signals via symmetric ex-
tensions at signal boundaries [8], [18].

For the undersampled LT in Fig. 2, the linear-phase property
implies that the basis functions of H and F are either symmetric
or antisymmetric. Following the similar derivations of critically
sampled systems in [7] and [18], it can be shown that the linear-
phase property holds if and only if P and T take the following
forms:

U 0
P:WN[O V] Wi
and .
. U 0
T =Wy {0 V}WN (10)

where Wy and W, are butterfly matrices as in (2), {U, V}
are n X m free matrices, and {fJ, \7} are m X n free matrices.
With (10), the odd-numbered filters Ho;—1(z) and Fb;_1(z)
(for ¢ = 1,...,n) are symmetric, while the even-numbered
ones Ho;(z) and Fy;(z) are anti-symmetric. As an example,
Fig. 5 shows the detailed implementations of P and T for N =
8, M = 10. It can be seen that in the preprocesing stage, the ten
input samples first go through the butterfly matrix Wy,. Two
small 4 X 5 matrices U and V then map the first and the last
five samples into four ones each, yielding eight samples in total.
These eight samples are filtered by another butterfly matrix W
to produce the preprocessed samples. The postprocessing stage
follows nearly the same path.

B. The Pseudo Inverse Restriction

Recall that, in critically sampled systems with N = M [7],
[18], besides the linear-phase property, the perfect reconstruc-
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tion condition is often imposed, in which P and T are the exact
inverse of each other, i.e.,

P=T"1 (11)

In undersampled systems, as the prefilter P is a “fat” matrix,
it has no left-inverse. Hence, there exists no postfilter T which
meets the perfect reconstruction property. To simplify the de-
sign, we restrict P and T to be the pseudo-inverse [23] of each
other, i.e.,

P=T%. (12)

Note that (12) is an extension of (11) to undersampled systems. In
the special case of N = M, (12) is equivalent to (11). Under this
constraint, for a given prefilter P, one can get the optimal solution
of TPx = x in the least square sense [24]. Using the orthogo-
nality of W and W, we know that (12) is equivalent to

U=U" and V=V* (13)

i.e., Uand V are the pseudo inverses of UandV, respectively.
Due to the uniqueness of the pseudo inverse, we just need to de-
sign U and V, while U and V can be determined by (13). Ob-
viously, the maximum degrees of design freedom can be gained
when U and V are of full rank, i.e.,

rank(U) = rank(V) = n. (14)

Hence, in what follows, we shall only consider this case.

C. Minimization of the Reconstruction Error

From (10) and (13), itis clear that by imposing the linear-phase
and the pseudo inverse conditions, the design and optimization
of P and T can be converted into that of two /m X n matrices
{U, V}. The total number of free parameters in these two ma-
trices is 2 nm. For a large number of channels NV = 2n and alarge
sampling factor M = 2m, this number can be fairly large, which
may slow down the convergence in the pre-/postfilter optimiza-
tion. It would be useful to cut down the number of free parameters
by structurally imposing other constraints [8], [18]-[20].

Recall that, in critically sampled systems, under the perfect
reconstruction condition in (11), the reconstruction error is zero
if the quantization stage is omitted. For undersampled systems,
we will further restrict { IAJ./ \7} so that the reconstruction error

o2 in (3) is minimized. Recall that o2 is the MSE of recon-

structed signal due to undersampled pre-/postprocessing. It is
easy to show that o2 can be written as

1

02 = =B {|(1- TP)x|3}

= %Trace(ERmET) (15)

where E = I — TP and R, is the autocorrelation matrix of

the input signal R, = E{xxT}. In what follows, we aim to

exploit a couple of questions. 1) Given N, M, and R, what

is the minimal value of 02? 2) How do we characterize the free
matrices {U, V} so that ¢2 is minimized?

Detailed derivations of the above-mentioned questions are

given in the Appendix. Here, we just outline the results. Let

R, = WyR.. Wy, and define R, and R, as the m x m

upper-left and lower-right submatrices of R/, i.e.,

Ru=R., (1:m,1:m) (16)
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Fig. 6. Detailed parame}erizations of ﬂq and U r When n = 4). (a) Parameterization of ﬂq, where the rotation angles 6, (fore = 1,...,6) are free parameters.
(b) Parameterization of U g, where the scaling factors r; (fori =1,. .., ,4) and the lifting coefficients r,; (forz = 1, ydandy =4,.. ., ,4) are free parameters.
TABLE I . . . . .
VALUES OF 02 . BY USING THE UNDERSAMPLED LTS WiTH N = 8§ Givens rotations [22], while an n X n up-triangular matrix can be
always represented by n diagonal elements and (n(n — 1))/(2)
. . . . . 2
M 3 10 12 14 16 lifting steps [25]. T'heref20re, to ;mmmlz.e o, the total number
2 of free parameters is 2n* = N#/2, which is regardless of the
Irmin | 0 | 00055 | 0.0098 | 00136 | 0.0171 sampling factor M. As we have said, U and V contain 2-nm

R,=R . (m+1:Mm+1:M). (17

As R, is a Hermitian matrix, it is obvious that both R, and
'R, are also Hermitian. Hence, through the eigen-decomposition
[23], they can be factorized into

Ru=ANAY R, =ANAT (18)

where A, and A, are m x m orthogonal matrices; and A,

and A, are diagonal matrices with diagonal entries A,,(¢,i) =

Ai(Ry)and Ay (7,7) = Ni(Ry) (fori =1, ..., m), respectively.
It is proved in the Appendix that the minimal value of o2 is

2 _ E
Jr,min IIllIl

1 m—n
+7 2_; Ai(Ry)- (19)
That is, 07, ;,, is the sum of m — n smallest eigenvalues of R,

and that of R.,. As an example, for N = 8 (n = 4), Table I
lists the value of o,, min With different values of M. Here, the
input signal is assumed to be AR(1) with the correlation co-
efficient of p = 095, ie., Rue(i,j) = 0.95777. Just as ex-
pected, (77, min mcreases when M becomes large. And when
M — oo,02 ., = 1, which indicates that the whole
signal is lost. 7

As shown in the Appendix, o2
{U, V} are characterized as

U=A.:,m
V= A,(:,m

:O'

7 min 18 reached if and only if

—n+4+1:m)U,Ug

—n4+1:m)V,Vg (20)

where A, (:,m —n+1:m)and A,(:;m —n+1:m) denote
the last n columns of A, and A, respectively. {U Ry v R} are
arbitrary n X n upper triangular matrices with nonzero diagonal
entries and {Uq, V,} are arbitrary n X n orthonormal matrices.

Note that, for a given R, A, and A, can be determined by
(18). Hence, in (20), we just need to parameterize two n X n
orthogonal matrices U and V and two n X n up-triangular
matrices U r and A% Rr- Recall that an n X n orthogonal ma-
trix can be completely parameterized through (n(n — 1))/(2)

free parameters. Under the restriction of (19), we gain a reduc-
tion of 2n(m — n) parameters, which is advantageous in fast
optimization. For illustration purpose, when n = 4, Fig. 6(a)
and (b) shows the detailed parameterizations of ﬂq and U R, Te-
spectively. Here, the rotation angles ; (for i = 1,...,6) are
free parameters in ﬂq, while the scaling factors d; (for ¢ =
1,...,4) and the lifting coefficients r;; (for i = 1,...,4 and
j =1,...,4) are those in U Rr- They can vary freely and inde-
pendently under a mild constraint that d; # 0 (forz = 1,...,4).

IV. DESIGN CRITERIA AND EXAMPLES

A. Design Criteria

As our target application is low bit-rate coding, the cost func-
tion Clost We choose is a linear combination of the DC leakage
C4. and the coding gain C.,, both of which are crucial to com-
pression [26]

C'cos‘c = CVlc(dc + aZch (21)

where «; and « are the weighting factors. Through empirical
studies, we found out that «; = 1 and as = —10 can yield good
compression performance.

The DC leakage Cy4. in (21) measures the amount of en-
ergy that leaks into highpass subbands when the input signal
is a unit constant. Low DC leakage is effective in reducing the
blocking and checkerboard artifacts [26], [27]. Cy4. can be ex-
pressed through the analysis filters H;(z) as

Cac =Y |Haiya(1) (22)

Note that only odd-numbered filters Ho;11(z) (for i =
1,...,n — 1) are considered in (22) since the even-numbered
ones Hy;(z) are antisymmetric, which have zero frequency
responses at z = 1, i.e., Hy;(1) = 0.

The coding gain C,, is defined as the ratio of the quantization
distortion o3¢, using straight PCM quantization to the total
distortion o2, in transform coding

PCM

Ceg = 10 logy (23)

Utotal
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TABLE II
VALUES OF FREE MATRICES IN UNDERSAMPLED LTS WITH NV = §
Transforms | M U v
(07029 —0.5740  0.0906 —0.0575]
. . L 0.3905 05838 —0.4625 —0.0423
0.0510 0.2515  0.7243 —0.29081
00199  0.0071  0.0783  0.8107 |
[ 1.0261 —0.0720 00391 —0.0069] | [0.5465 —0.4728 0.1173 —0.0642]
0.2347  0.8550 —0.1425 0.0411 0.6240  0.0787 —0.3308  0.0040
LT-810 | 10 | [—0.0453 0.5410 0.5766 —0.0873 00752  0.7401 —0.0471 —0.1772
0.1162 —0.1911 0.8297  0.2334 0.0839 —0.0135 08215 —0.1233
| 0.0434 00664 —0.1255 1.0021 | | [0.0079 0.0457 —0.0220 0.8566 |
[ 10713 —02138 00548 —00097| | [ 00456 03376 —0.3926 0.0885 |
0.6638  0.3515 —0.1353 0.0341 02872 05244 —0.7247  0.1579
0.1550  0.8656 —0.1334  0.0212 0.6428  0.0302 —0.2679  0.0065
Lrste | 16 | 700885 0776 02881 00713 0.6648 —0.2544 03879 —0.2501
—0.0350 02194  0.8043 —0.0823 02106 01921 05765 —0.3334
0.0685 —0.1917 0.8546  0.1787 ~0.2249 0.6716  0.3344 —0.0479
0.0365 —0.1205 0.3253  0.6677 —0.1799  0.3992  0.1117  0.4931
—0.0619 0.1463 —0.2474 1.0684 01090 —0.2127 0.0720  0.9073

Magnitude(dB)

Magnitude(dB)

0.25 03

Normalized Frequency

(a)

Suppose that an input signal  with variance o2 is coded at B
bits per sample. Then, o3, is expressed as [22]

2B _2
O-.T7

open = €27 (24)
where c is some constant depending on the characteristics of
x. According to [22], if x is a Gaussian signal with zero-mean,
a good approximation is ¢ = 0.75. For the undersampled LT
studied in this paper, the total distortion o2, _, is given by (3). 02
is the mean square error when the quantization stage is omitted,
as expressed in (15), with its minimal value af}min givenin (19).

ag represents the quantization error, which takes the form of

N
C _ . .
o2 = i Zz 2Big2 || F(:4) |)? (25)
=1

in which B; (B; > 0) are the number of bits allocated to the ith

Normalized Frequency

(b)
Fig. 7. Frequency responses of the LT-88 (N = 8, A = 8) [18]. (a) Analysis bank. (b) Synthesis bank.

subbband, with their sum equals M B, i.e.,

N
Z B; = MB. (26)
1=1
o2 is the variance of the ith subband signal and F(:, i) is the ith
column of F, or the ¢th synthesis filter. In (25), it is assumed that
the quantization noise is white and uniformly distributed [27],
[28]. Athighbitrates (i.e., large B3), (25) can be simplified to [28]

—2BM N-—1
I o21F .ol
=0

N2~
o2 =S

At low bit rates, the closed-form solution of 03 in (25) is still
unknown and it can be calculated through the nonlinear optimiza-

L
N

e T 27)
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Magnitude(dB)
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Fig. 8. Frequency responses of the LT-810 (N = 8, M = 10). (a) Analysis bank. (b) Synthesis bank.

Magnitude(dB)

Normalized Frequency

(@

Fig. 9. Frequency responses of the LT-816 (N = 8, M = 16). (a) Analysis bank. (b) Synthesis bank.

tion [20]. Since the optimization of an LT (or FB) usually involves
thousands of iteration steps, for simplicity, we use (27), rather
than (25) during the optimization. According to [20] and [28],
(27) works well for B > 1 bpp. As we are interested in low bit-
rate coding, the bitrate B is fixedtobe B = 1 bpp in our design.
Following the convention of filter bank optimization, the input
signal x inuseis an AR(1) process with the correlation coefficient
p = 0.95,ie, Ryx(i,j) = 0.9577 [18]-[20]. Besides, x is
assumed to be Gaussian [20] with ¢ = 0.751in (24) and (27) [22].

B. Examples

The optimization of (21) is carried out through the uncon-
strained nonlinear optimization routine fiminunc in Matlab. The
free matrices {U V} are parameterized to yleld O7,min, 8 dis-
cussed in Section IV. During the design, Uq, Vq, Ug, and Vg
are initialized to be the identity matrix I. That is, in Fig. 6, the ro-
tation angles f; are initialized to zeros, while the diagonal mul-
tipliers d; and r;; are all initialized to ones. As 8 x 8 DCT is
widely used in JPEG and MPEG standards, we present two de-
sign examples LT-810 and LT-816 for V = 8. Here, the notation
LT-8M denotes the LT with an 8 x M prefilter. The free matrices
of {U, V} of LT-810 and LT-816 are tabulated in Table II. For
comparison, the free matrices of the critically sampled LT-88
[20] are also presented. This LT has the highest coding gain at
high bit rates (C.; = 9.61 dB) [20].

Magnitude(dB)
—

0
®
x

'
&
8

N

{ﬂ ' I \f i

L
0.05 0.1 0.15 0.2 0.25 03 0.35 0.4 045 0.5

Normalized Frequency

(b)

|
@
&

L
L
3

LT-88 e
9F |~ — —LT-810 o
LT-816|

Coding Gain

0 02 04 06 08 1
Bit Rate (bpp)

Fig. 10. Comparison of theoretical coding gains at low bit rates for different
LTs.

Figs. 7-9 show the frequency responses of three LTs. As can
be seen, with the increase of the sampling factor M, the pass-
bands are narrower at low frequency bands, while the frequency
resolutions become worse at high frequency bands. This is un-
derstandable as more high frequency components would be dis-
carded when M gets larger.

Fig. 10 further compares the theoretical coding gain of different
LTs at low bit rates, where the calculations follow the guidelines
in[20]. One can observe thatat B < 0.5 bpp, the LT-810 and the
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TABLE III
OBJECTIVE CODING PERFORMANCE (PSNR IN DECIBELS)
Downsampling/Interpolation Cascading Scheme

Images bpp JPEG | JPEG2000 | LT-88 = 195 PR = 195 PR LT-810 | LT-816
0.03125 - 2522 25.15 25.05 25.58 25.77 26.23 25.53 26.23

0.05 - 27.04 27.23 26.63 27.19 27.58 27.77 27.37 27.78

Lena 0.1 - 29.87 30.14 29.47 29.43 30.28 29.78 30.24 30.19
0.16 27.32 31.98 32.25 31.23 30.67 32.00 30.90 32.35 31.92

0.25 30.76 34.10 34.31 32.64 31.46 33.19 31.60 34.35 33.36

0.03125 - 24.59 23.98 23.78 24.51 24.95 25.41 2526 | 2520

0.05 - 26.38 26.43 25.87 26.30 27.02 27.10 27.34 26.99

Peppers 0.1 - 29.73 29.78 28.89 28.58 29.83 29.24 30.32 29.29
0.16 26.04 31.68 31.76 30.66 29.72 31.34 30.29 32.04 30.64

0.25 30.18 33.53 33.47 32.06 30.44 32.52 30.94 33.56 31.64

0.03125 - 23.81 23.32 23.22 23.88 23.65 24.29 23.45 2422

0.05 - 25.04 24.64 24.84 25.02 2524 25.47 25.06 | 25.50

Boat 0.1 - 27.32 27.31 27.13 26.60 27.50 27.21 27.42 27.50
0.16 25.10 29.04 29.27 28.70 27.58 29.07 28.22 29.36 | 28.92

0.25 28.43 31.03 31.34 30.09 28.29 30.53 28.94 31.35 30.20

0.03125 - 24.95 24.63 24.55 24.75 25.07 25.56 24.92 25.52

0.05 - 26.05 26.03 25.77 25.73 26.23 26.55 26.22 26.58

Goldhill 0.1 - 27.79 27.93 27.66 2727 28.07 27.60 28.02 28.16
0.16 26.05 29.21 29.34 28.85 28.12 29.27 28.31 29.37 | 29.22

0.25 28.34 30.54 30.81 29.94 28.80 30.35 28.87 30.72 30.24

0.03125 - 21.88 20.99 21.56 21.90 22.18 22.39 22.05 22.43

0.05 - 2279 22.96 22.53 2271 23.25 23.09 2340 | 23.16

Barbara 0.1 - 24.65 2543 24.13 23.62 24.82 23.83 25.82 24.14
0.16 - 26.25 27.45 25.09 24.07 25.74 24.20 27.54 24.71

0.25 2438 28.36 29.63 25.98 2437 26.42 24.44 29.19 | 25.15

Here, parameter k is the downsampling factor, and the symbol -

factor is set to zero.

LT-816 can provide higher coding gain than the LT-88, which
indicates the promising applications of undersampled systems
in low bit-rate coding. When the bit rate gets higher, the coding
gain of the LT-816 drops quickly, but that of the LT-810 is still
very close to the LT-88. It should be also noted that the theoretical
coding gains in Fig. 10 do not take into account entropy coding,
which often exists in practical image coding systems. With
Huffman/arithmetic coding, the actual bit rates would be much
lower than those in Fig. 10, as we will demonstrate in Section V.

V. Low BIT-RATE IMAGE CODING RESULTS

A. Experiment Configurations

In this section, we present low bit-rate image compression re-
sults of block DCT coders using different pre-/postfiltering op-
erators. Specifically, the pre-/postfiltering schemes under com-
parison include the following.

e The critically sampled boundary pre-/postfilters in

Fig. 1(a), where the free matrices {fJ, \7} are chosen
to be those of the LT-88 in Table II.

indicates that the bitrate is not achievable in JPEG even when the quality

* The downsampling/interpolation scheme of Fig. 1(b). Just
as in [12], the downsampling/interpolation operations are
implemented through the imresize function in Matlab 6.0.
To have a fair comparison with the LT-810 and the LT-816,
the downsampling factor k is chosen to be k = 10/8 =
1.25 and k = 16/8 = 2, respectively.

The cascading scheme of Fig. 1(c). Here, Hp(z) and
Hi(z) and k are the same as those in the downsampling/in-
terpolation scheme and the boundary pre-/postfilters are
identical to those of the LT-88.

The proposed undersampled pre-/postfilters LT-810 and
LT-16, whose free matrices {U, V'} are listed in Table II.
A JPEG-like codec, called as the L-CEB [14], is employed to
quantize and code the DCT-coefficients. This codec can provide
comparable compression performances to the state-of-the-art
compression standard JPEG2000 [16] at much lower imple-
mentation cost. It differs from the JPEG in that it is based on
more advanced context-based entropy coding, rather than the
run-length and Huffman coding. Five test images with different
flavors are used: Lena, Peppers, Boat, Goldhill, and Barbara,
all of which are 8-bit grayscale 512 x 512 images.
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Fig. 11. Average PSNR compression results of five images (Lena, Peppers,
Boat, Goldhill, Barbara, using the L-CEB codec. In (a), results of the down-
sampling/interpolation scheme and the cascading scheme with k& = 1.25 are
compared with our proposed LT-810 as they have nearly the same coding com-
plexities. Likewise, in (b), results of the downsampling/interpolation scheme
and the cascading scheme with k& = 2 are compared with our proposed LT-816.
In both (a) and (b), results obtained by the LT-88 and JPEG2000 are included
to serve as the benchmark.

Table III provides the detailed objective PSNR results for bit
rates ranging from 0.03125 to 0.25 bpp; i.e., ranging from 256:1
to 32:1 in terms of compression ratio (CR). Results from the
JPEG and the JPEG2000 are also included to serve as bench-
marks. For the JPEG results in Table III, “-” implies that the
corresponding bit rate cannot be achieved even when the quality
factor is set to 0. The JPEG2000 implementation is based on the
Kakadu software [29] (Version 5.1.1) in the single layer (SL)
mode. The JPEG2000-SL is optimized for rate-distortion per-
formance, but it is not scalable. To be fair, the 114-byte header
in the JPEG2000 is excluded in counting the bit rates. In each
row of Table III, the best result is highlighted in boldface. The
average PSNR results of these five images are further presented
in Fig. 11 To have fair comparisons, for the downsampling/in-
terpolation and the cascading schemes, results of £ = 1.25
and k = 2 are grouped together with those of the LT-810 and
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the LT-816, respectively. Reconstructed images of Barbara are
demonstrated in Figs. 12 and 13 for 0.03125 and 0.16 bpp,
respectively.

B. Comparison With Critically Sampled Schemes

This subsection compares the performances of the proposed
undersampled LTs (i.e., the LT-810 and the LT-816) with those
obtained by the critically sampled counterpart LT-88.

Table III indicates that the LT-810 outperforms the LT-88 in
most cases with the PSNR gain up to 1.28 dB (in the case of Pep-
pers coded at 0.03125 bpp). The average improvement is around
0.6 dB at B = 0.3125 bpp and with less improvement around
0.1dB at(0.16 bpp. At 0.25 bpp, the LT-810 is just slightly worse
than the LT-88. The visual qualities of reconstructed images
conform with the objective PSNR results. For a 2-D image, the
number of prefiltered samples generated in the LT-810 is only
((8/10))% x 100% = 64% as that in the LT-88. Accordingly,
the complexity of the DCT-block coders is much less than that
of the LT-88.

The LT-816 can yield higher PSNR than the LT-88 at very
low bit rates with a gain of 0.9 dB to 1.48 dB at 0.03125 bpp
(CR = 256 : 1) and around 0.5 dB on average at at 0.05
bpp (CR = 160 : 1). At these bit rates, the superiority of vi-
sual quality is also obvious, as testified by Fig. 12. The LT-816
can substantially reduce the blocking artifacts exhibited in the
LT-88. However, when the bit rate goes higher, the LT-816 is in-
ferior to the LT-88 as its theoretical coding gain drops quickly.
At 0.25 bpp, on average, the LT-816 is about 1.8 dB worse than
the LT-88. In the worst case, the LT-816 falls behind the LT-88
by nearly 4.5 dB in the highly textured Barbara. In our opinion,
such large difference in Barbara is mainly due to 1) the design
of the LT-816 is based on the simple AR(1) signal model. Al-
though such a model works well for smooth images like Lena, it
is not sufficient to describe highly textured image like Barbara.
2) As indicated in Fig. 9, the LT-816 has a very poor frequency
resolution at high frequency bands, which cannot represent the
rich texture components well.

C. Comparisons With the Downsampling/Interpolation and
the Cascading Schemes

In the downsampling/interpolation and the cascading
schemes, the size of the input image is also reduced before
it is passed on to the DCT block coders. Thus, it is inter-
esting to study the coding performance of different schemes
when the complexities of the DCT coders are about the
same (i.e., when the number of samples in the DCT codec is
about the same). Specifically, we will compare the results of
k = 10/8 = 1.25 and k = 2 with those of the LT-810 and the
LT-816, respectively.

As can be seen from Table III and Figs. 11-13. The under-
sampled LT consistently outperforms the downsampling/inter-
polation scheme at various bit rates both in terms of the PSNR
and the perceptual quality. The average PSNR is about 0.75 dB
at 0.03125 bpp and more than 1.8 dB at 0.25 bpp. Furthermore,
blocking artifacts are quite obvious in the downsampling/inter-
polation scheme, as shown in Fig. 12. This suggests that under-
sampled boundary pre-/postprocessing is more effective in re-
ducing blocking artifacts. For the cascading scheme, the PSNR
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Fig. 12. Reconstructed Barbara images coded at 0.03125 bpp (CR = 256 : 1). First row (left): the original image; (middle): the JPEG2000 (21.88 dB); and
(right): the LT-88 (20.99 dB). Second row (left): the downsampling/interpolation scheme with & = 1.25 (21.56 dB); (middle): the cascading scheme with k = 1.25
(22.18 dB);(right): the LT-810 (22.05 dB). Third row (left): the downsampling/interpolation scheme with k& = 2 (21.90 dB); (middle): the cascading scheme with

k = 1.25 (22.39 dB); (right): the LT-816 (22.43 dB).

results are comparable to those of the undersampled LTs at low
bit rates. However, the performances of the cascading approach
are worse with the increase of the bit rate. Fig. 11 evidently indi-
cates that the undersampled LTs are applicable to a much wider
range of bit rates at the same coding complexity. The visual
quality of reconstructed images in Figs. 12 and 13 reveal sim-
ilar facts. At very low bit rate, the perceptual performance for
Barbara is about the same. At higher bit rates, it is obvious from
Fig. 13 that the undersampled LTs are superior in preserving de-
tails such as the trousers region in Barbara.

Remarks: For the downsampling/interpolation and the cas-
cading scheme, although improvements can be achieved by
exploiting adaptive downsampling/interpolation filters [13],
such systems incur high computational burden as the filters
are signal dependent. Besides, we want to re-iterate here that
the undersampled LTs are more suitable for hardware parallel
processing as the pre-/postfiltering operations are conducted

through the multiple input, multiple output matrix filter, rather
than the single-input, single output scalar filter.

D. Selection of Pre-/Postfiltering Scheme in Practical
Applications

Table III indicates that the best pre-/postfiltering scheme
depends on both the input image and the bit rate. However,
in practical low bit-rate compression, it is desirable to have
a fixed pre-/postfiltering scheme exploitable for a wide-range
of bit rates. Taking this fact into account, the LT-810 may be
a good choice. Note that except for a few cases, the LT-810
provides the best or near optimal results for various images, as
shown in Table III (the biggest loss is 0.84 dB for Boat coded
at 0.03125 bpp). Besides, its encoding/decoding complexity is
much lower than that of the critically sampled LT-88. Further-
more, it is also interesting to note that for all cases listed in
Table III, the LT-810 combined with the L-CEB coder provides
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Fig. 13. Portions of the reconstructed Barbara images coded at 0.16 bpp (CR = 50:1). First row (left): the original image; (middle): the JPEG2000 (26.25 dB);
(right): the LT-88 (27.45 dB). Second row (left): the downsampling/interpolation scheme with & = 1.25 (25.09 dB); (middle): the cascading scheme with k& = 1.25
(25.74 dB); (right): the LT-810 (27.54 dB). Third row (left): the downsampling/interpolation scheme with & = 2 (24.07 dB); (middle): the cascading scheme with

k = 1.2 (24.20 dB); (right): the LT-816 (24.71 dB).

better PSNR results than the wavelet-based JPEG2000. In this
light, the LT-810 proves itself as a high performance pre-/post-
processing scheme with low coding/decoding complexity.

In some applications, e.g., sensor networks, the computing
devices have low-power and small-memory requirements. The
LT-816 may find applications in these devices as its codec only
needs to process one-quarter amount of data as that of the orig-
inal input. By using a decimator with £ = 2, the conventional
downsampling/interpolation and the cascading schemes can re-
duce the input data by the same amount. However, their perfor-
mance drop quickly when the bit rate goes higher. Moreover,
the undersampled boundary pre-/postfiltering scheme is based
on nonoverlapped block operations, which is more suitable for
hardware parallel implementation and buffer management.

VI. CONCLUSION

This paper presents the design and implementation of under-
sampled boundary per-/postfilters for block DCT coders, which
are extensions of [8] to undersampled systems. Combined with
the DCT/IDCT, the proposed systems can be viewed as under-
sampled lapped transforms or undersampled filter banks. Struc-

tures of undersampled pre-/postfilters are derived to yield the
linear-phase property and they are pseudo inverse of each other
with full rank. To further reduce the complexity in the opti-
mization, pre-/postfilters are parameterized to minimize the re-
construction error when there is no quantization error. Two de-
sign examples are presented to verify the validity of the theoret-
ical development. Image coding results are included to demon-
strate the effectiveness of the proposed scheme over existing
pre-/postfiltering schemes.

APPENDIX
DERIVATIONS OF (19) AND (20)

Before detailed derivations, we shall first introduce the gen-
eralized Rayleigh—Ritz theorem [23], which is crucial to the de-
velopment.

Theorem 1: Let X be a p X p Hermitian matrix. For any p X
(1 < r < p) orthonormal matrix Y, we have

min Trace(Y7XY) = A (X) + Ao (X) + - - + A(X)

(AD)
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where \;(X) (foré = 1,...,r)is the ith smallest eigenvalue of
X. The above equality holds if the columns of Y are chosen to
be orthonormal eigenvectors corresponding to  smallest eigen-
values of X.

The derivation is based on the QR decomposition and the
above theorem. First, using the QR decomposition [30], [31],
the full rank matrices U and V can be always represented as

U= U, [‘ﬂ and V= Vo [‘GR] (A2)
where ﬂQ and VQ are m X m orthonormal matrices, while
Upr and Vy are n X n upper triangular matrices with nonzero
diagonal entries. Using (A2), U and V in (13) can be expressed
as

U=[U;! 0]UL, and V=[V;' 0]VEL (A3
Let UQ and VQ be further partitioned into UQ = [Ug. Ug.l
and VQ = [VQ ! VQ ], where UQ ;and VQ jareof size mxXn
each, and Ug . and V.. are of size m, x (n — m) each. Based
on such partitions, it can be readily seen that (A2)—(A3) can be

simplified into

U =Uq, Uk,
U= ﬁz_zlﬂgz

V=V, Vr
V == V}Elvg’l

(A4)
(AS5)

Then, substituting (A4) and (A5) into T and P respectively,
and usmg the equahtles UQ lUQl + UQ rUQ » = I and

VQ’IVQJ + VQ,TVQ,T = I, we arrive at the following expres-
sionof E=1—- TP:

Uy, UL 0 }
E =W, TEQr W A6
M [ 0 Vo, VI, M (A6)
By (15) and (A6), 03 can be re-written into
Uo. U 0
0'3 = Trace <WM [ Q A . }
0 VQJVT,T
Uy, UL 0
xR, | C@rTer T W A7
T |: 0 VQY,,‘VT77,:| M) ( )
where R, = WyR.. W)y Using the fact that

Trace(XY) = Trace(YX), along with the orthonormal
properties of W, UQ -, and VQ », one can reduce a to

uZ 0 §
= Trace Qr ~ RI UQ’T ~ 0
0 vZT - 0 Vor

= Trace (ﬂgﬁRufJQﬂ,) + Trace (ngTRUVQm)
(A8)

where R, and R, are the m x m upper-left and lower-right
submatrices of R/, as defined in (16).

T’

Next, by applying Theorem 1 to (A8), we know that

min Trace (ﬁg,TR“fJQ) = Tg Ai(Ru) (A9)
i=1
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and

m—n

min Trace (\A/'CTQWRUVQ) = Z Ai(R,)-

i=1

(A10)

Therefore, the minimal value of o2 is as in (19).

Now, what remains is the characterizations of U and V so
that (19) can be achieved. Note that equalities (A9) and (A10)
hold when the columns of UQ » and VQ , are the orthonormal
eigenvectors corresponding to m — n smallest eigenvalues of
R. and R, respectively. From (18), it is obvious that A, (:, ¢)
is the orthonormal eigenvector of R,, associated with A;(R,,).
Similar arguments can be applied to A, and R,,. Hence, to get
(A10), UQ » and VQ » can be chosen as

[AIQJ =A,(;:1:m—n)

Vor=A(:1:m—n). (A11)

Recall that in (A4), the components ﬂQ ; and VQ | are orthog-
onal complements of UQ ~and VQ -, respectively. When UQ ”
and VQ » are chosen as in (A11), it is obvious that the columns
of A,(:;m —n+1:m)and A,(:,;m —n+1: m) are or-
thonormal bases for the complements of UQ - and VQ -, Ie-
spectively. Hence, UQ ; and VQ 1 can be completely expressed
as [23]

Ugi=Au(;;m—n+1:m)U,

Voi=A,(;m—n+1:m)V, (A12)

where I]'q and Vq are arbitrary m X n orthonormal matrices.
Finally, substituting (A12) into (A4) yields (20).
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