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Abstract—In this paper, the theory, structure, design, and
implementation of a new class of linear-phase paraunitary filter
banks (LPPUFB’s) are investigated. The novel filter banks with
filters of different lengths can be viewed as the generalized
lapped orthogonal transforms (GenLOT’s) with variable-length
basis functions. Our main motivation is the application in block-
transform-based image coding. Besides having all of the attractive
properties of other lapped orthogonal transforms, the new trans-
form takes advantage of its long, overlapping basis functions to
represent smooth signals in order to reduce blocking artifacts,
whereas it reserves short basis functions for high-frequency
signal components like edges and texture, thereby limiting ringing
artifacts. Two design methods are presented, each with its own set
of advantages: The first is based on a direct lattice factorization,
and the second enforces certain relationships between the lattice
coefficients to obtain variable length filters. Various necessary
conditions for the existence of meaningful solutions are derived
and discussed in both cases. Finally, several design and image
coding examples are presented to confirm the validity of the
theory.

Index Terms—Filter bank, image compression, linear-phase
filter bank, linear-phase paraunitary filter bank.

I. INTRODUCTION

FROM A FILTER bank perspective, the lapped orthogonal
transform (LOT) and its generalized version GenLOT

belong to a subclass of maximally decimated-channel
FIR real-coefficient linear phase perfect reconstruction filter
banks (see Fig. 1) [1], [2]. From the polyphase representation
in Fig. 1(b) and ignoring any processing of the coefficients,
perfect reconstruction can be achieved by designing
appropriately such that can be chosen as
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where is the order of . Such a system is called
paraunitary. Somanet al. first introduced a complete and
minimal factorization [3] that covers a large class of linear
phase paraunitary filter banks (LPPUFB’s): even-channel
with all of the filters having the same length . The
complete factorization assures that all possible solutions in the
assumed class are covered by the structure, whereas minimality
provides the most efficient implementation in term of the
number of delay elements needed.

An equivalent, but modular, factorization called GenLOT is
presented in [4], where the authors showed that the DCT and
the LOT are low-order special cases. The GenLOT is simply
the aforementioned class of LPPUFB implemented as a block
transform. It provides an elegant solution to the elimination of
blocking artifacts in traditional block-transform image coders.
A direct implementation of the GenLOT is depicted in Fig. 2.
The input signal can be blocked into sequences of length

, with adjacent sequences being overlapped by
samples. The columns of the transposed transform

coefficient matrix hold the impulse responses of the analysis
filters . The resulting subband signals can then
be quantized, coded, and transmitted to the decoder, where the
inverse transform is performed to reconstruct the signal. Due
to the transpositional relationship between and ,
the inverse transform matrix turns out to be, whose rows
store the synthesis filters’ impulse responses. The GenLOT’s
orthogonality provides good energy compaction and leads to
elegant bit allocation algorithms. Its long basis functions that
decay smoothly to zero, coupled with overlapping data blocks,
reduce blocking artifacts at high compression ratios.

The GenLOT possesses an efficient lattice structure that
retains both linear phase and paraunitary properties under
the quantization of lattice coefficients. However, the lattice
structure of GenLOT imposes a very strict restriction on both
analysis and synthesis filters. They must have the same length,
which is a multiple of the number of channels. In this paper, we
present a family of lapped transforms called VLLOT, which
are designed with a different philosophy: The basis functions
can have different lengths.

There are numerous motivations for studying transforms
with basis functions of variable length. First of all, it is quite
natural to represent slowly changing signals by long basis
functions. On the other hand, fast-changing, high-frequency
components such as edges and textures in images are better
captured by short basis functions. The wavelet transform
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Fig. 1. Two representations of anM -channel uniform-band maximally-decimated filter bank.

(a)

(b)

Fig. 2. M -channel LPPUFB as lapped transform. (a) Direct implementation in 1-D. (b) Illustration in 2-D.

serves as a wonderful illustration of this intuitive concept.
From the lapped transform perspective, it is advantageous for
the transform to have a set of varying-length basis. Long basis
functions mean larger overlap of input data and smoother
impulse responses, leading to a reduction of blocking arti-
facts in the reconstructed images. Unfortunately, long basis
functions are also the main contributors to severe ringing
around strong edges, where huge quantization errors are spread
out to smoother neighborhood regions. Hence, longer basis
functions should only be reserved for low-frequency compo-
nents, whereas shorter basis functions should be employed to
represent high-frequency components.

Most importantly, the longer the filter becomes, the higher
the complexity of the FB gets. Since blocking is most no-
ticeable in smooth image regions, in order to reduce blocking
artifacts, filters covering high-frequency bands do not need
long overlapping windows. In fact, they may not have to
be overlapped at all. If the filter length can be restricted
mathematically, i.e., these coefficients are structurally enforced
to exact zeros, the complexity of the resulting FB can be
reduced significantly.

A. Outline

The outline of the paper is as follows. In Section II, we offer
a brief review of GenLOT’s lattice structure and its design
procedure. Section III derives a complete and minimal lattice
structure for VLLOT. Section IV describes a different design
approach based on the relationship between GenLOT’s build-
ing blocks. In both methods, various necessary conditions for
the existence of meaningful solutions are discussed. Section V
presents the VLLOT design procedure based on unconstrained
nonlinear optimization and several design examples. Next,
image coding examples illustrating the advantages of the new
transforms are presented in Section VI. Finally, Section VII
draws up the final conclusions.

B. Notation

Notation-wise, bold-faced characters are reserved to denote
vectors and matrices. , , , stand for the transpose,
the determinant, theth row, and the th column of the matrix

. Special matrices used extensively are the identity matrix
, the reversal matrix , and the null matrix . When the
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(a) (b)

Fig. 3. Frequency and impulse responses of popular block transforms. (a) DCT, eight channels, all eight-tap filters. (b) LOT, eight channels, all 16-tap filters.

size of a matrix is not clear from context, subscripts will be
included to indicate its size. For example, denotes the
square reversal matrix, whereas stands for the

null matrix. is used to represent
the vector space spanned by thevectors .
For abbreviations, we use LP, PR, PU, VL, and FB to denote,
respectively,linear phase, perfect reconstruction, paraunitary,
variable length,and filter bank. The letters and are
reserved for the number of channels and the filter’s length. The
terms LPPUFB and GenLOT, LPPUFB with filters of different
lengths and VLLOT, are used interchangeably in the paper.

II. REVIEW

LPPUFB’s have long found application in transform-based
image coding. For example, the discrete cosine transform
(DCT) as shown in Fig. 3(a) is an -channel -tap LPPUFB
that has been widely used in the international image compres-
sion standard JPEG [5]. A popular extension of the DCT is the
lapped orthogonal transform (LOT), which is an even-channel

-tap LPPUFB [see Fig. 3(b)] that can be interpreted as
an overlapping block transform [6]. To reduce the blocking
effect further, longer data overlaps are needed. This motivates
the development of the GenLOT [4]. The most general lapped
transform lattice structure up to date is presented in [7], where
the authors are able to parameterize the complete class of all
even-channel LPPUFB’s.

An attractive approach to the design and implementation of
LPPUFB is the FB’s parameterization by a lattice structure.
The lattice structure offers fast, efficient implementation and
retains both LP and PU properties, regardless of coefficient
quantization. The key idea in obtaining a lattice structure
is the factorization of the FB’s polyphase matrix . Let

and be the analysis and synthesis filters of length
in an -channel LPPUFB. If is even, it is

necessary to have symmetric and antisymmetric
filters [7]. Define

(2)

where and are arbitrary orthogonal
matrices, and let

(3)

Then, the polyphase matrix can always be factored as [4]

(4)

where , and

(5)

Again, and are arbitrary orthogonal
matrices. For fast implementation, can be replaced by
the DCT [4], [6]. It is clear from (2)–(5) that each stage
of GenLOT [either or ] contains two arbitrary
orthogonal matrices of size . Therefore, the most general
GenLOT of order can be parametrized by
rotation angles and requires delays in its
implementation. The complete and minimal lattice structure
is shown in Fig. 4.

More generally, Tranet al. show that a modification to
the initial stage produces GenLOT with filters of length

, i.e., will no longer be a simple zero-
order matrix [7]. The authors also present several interesting
necessary existence conditions on the FB’s symmetry polarity
and lengths, which can be summarized in Table I [7]. From
this table of permissible solutions, it is a simple exercise to
show that odd-length GenLOT does not exist.
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Fig. 4. General lattice structure for LPPUFB’s.

TABLE I
POSSIBLE SOLUTIONS FORM -CHANNEL LPPRFB

WITH FILTER LENGTHS Li = MKi + �

III. VLLOT L ATTICE STRUCTURE

A. Problem Formulation

This section presents a lattice structure for LPPUFB with
filters of different lengths. For purposes of simplicity, we shall
first consider systems with filters of lengths , where

is even, and

for

for .

Simply speaking, the class of LPPUFB under investigation has
long filters of length and shorter filters of

length .

B. Existence Conditions

Theorem I: For the class of even-channel LPPUFB’s de-
scribed above, the number of long filters and the number of
short filters must both be even.

Proof: The FB has a total length of

From Table I, for even , has to be even.
Since is even, is even for any . Therefore,

has to be even, and so is , i.e., there are an even
number of long, as well as short, filters.

Theorem II: In a LPPUFB with filters of length and
filters of length , half of the long filters

are symmetric, and half of the short filters are symmetric.
Proof: Let be the polyphase matrix of order

, representing the longer filters, and let be the
polyphase matrix of order , representing

the shorter filters. Without any loss of generality, the long
filters are permuted to be on top. Since is paraunitary,
we have

(6)

and

(7)

Furthermore, also has to satisfy the LP property in [3]
and [7]

(8)

where and are
diagonal matrices whose entry is1 when the corresponding
filter is symmetric and 1 when the corresponding filter is
antisymmetric. The traces of these two matrices hold the
key to the number of long (as well as short) symmetric and
antisymmetric filters.

From (8), we can obtain the following relationships:

(9)
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Since and from
(6), solving for and yields

(10)

Taking the trace of both sides and using the fact that tr
tr , we can obtain

tr tr

tr

tr tr

tr

(11)

Tr and tr are constants, and therefore, their values
can be obtained by evaluating the right-hand sides of the above
equation at any specific value of. First, let us consider the
case of even . Evaluating (11) at , we have

tr tr

tr tr
(12)

Evaluating (11) at yields

tr tr

tr tr
(13)

From (7), we also have

Hence, since tr

tr tr

tr

tr tr

tr

On the other hand

tr tr

tr

tr tr

tr

Therefore, tr , leading to the desired result
that tr , and tr . In other words, half
of the longer filters are symmetric, whereas the remaining
half are antisymmetric. Similarly, half of the short filters are
symmetric, and the rest are antisymmetric. It is a simple
exercise to verify that the same conclusion can be reached
for the case of odd .

C. Lattice Structure

From Theorem II, there are long symmetric filters and
long antisymmetric filters. If the long symmetric filters

are permuted to be on top, i.e.,

they now form a remarkably similar system to an-channel
order- GenLOT

(14)

From [4], there exists a factorization [shown in (4)] that
reduces the order of the polyphase matrix by one. Hence,
the VLLOT’s polyphase matrix can always be factored as

(15)

where

(16)

and

(17)

is the permutation matrix that arranges the longer filters
on top, i.e.,

It is added to simplify the presentation only. Note that the
above factorization leaves untouched; it reduces the
length of the longer filters by so that all filters now have the
same length of . is the familiar polyphase
matrix of an order- GenLOT. The rotation angles of

orthogonal matrices and are the stage’s free
parameters that can be varied independently and arbitrarily to
optimize the VLLOT. Comparing with the traditional order-

GenLOT, the number of free parameters is reduced
by . The reduction can be quite significant
if the number of channels is large and the number of long
filters is small. For the case that , the number of free
parameters comes from only: and become
singletons 1.

As previously mentioned, with peeled off,
becomes the familiar polyphase matrix of an order-
GenLOT. Hence, it can be factored by the conventional
methods [4]. An example of the detailed lattice is illustrated
in Fig. 5.
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Fig. 5. Detailed lattice structure for the VLLOT (drawn forM = 8 andN = 4).

Fig. 6. General lattice structure for the VLLOT.

Theorem III: The proposed factorization of in (15)
is minimal, i.e., the lattice structure uses the fewest possible
number of delays in the implementation.

Proof: A structure is defined to be minimal when the
required number of delays is equal to the degree of the transfer
function [1]. For paraunitary systems, it has been proven in [1]
that .

Exploiting the LP property of the FB polyphase matrix in
(8), we have

Hence

In the proposed factorization, we use delays
for and for , totaling the same number
of delays as the degree of . Therefore, the factorization
is minimal.

It is interesting to note that when increases to
or decreases to 0, the VLLOT’s required number of delay
elements increases to or decreases to

, which is consistent with the delays needed in GenLOT’s
implementation [4].

More general and complicated VLLOT can be constructed
by a cascade of building blocks as

(18)

where , and each is even. The
longest filters have length , whereas the shortest fil-
ters have length . The general lattice structure is depicted
in Fig. 6.

IV. VLLOT VIA ORTHOGONAL COMPLEMENT SUBSPACES

In the lattice structure design method presented in the
previous section, the filters’ centers of symmetry are not
aligned. The alignment of the bases is sometimes desired since
it provides more accurate correlation between subband signals,
and it simplifies the signal’s symmetric extension [8], [9]. Only
in cases in which the length difference between the long and
the short filters are even multiples of , the alignment of
the centers of symmetry can be obtained by shifting the short
filters (at the cost of adding more delay elements of course).

A. Problem Formulation

In this section, another class of VLLOT whose filters all
share the same center of symmetry is studied. These FB’s
can be thought of as a GenLOT subclass, where the tail-
end coefficients of some filters are forced to be zero. More
specifically, given an -channel GenLOT of length with

even, we are interested in the relationships between the
building blocks , in (4) such that the resulting
coefficients matrix (or a simple row permutation of )
satisfies the following variable-length condition as shown in
(19) at the bottom of the next page. Simply speaking, we are
studying a GenLOT subclass of order , where all of
the filters share the same center of symmetry,filters have
length , and the remaining filters have length

.

B. Existence Condition

Theorem IV: It is impossible to construct a VLLOT de-
scribed in the problem formulation above with all symmetric
(or all antisymmetric) filters being shortened by taps.
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Proof: It is a straightforward but tedious exercise to
show that the left tail end of the GenLOT coefficient matrix
turns out to be as shown in (20) at the bottom of the page
[4]. Suppose that all antisymmetric filters are short; then

This means that all symmetric filters have to be short as well,
and we are left with an order- GenLOT. On the other
hand, if all symmetric filters are short, so are all antisymmetric
filters.

In the next subsection, we shall show that it is possible
to construct various VLLOT if some (but not all) of the
symmetric (or antisymmetric) filters are short. Equivalently,
it is possible to obtain

or

(21)

or even both.

C. Design Procedure

First, let us consider the case with short
symmetric filters of length . Define the prod-

uct . It is possible to split

’s row space into and the
corresponding orthogonal complement [1]. Now, if we
choose such that all of its columns lie in, then

will take the
desired form

The following is an ordered outline of the designing steps:

• Choose arbitrary orthogonal matrices ,
, and , , .

• Obtain the product .
• Find an orthonormal basis for the first rows of . Find

an orthonormal basis for the corresponding orthogonal
complement. From these orthonormal row vectors, form
the unitary matrix .

• Obtain the first stage’s building blocks by choosing

and

where , are any orthogonal matrices, and
is any orthogonal matrix.

With these particular choices of and , the columns
of the difference matrix can be easily verified to
belong to the predefined subspace

The rotation angles of the arbitrary orthogonal matrices
are the free parameters that can be tuned to optimize the
VLLOT for any desired criterion. Note that we only have to put
constraints on the first and last stage of the GenLOT’s lattice
structure to obtain the VLLOT of the same order. These two
stages control the orthogonality between rows and columns
of the building blocks to reduce the length of
filters by . The constraints added to obtain VL reduce the
total number of free parameters to optimized by

The reduction is independent of the order and can be
significant for large .

The same method can be applied to shorten any
antisymmetric filters, as long as is less than . If
only antisymmetric filters and symmetric filters are
desired to be long, we have to ensure that the matrix

is appropriately chosen such

(19)

(20)
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Fig. 7. The 4� 24, 4 � 8 fast VLLOT.

TABLE II
COMPARISON OF TRANSFORM COMPLEXITY: NUMBER OF OPERATIONS NEEDED PEREIGHT TRANSFORM COEFFICIENTS

that its row space can be split into the same two orthogonal
subspaces and . We propose the following solution:

• Choose

where , are, respectively, arbitrary and
orthogonal matrices.

With this particular choice of , both of the VL properties
in (21) can be satisfied simultaneously:

In this case, contains degrees of
freedom instead of . Again, the reduction in the amount
of free rotation angles is significant for large.

This design method using orthogonal complement subspaces
keys on the relationship between the GenLOT’s building

blocks and to obtain the coefficient matrix directly.
Hence, it can be classified as a time-domain design method.
The resulting system is guaranteed to have LP as well as
PR. Furthermore, the filters can have different lengths, yet
all centers of symmetry are aligned. The FB can still be
represented by a lattice structure. However, the VL property
is not robust under the quantization of lattice coefficients.

V. FAST IMPLEMENTATION,
OPTIMIZATION, AND DESIGN EXAMPLES

A. VLLOT Fast Implementation

This section is devoted to the design of a high-performance,
yet low-complexity, VLLOT for image coding and processing
applications.

To minimize the transform’s complexity, we have to choose
a small number of long filters, and set the initial stageto be
the DCT (which possesses numerous fast implementations). In
the orthogonal case, it is easy to verify that setting the number
of long filters to be two only yields trivial solutions since the
matrices and degenerate to singleton 1 or1, and there
are not any free parameters for transform optimization. This is
consistent with the well-known fact that the only two-channel
linear-phase orthogonal filter bank is the Haar, ;

. Hence, we have to increase the number of long filters
to four. Their length is chosen to be 24-taps so that there is an
overlap of eight pixels on either side, and traditional symmetric
extension can be applied [8]. The short filters are still eight-tap.
With this particular choice, there are four free rotation angles,
and the resulting unnormalized lattice is illustrated in Fig. 7.
Note that the four filters covering high-frequency spectrum of
this fast VLLOT come straight from the DCT.
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(a) (b)

(c) (d)

(e) (f)

Fig. 8. Frequency and impulse responses of various transforms designed by direct lattice factorization method. (a) Two 16-tap and six eight-tap filters.
(b) Four 16-tap and four eight-tap filters. (c) Four 24-tap and four eight-tap filters. (d) Four 40-tap and four eight-tap filters. (e) Four 24-tap, four 16-tap,
and two eight-tap filters. (f) Four 24-tap, two 16-tap, and two eight-tap filters.

Since a plane rotation can be performed by three shears, i.e.,where it takes three multiplications and three additions to
implement each rotation. The multipliers are

and (unless , ; then, we
only need two additions). The 1-D DCT requires 13 additions
and 29 multiplications per eight transform coefficients. There-
fore, the total number of operations needed to implement the
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(a) (b)

(c) (d)

Fig. 9. Frequency and impulse responses of various transforms designed by the orthogonal complement subspace method. (a) Four 16-tap and four eight-tap
filters. (b) Four 24-tap and four 16-tap filters, optimized for a balanced cost function. (c) Four 24-tap and four 16-tap filters, optimized primarily for coding
gain. (d) Four 24-tap and four 16-tap filters, optimized primarily for stopband attenuation.

TABLE III
COMPARISON OF TRANSFORM PERFORMANCE

fast 1-D VLLOT structure in Fig. 7 is 82: 25 additions and
57 multiplications.

A comparison of complexity between various popular
transforms in 1-D is provided in Table II. The fast VLLOT’s
complexity is about twice that of the DCT (which is expected
since the total filter lengths in the FB is doubled). It is
slightly faster than the type-II fast LOT [6] and is much faster
than the GenLOT of the same order (all filters are 24-tap).
The 8 24 GenLOT has the highest complexity, even though
its first stage has been set to be the DCT [4], [10]. Besides
the first stage, the full 8 24 GenLOT employs four 4

4 orthogonal matrices; each in turn requires six plane
rotations. The VLLOT in Fig. 7 is definitely faster than the
9/7-tap biorthogonal wavelet in both standard polyphase [2]

or lifting implementation [11]. Keep in mind that the numbers
of operations associated with the 9/7-tap pair in Table II
come from only one level of decomposition. A deep dyadic
decomposition needs roughly twice the tabulated 1-level
amounts. Moreover, the wavelet transform requires a larger
percentage of multiplication, which is typically slower than
the addition in practical implementation.

B. Optimization Procedure

Any realization of the lattice coefficient set in the
previous sections results in an LPPU system. However, for the
VLLOT to have high practical value, several other properties
are also needed. High-performance VLLOT can be obtained
using unconstrained nonlinear optimization, where the lattice
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Fig. 10. Wavelet and block transform analogy.

coefficients are the free parameters. Since we are interested
mainly in image coding applications, the cost function used in
this paper is a weighted linear combination of coding gain, DC
leakage, attenuation around mirror frequencies, and stopband
attenuation—all of which are well-known desirable properties
in yielding the best reconstructed image quality [2], [12]:

(22)

Among these criteria, higher coding gain correlates most
consistently with higher objective performance (PSNR). Trans-
forms with higher coding gain compact more energy into a
fewer number of coefficients, and the more significant bits of
those coefficients always get transmitted first in the progressive
transmission framework employed in the later section. All
design examples in this paper are obtained with a version of
the paraunitary coding gain formula [6]

(23)

where is the variance of the input signal, and is the
variance of the th subband. The signal is the com-
monly used AR(1) process with intersample autocorrelation
coefficient .

Low DC leakage and high attenuation near the mirror
frequencies are not as essential to the objective performance as
coding gain. However, they do improve the visual quality of
the reconstructed image significantly by alleviating annoying
blocking and checkerboard artifacts. Finally, the stopband
attenuation cost helps in improving the signal decorrelation,
decreasing the amount of aliasing, and enhancing the smooth-
ness of the filters. These cost functions are defined as follows:

(24)

(25)

TABLE IV
OBJECTIVE CODING RESULT COMPARISON (PSNRIN dB)

(26)

The set of in (22) controls the tradeoff between various
FB characteristics. We found that the set1, 1, 0.1, 0.1
typically works well in optimizing FB’s for image coding.
To initialize the lattice, we set all lattice coefficients to.

In an alternative (and faster) design procedure, the filters
are first obtained from the iterative method based on time-
domain constraints [13]. Then, the lattice coefficients can then
be calculated from the resulting FB coefficients.

C. Design Examples

We present in this section several VLLOT examples using
the design approaches previously discussed in Sections III and
IV and the optimization methods described in Section V-B.
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Fig. 11. Reconstructed boat images at 1 : 32 compression ratio. Top left: 8� 8 DCT, 30.43 dB. Top right: 8� 16 type-II fast LOT, 30.93 dB. Bottom
left: 9/7-tap biorthogonal wavelet, 30.97 dB. Bottom right: 4� 24 4 � 8 fast VLLOT, 30.89 dB.

The magnitude and the impulse responses of the new VL-
LOT’s obtained directly from the VL lattice structure are
depicted in Fig. 8. The fast VLLOT discussed in Section V-A
is shown in Fig. 8(c). The new VLLOT’s designed by the
orthogonal complement subspace method are shown in Fig. 9.

The objective performance measures of several VLLOT’s
and other block transforms in previous works are tabulated and
compared in Table III. Given the same order, the VLLOT
cannot match the GenLOT in terms of objective characteristics
(coding gain and stopband attenuation for example) because
it belongs to a subclass of GenLOT. However, the VLLOT’s
variable-length basis functions make it significantly faster than
the GenLOT of the same order (see Table II). The coding
gain of the fast VLLOT is also slightly higher than that of the
quasioptimal LOT [6]. Note that since the application we have
in mind is image compression, all presented FB examples have
highband filters chosen to be short. The design methods do us
to shorten other filters if we want to.

VI. A PPLICATION IN IMAGE CODING

The coding performance of the new VLLOT is evaluated
through an image coding comparison. To be fair, the same
transform-based progressive image coder SPIHT [14] is used

in all cases. The difference lies at the transform stage, where
the five transforms in comparison are the following:

• the DCT, eight filters, all 8-tap, shown in Fig. 3(a);
• the type-II fast LOT, eight filters, all 16-tap, shown in

Fig. 3(b);
• the fast VLLOT, four 24-tap and four 8-tap filters, shown

in Fig. 8(c);
• the popular 9/7-tap biorthogonal wavelet in [15].

In the block-transform case, we have to modify the ze-
rotree structure. Each block of lapped transform coefficients
represents a spatial locality similarly to a tree of wavelet
coefficients. A wavelet tree in an-level decomposition is
analogous to a -channel transform’s coefficient block, as
illustrated in Fig. 10. The difference lies at the bases that gen-
erate these coefficients. Let be the set of coordinates
of all offspring of the node in an -channel uniform-
band block transform , ; then, can
be represented as

All (0, 0) coefficients from all transform blocks form the
DC band, which is similar to the wavelet transform’s reference
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Fig. 12. Reconstructed Lena images at 1 : 32 compression ratio. Top left: 8� 8 DCT, 32.90 dB. Top right: 8� 16 type-II fast LOT, 33.57 dB. Bottom
left: 9/7-tap biorthogonal wavelet, 34.11 dB. Bottom right: 4� 24 4 � 8 fast VLLOT, 33.56 dB.

signal; each of these nodes has only three offspring: (0, 1), (1,
0), and (1, 1). This is a straightforward generalization of the
structure first proposed in [16]. The only requirement here is
that the number of channels has to be a power of two. With
this modified tree definition, any zerotree coder can be used
to encode the transform coefficients.

To decorrelate the DC band even more, several levels
of wavelet decomposition can be applied on the DC band,
depending on the input image size. This step increases the
coding efficiency of the DC coefficients thanks to a deeper
coefficient trees. Besides, it offers a fair comparison between
the transforms since the SPIHT coder uses up to six levels
of wavelet decomposition on 512 512 images, whereas the
8-channel block transforms only provide an equivalence of 3-
level decomposition. For more details on the embedded coding
algorithms, see [14], [17], and [18].

The three images chosen for the coding experiments are
Barbara, Boat, and Lena. All of them are standard, well-
known 512 512 8-bit gray-scale test images. The objective
distortion measure is the popular peak signal-to-noise ratio
(PSNR)

PSNR
MSE

dB

where MSE denotes the mean squared error between the
original and the reconstructed image. The PSNR’s from us-
ing various transforms at various bit rates are tabulated in
Table IV. All computed PSNR quotes are obtained from real
compressed bit streams with all overheads included.

The coding results from Table IV and Figs. 11–13 demon-
strate that the novel VLLOT provides an interesting tradeoff
between transform complexity and coding performance. Ob-
jectively, the VLLOT is clearly superior to the DCT in all three
test images at all bit rates. It is also very comparable with
the quasioptimal type-II fast LOT. In the complex Barbara
image, where there is a large amount of texture, the VLLOT’s
poor frequency resolution in the higher frequency spectrum
(due to the four filters from the DCT) translates to an inferior
performance compared with the LOT. However, in smoother
images such as Boat and Lena, the VLLOT’s and the LOT’s
performance is very similar; the VLLOT starts to outperform
the LOT at lower bit rates (a wavelet characteristic). Compared
the 9/7-tap biorthogonal wavelet, the VLLOT offers a lower
performance in Lena. Nevertheless, in the Boat image, where
there is a fair amount of edges and texture, the two transforms
yield almost identical objective results. In the more complex
Barbara image, the VLLOT can outperform the wavelet trans-
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Fig. 13. Enlarged 256� 256 portions of reconstructed Lena images at 1 : 32 compression ratio. Top left: 8� 8 DCT. Top right: 8� 16 type-II fast
LOT. Bottom left: 9/7-tap biorthogonal wavelet. Bottom right: 4� 24 4 � 8 fast VLLOT.

form by more than 0.5 dB over a wide range of bit rates
(0.125–0.25 b/pixel).

Subjectively, the VLLOT’s reconstructed images generally
possess smooth, visually pleasant, wavelet-like characteristics,
as illustrated in Figs. 11–13. Blocking artifacts are alleviated
significantly, whereas ringing artifacts are effectively con-
tained. A closer look in Fig. 13 (where enlarged 256256
image portions are shown so that artifacts can be more easily
seen) reveals that the VLLOT yields no annoying blocking and
excessive ringing artifacts. In fact, the VLLOT is even slightly
better than the LOT in blocking removal. The edges around
the lips, the eyes, and the shoulder are reconstructed faithfully.

VII. CONCLUSIONS

In this paper, the theory, design, and lattice structure of
LPPUFB with filters of different lengths have been presented
and analyzed in detail. The proposed lattice structure is robust
under coefficient quantization: It retains all attractive prop-
erties of the FB (LP, PU, and variable-length), and it has
fast and efficient implementation. The lattice also spans the
complete class of all permissible solutions: The number of long
filters must be even; half of the long filters are symmetric, and

the other half are antisymmetric and so are the short filters.
Another design method that keys on the relationship between
the GenLOT lattice coefficients to obtain variable-length filters
is also discussed.

The new FB can be interpreted as a class of lapped orthogo-
nal transforms with basis functions of variable lengths that we
labeled as VLLOT. The VLLOT’s initial stage can be chosen
to be the DCT so that existing fast software and hardware
implementation can be employed. This new lapped transform
finds application in transform-based image compression since
it relies on its long basis functions to reconstruct smooth signal
components while it uses short basis functions to represent
edges and textures. Experimental results show great promise
of the proposed transform: Blocking artifacts in DCT are
alleviated while ringing artifacts in GenLOT are contained.
Moreover, both of these can be achieved at a very reasonable
level of complexity. The VLLOT is certainly a step toward
a better understanding of how to design filter banks that are
most suited to the human visual system.

Compared with the popular wavelet transform, the VL-
LOT’s block-based nature allows fast, simple, and efficient
one-pass block coding if we so desire. Besides the lower
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computational complexity, computational parallelism, region-
of-interest coding/decoding efficiency, and the capability of
processing large images under limited resource constraints are
several other advantages that VLLOT offers over the wavelet
transform.
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