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Linear Phase Paraunitary Filter Bank
with Filters of Different Lengths and
its Application in Image Compression

Trac D. Tran,Member, IEEE Maasaki IkeharaMember, IEEE and Truong Q. Nguyerenior Member, IEEE

Abstract—In this paper, the theory, structure, design, and where K is the order of E(»). Such a system is called
implementation of a new class of linear-phase paraunitary filter paraunitary Somanet al. first introduced a complete and
banks (LPPUFB's) are investigated. The novel filter banks with minimal factorization [3] that covers a large class of linear

filters of different lengths can be viewed as the generalized . . N
lapped orthogonal transforms (GenLOT's) with variable-length phase paraunitary filter banks (LPPUFB's): even-charifel

basis functions. Our main motivation is the application in block- With all of the filters having the same length/ K. The
transform-based image coding. Besides having all of the attractive complete factorization assures that all possible solutions in the

properties of other lapped orthogonal transforms, the new trans- assumed class are covered by the structure, whereas minimality

form takes advantage of its long, overlapping basis functions 1o, ,yides the most efficient implementation in term of the
represent smooth signals in order to reduce blocking artifacts,
number of delay elements needed.

whereas it reserves short basis functions for high-frequency g o .
signal components like edges and texture, thereby limiting ringing AN equivalent, but modular, factorization called GenLOT is

artifacts. Two design methods are presented, each with its own set presented in [4], where the authors showed that the DCT and
of advantages: The first is based on a direct lattice factorization, the LOT are low-order special cases. The GenLOT is simply
and the second enforces certain relationships between the Iatticethe aforementioned class of LPPUFB implemented as a block

coefficients to obtain variable length filters. Various necessary t f It id | t solution to the eliminati f
conditions for the existence of meaningful solutions are derived ranstorm. It provides an elegant sofution to the elimination o

and discussed in both cases. Fina”y' several design and imagé)locking artifacts in traditional block-transform image coders.
coding examples are presented to confirm the validity of the A direct implementation of the GenLOT is depicted in Fig. 2.

theory. The input signal can be blocked into sequences of lefgth
_ _ _ _ MK, with adjacent sequences being overlappedbyK —
_Index Terms—Filter bank, image compression, linear-phase 1y samples. TheM columns of the transposed transform
filter bank, linear-phase paraunitary filter bank. - . . .
coefficient matrixP hold the impulse responses of the analysis
filters h;[n]. The resultingd/ subband signalg;[»] can then
I. INTRODUCTION be quantized, coded, and transmitted to the decoder, where the

ROM A FILTER bank perspective, the lapped orthogonérl‘verse transform is performed to reconstruct the signal. Due

transform (LOT) and its generalized version GenLOf0 the transpositional relationship betweglz) and R(z),
belong to a subclass of maximally decimatéd-channel the inverse transform matrix turns out to Be whose rows
FIR real-coefficient linear phase perfect reconstruction filt§fore the synthesis filters” impulse responses. The GenLOT's
banks (see Fig. 1) [1], [2]. From the polyphase representati8ffnogonality provides good energy compaction and leads to

in Fig. 1(b) and ignoring any processing of the coefficient§leégant bit allocation algorithms. Its long basis functions that
perfect reconstruction can be achieved by desigri(g) decay smoothly to zero, coupled with overlapping data blocks,

appropriately such thaR(z) can be chosen as reduce blocking artifacts at high compression ratios.
The GenLOT possesses an efficient lattice structure that
KT/ 1 retains both linear phase and paraunitary properties under
R(z) =2z""E'(:7) (1) the quantization of lattice coefficients. However, the lattice
structure of GenLOT imposes a very strict restriction on both
analysis and synthesis filters. They must have the same length,
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Fig. 1. Two representations of alf-channel uniform-band maximally-decimated filter bank.
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Fig. 2. M-channel LPPUFB as lapped transform. (a) Direct implementation in 1-D. (b) lllustration in 2-D.

serves as a wonderful illustration of this intuitive concepf. Outline
From the lapped transform perspective, it is advantageous fofrhe oytiine of the paper is as follows. In Section I, we offer

the transform to have a set of varying-length basis. Long bagigyief review of GenLOT's lattice structure and its design
functions mean larger overlap of input data and smoothgfocedure. Section Ill derives a complete and minimal lattice
impulse responses, leading to a reduction of blocking arligctyre for VLLOT. Section IV describes a different design
facts in the reconstructed images. Unfortunately, long bagj§nrgach hased on the relationship between GenLOT's build-
functions are also the main contributors to severe ringingy piocks. In both methods, various necessary conditions for
around strong edges, where huge quantization errors are spigadsyistence of meaningful solutions are discussed. Section V
out to smoother neighborhood regions. Hence, longer bagigsents the VLLOT design procedure based on unconstrained
functions should only be reserved for low-frequency cOmP@ypjinear optimization and several design examples. Next,

nents, whereas shorter basis functions should be employedig e coding examples illustrating the advantages of the new

represent high-frequency components. _transforms are presented in Section VI. Finally, Section VII
Most importantly, the longer the filter becomes, the hlghg{ra\,\,S up the final conclusions.

the complexity of the FB gets. Since blocking is most no-

ticeable in smooth image regions, in order to reduce blockin i

artifacts, filters covering high-frequency bands do not nedti Notation

long overlapping windows. In fact, they may not have to Notation-wise, bold-faced characters are reserved to denote
be overlapped at all. If the filter length can be restrictedectors and matriceA”, |A|, a;., a.; stand for the transpose,
mathematically, i.e., these coefficients are structurally enforcége determinant, théth row, and thejth column of the matrix

to exact zeros, the complexity of the resulting FB can b&. Special matrices used extensively are the identity matrix
reduced significantly. I, the reversal matrixJ, and the null matrix0. When the
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Fig. 3. Frequency and impulse responses of popular block transforms. (a) DCT, eight channels, all eight-tap filters. (b) LOT, eight chanregtsfilédiré 6-t

size of a matrix is not clear from context, subscripts will bevhere U; and V,; are arbitrary M /2 x M /2 orthogonal
included to indicate its size. For exampl#;,; denotes the matrices, and let
squareM x M reversal matrix, wherea®,;« » stands for the

M x N null matrix. S{a;, as, ---, a,} is used to represent

1 a2 a2
the vector space spanned by thevectorsa;, as, ---, a,. W= ﬁ I 1
For abbreviations, we use LP, PR, PU, VL, and FB to denote, M/2 M/2

3)

variable length,and filter bank The lettersA/ and L are
reserved for the number of channels and the filter's length. The
terms LPPUFB and GenLOT, LPPUFB with filters of di1°ferent|.h

' en, the polyphase matriz
lengths and VLLOT, are used interchangeably in the paper. polyp

respectivelylinear phase, perfect reconstruction, paraunitary, A— |:IJ\4/2 Onsy2 }
Onj2 2 My

(z) can always be factored as [4]

E)=Gr 1(2)Gg _2(2) --- G1(»)E 4

Il. REVIEW (2) k—1(2)Gr_2(2) 1(2)Eo 4)
LPPUFB’s have long found application in transform-based _

image coding. For example, the discrete cosine transfoWereGi(z) = &;WA()W, and

(DCT) as shown in Fig. 3(a) is ai/-channeldM -tap LPPUFB

that has been widely used in the international image compres- . Uo UoJniy2

sion standard JPEG [5]. A popular extension of the DCT is the 0= [VOJM/Q -V }

lapped orthogonal transform (LOT), which is an even-channel U 0 I J

2M-tap LPPUFB [see Fig. 3(b)] that can be interpreted as z[ 0 M/Q} [ M/2 M/Q} (5)
0]\4/2 VO J]\{/Q _I]W/Q

an overlapping block transform [6]. To reduce the blocking
effect further, longer data overlaps are needed. This motivates
the development of the GenLOT [4]. The most general lappedAgain, U, and V, are arbitrary/ /2 x M/2 orthogonal
transform lattice structure up to date is presented in [7], whemratrices. For fast implementatio®, can be replaced by
the authors are able to parameterize the complete class oftla@ DCT [4], [6]. It is clear from (2)—(5) that each stage
even-channel LPPUFB's. of GenLOT [either G;(z) or Eg] contains two arbitrary
An attractive approach to the design and implementation efthogonal matrices of siz&/ /2. Therefore, the most general
LPPUFB is the FB's parameterization by a lattice structur&enLOT of order(X — 1) can be parametrized k3 (/2
The lattice structure offers fast, efficient implementation arrdtation angles and requiresV/(K — 1))/2 delays in its
retains both LP and PU properties, regardless of coefficigntplementation. The complete and minimal lattice structure
guantization. The key idea in obtaining a lattice structuie shown in Fig. 4.
is the factorization of the FB’'s polyphase mati#(z). Let More generally, Traret al. show that a modification to
H; (2) and F,(2) be the analysis and synthesis filters of lengtthe initial stage produces GenLOT with filters of length
L = MK in an M-channel LPPUFB. IfM is even, itis L = MK + f, i.e., Ey will no longer be a simple zero-
necessary to havé//2 symmetric andM /2 antisymmetric order matrix [7]. The authors also present several interesting

filters [7]. Define necessary existence conditions on the FB’s symmetry polarity
and lengths, which can be summarized in Table | [7]. From
b, = [ U; OM/Q} 2) this table of permissible solutions, it is a simple exercise to

Oy Vi show that odd-length GenLOT does not exist.
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Fig. 4. General lattice structure for LPPUFB's.
TABLE | Theorem II: In a LPPUFB with filters of lengthA/ K and
POSSIBLE SOLUTIONS FOR M-CHANNEL LPPRFB (M — N) filters of lengthM (K — 1), half of the long filters
WITH FILTER LENGTHS L; = MK; + 3 . . .
are symmetric, and half of the short filters are symmetric.
Case Symmetry Polarity Condition | Length Condition | Sum of Lengths PrOOf: Let L(Z) be theN x M p0|yphase matriX Of Order
(K — 1), representing the longer filters, and Bf{z) be the
M even, 5 even Mg A 5 K, even - (M—N)x M_polypha_se matrix of ordex —2), representing
the shorter filters. Without any loss of generality, the long
M even, Bodd | (40 SE (Y1) A K. odd . filters are permuted to be on top. SinEgz) is paraunitary,
we have
M odd, 3 even (Tﬂ) S & (—I{l) A > K; odd (2m+ )M L~
E(2)ET () = [ Sm [LT(1) ST(21)]
4
odd, # odd MELY S & Mz;l A 3K even (2m+ 1)M
Mot CsErEy ’ (L)LY (7)) L(2)ST(z71)
S S(LT(27Y) S(2)ST (27
lll. VLLOT L ATTICE STRUCTURE =Im 6)
and
A. Problem Formulation E7 (> YE(z) =[L7 (=) ST(x1)] [L(z)}
This section presents a lattice structure for LPPUFB with S r _IS(Z)
filters of different lengths. For purposes of simplicity, we shall =L (Z )L(Z) +S (75 )S(Z)
first consider systems with filters of lengths = M K;, where =1 @)
M is even, and
K — K, for0<i<N-1<M-1 Furthermore E(z) also has to satisfy the LP property in [3]
! K—-1, for N<i<M-1. and [7]
Simply speaking, the class of LPPUFB under investigation has L(2)
N long filters of lengthA/ K and (M — N) shorter filters of E(z) = { ) }
length M(K — 1). S(z),
. |:Z_(A_1)IN 0 :| |:DL 0 :|
B. Existence Conditions B 0 2 ED, v 0 Dg
Theorem |: For the class of even-channel LPPUFB’s de- ) L(Z_l) o J (8)
scribed above, the number of long filters and the number of S(z—l) J 0
short filters must both be even.
Proof: The FB has a total length of where N x N Dy and (M — N) x (M — N) Dg are
M—1 diagonal matrices whose entry-sl when the corresponding
Z Li=NMK+ (M - N)M(K —1) filter is symmetric and-1 when the corresponding filter is
i=0 antisymmetric. The traces of these two matrices hold the
=M(NK+MK - NK - M +N) key to the number of long (as well as short) symmetric and
— M(MK — M + N). antisymmetric filters. _ _ _ _
From (8), we can obtain the following relationships:
From Table I, for everM, (M K — M + N) has to be even.
Since M is even,M K — M is even for anyK. Therefore, L(z) :z_(’(_l)DLL(z_l)JM
N has to be even, and so {8/ — N), i.e., there are an even (K-2) o 9)
number of long, as well as short, filters. O S(z) == DsS(z ) Jur-
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SinceL(z)LT(»7!) = Iy and S(2)ST(»7!
(6), solving forD;, and D5 vyields

DL :Z—(I(—I)L(
DS 227(1(72)8(;:,

Z_I)J]wLT (Z_l)
1)J1\4ST(Z71).
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(10)

Taking the trace of both sides and using the fact tH&t B) =

tr(BA), we can obtain

tr(Dy) :tr(z_(K_l)L( NIy LT (2 )
—t ( —(IS l)LT( J]\l)
tr(Ds) =tr(z_(K_2)S( NI yST (2 1))
=tr(= KDY ()27 I ).

\

(11)

) = Iy_n from C. Lattice Structure

From Theorem I, there ar&’/2 long symmetric filters and
N/2 long antisymmetric filters. If the long symmetric filters
are permuted to be on top, i.e.,

b= [ v

Ingo
they now form a remarkably similar system to Aichannel
order{K — 1) GenLOT
L(z) = 2~ & ~UDL(

2 Iy (14)

From [4], there exists a factorization [shown in (4)] that
reduces the order of the polyphase maliix) by one. Hence,
the VLLOT's polyphase matrig(z) can always be factored as

E(z) = Go(2)Ex_2(2)

Tr(Dy) and t{Dg) are constants, and therefore, their values =B WA(2)WPE_a(2) (15)
can be obtained by evaluating the right-hand sides of the above
equation at any specific value ef First, let us consider the where
case of evenk. Evaluating (11) at = 1, we have -
. Iv/z2 Ing2 0
tr(Dy) =tr (L7 (1)L(1)T ) W= IInjz —Ingz 0
tr(Ds) =tr(ST(1)S(1)J (12) - 0 0 Tax
r(Ds) =tr(ST(1)S(1)I ). Inz O 0
A _ 1
Evaluating (11) atz = —1 yields Alz)=| 0 Inz 0, (16)
|0 0 v~
tr(D;) = — tr(LE(~1)L(~1)J and .
{(') (DRI gy W 0 o
tr(Ds) :tr(S (—1)S(—1)J1\4) d,=|0 VO 0 (17)
(0 0 Iy

From (7), we also have

"

LY(DL()Ip +STW)SW) Iy =T

P, is the permutation matrix that arranges the longer filters
on top, i.e.,

DL(=1)JIp + ST (=D)S(=1)Ins =T ns.
JL(=1)JIm (=1)S(-DJp =Jnm In/2 0 0 o
Hence, since td,;) = 0 p.—| 0 0 Ing2 0
0 0 Inv-nyz O 0
tr(Dy) =tr(L"(DL(1)J 1) 0 0 0  In-ny/2

_tl’(JM - ST(l)S(l)JM)
=tr(Jp) — tr(ST(1)S(1)I )
= —t(STWSW)In).

On the other hand

(D) = — tr(LT(- —1)J )

It is added to simplify the presentation only. Note that the
above factorization leave8(z) untouched; it reduces the
length of the longer filters by/ so that all filters now have the
same length o/ (K — 1). Ex_»(2) is the familiar polyphase
matrix of an order:K’ — 2) GenLOT. The rotation angles of
N/2x N/2 orthogonal matriceﬂo andVo are the stage’s free
parameters that can be varied independently and arbitrarily to

(s — ST 1S(=1) optimize the VLLOT. Comparing with the traditional order-
(Jns . S(-1)3w) (K — 1) GenLOT, the number of free parameters is reduced
= —tr(Jar) +r(ST(=1)S(=1)I ) by 2("/?) — 2("/?). The reduction can be quite significant

=tr(ST(1)S(1)I ).

if the number of channels/ is large and the number of long
filters NV is small. For the case thaf = 2, the number of free

Therefore, t#S7(1)S(1)J ;) = 0, leading to the desired resultparameters comes frofix_»(z) only: Uy and V, become
that t{D;) = 0, and t{Dgs) = 0. In other words, half singletons+1.

of the longer filters are symmetric, whereas the remainingAs previously mentioned, Wlth}o( ) peeled off Ex_»(2)
half are antisymmetric. Similarly, half of the short filters arbecomes the familiar polyphase matrix of an or@&r— 2)

symmetric, and the rest are antisymmetric.

It is a simpteenLOT. Hence,

it can be factored by the conventional

exercise to verify that the same conclusion can be reachmdthods [4]. An example of the detailed lattice is illustrated

for the case of odd¥.

O

in Fig. 5.
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Theorem Ill: The proposed factorization dt(z) in (15) where Ny > N; > --- > N,_;, and each¥, is even. The
is minimal, i.e., the lattice structure uses the fewest possitdgest filters have length/ (K + ¢), whereas the shortest fil-
number of delays in the implementation. ters have lengti/ K. The general lattice structure is depicted

Proof: A structure is defined to be minimal when then Fig. 6.
required number of delays is equal to the degree of the transfer
function [1]. For paraunitary systems, it has been proven in [1]v. VLLOT via ORTHOGONAL COMPLEMENT SUBSPACES
that deg(E(2)) = deg(JE(2)]).

Exploiting the LP property of the FB polyphase matrix in In. the Iattuj,e strﬁctuf'rle d,e3|gn meth?d presented in the
(8), we have previous section, the filters’ centers of symmetry are not

aligned. The alignment of the bases is sometimes desired since
deg(E(2)) = deg(|E(2)]) it provides more accurate correlation between subband signals,

L~ K=D 0 and it simplifies the signal’'s symmetric extension [8], [9]. Only
= deg (K2 in cases in which the length difference between the long and
0 4 ( )IJW_N . . .

. the short filters are even multiples af, the alignment of
‘DL 0 L(z_l) 0 J D the centers of symmetry can be obtained by shifting the short
0 Ds|[S(=")||J 0 filters (at the cost of adding more delay elements of course).

=N(K—-1)+ (M — N)(K —2)—deg(E(2)).
A. Problem Formulation

Hence In this section, another class of VLLOT whose filters all
deg(E(2)) = N(KE 1)+ (M - N)(K —2) share the same center of symmetry is studied. These FB’s
2 can be thought of as a GenLOT subclass, where the tail-
_ M(K -2) + N end coefficients of some filters are forced to be zero. More
2 2 specifically, given ar/-channel GenLOT of lengthf K with

/2 delays M even, we are interested in the relationships between the
building blocksU;, V; in (4) such that the resulting x M K
coefficients matrixP , (or a simple row permutation @ x)
satisfies the following variable-length condition as shown in
(19) at the bottom of the next page. Simply speaking, we are
udying a GenLOT subclass of ordgk — 1), where all of
e filters share the same center of symmelyyfilters have

In the proposed factorization, we ugéf/(K — 2))
for Ex_2(z) and N/2 for G(z), totaling the same number
of delays as the degree &(z). Therefore, the factorization
is minimal.

It is interesting to note that whedv increases toM
or decreases to 0, the VLLOT’s required number of del
elements increases {@/ (K —1))/2 or decreases tQV (K — L ,
2))/2, which is consigter(lt with )t%/e delays needed %enLOTlgngth MK, and the remaining)! — N) filters have length
implementation [4]. M(K - 1).

More general and complicated VLLOT can be constructed _ -
by a cascade of building block&; as B. Existence Condition

. . . Theorem IV: It is impossible to construct a VLLOT de-
E(2) =Ge_1(2) - G1(2)Go(2)Gr-1(2) - scribed in the problem formulation above with all symmetric
G1(2)Go(z) (18) (or all antisymmetric) filters being shortened by taps.
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Proof: It is a straightforward but tedious exercise tdrhe following is an ordered outline of the designing steps:

show that the left tail end of the GenLOT coefficient matrix «
turns out to be as shown in (20) at the bottom of the page
[4]. Suppose that all antisymmetric filters are short; then .

Choose arbitrary{ /2 x M /2 orthogonal matrice® ;_4,
B, andU,, V;, i = 1,2,---, K—2.
Obtain the productu = Uy [[i_, (Ui — VJ).

Find an orthonormal basis for the filst rows of Tu. Find

an orthonormal basis for the corresponding orthogonal
- 0 - complement. From these orthonormal row vectors, form

= Vi Vi [] Ui-V) = VE_ 04 the unitary matrixT.

Vot Il—ge—o(Ui = Vi) = Opp2 .

o ThE « Obtain the first stage’s building blocks by choosing
— H (U; = Vi) = Onyp2
i=K—2 Un =T Q1 Onx (/2= B
0 0 Ori/2—Nyx N Qs
= Uk-_1 H (Ui = Vi) = Ony2. and
i=K—2 v, :T[ Q2 0]\’><(]\l/2—]\’):|B
This means that all symmetric filters have to be short as well, O(ar/2-NyxN Qs

and we are left with an orddiK’ — 2) GenLOT. On the other

hand, if all symmetric filters are short, so are all antisymmetric WhereQu, Q, are anyN x N orthogonal matrices, and

filters. O Qs is any(M/2 — N) x (M/2 — N) orthogonal matrix.
In the next subsection, we shall show that it is possible With these particular choices df, and V, the columns

to construct various VLLOT if some (but not all) of theof the difference matriXUy — Vy) can be easily verified to

symmetric (or antisymmetric) filters are short. Equivalenthgelong to the predefined subspace

it is possible to obtain Q o Q o
Uy—Vo=T| 7 B-T| 2 B
o [ 0 Qg} [ 0 QJ

(5 )

The rotation angles of the arbitrary orthogonal matrices
are the free parameters that can be tuned to optimize the
VLLOT for any desired criterion. Note that we only have to put
constraints on the first and last stage of the GenLOT'’s lattice
structure to obtain the VLLOT of the same order. These two
stages control the orthogonality between rows and columns
of the building blocks to reduce the length @ /2) — N)
filters by M. The constraints added to obtain VL reduce the
total number of free parameters to optimized by

M/2 N M/2—- N
-2 + .
2 2 2
The reduction is independent of the ord&r and can be
significant for largei/.
The same method can be applied to shorten any
antisymmetric filters, as long a® is less thanM/2. If

only N antisymmetric filters andV symmetric filters are
desired to be long, we have to ensure that the matrix

Tv 2 Vi 1 HLK_Q(Ui —V,) is appropriately chosen such

XNxM/2 }
Ori/2—Nyx /2

0
Uk-1 H (Ui = Vi) [
imK—2
or
XNxM/2
Ovija—nyxmy2

A 12[ (Ui—vi):[ } (21)

i=K—-2

or even both.

C. Design Procedure

First, let us consider the case with//2 — N) short
symmetric filters of lengthAM/ (K — 1). Define the prod-
uct Tu 2 Uy [[_y_,(U; — V,). It is possible to split
Tu’s row space intov 2 S{tu?, tul, ---, tu, } and the
corresponding orthogonal complement [1]. Now, if we
choose(Uy — V) such that all of its columns lie iw, then
U1 [T j_o(Us = V) = Tu(Uy — Vi) will take the
desired form

[ XNxM/2 }
Onr2—Nyxmy2 ]

XN xM/2 XNxM/2

Xy Xy
Py — [ NxM/2 < NxM/2 < (19)
O —Nyxazy2 (M—N)xM/2 M-Ny)xM/2 Ou—Nyxny2
0 1
Uk_1 H (U; = V) Ug_1 H (Ui = Vi)(Ug + Vo)J
P, — 71:1(;'—2 71:1;'—2 (20)

Vi [ (Ui=Vi)(Uo+ Vo)d

i=K—-2

Vi [ (Ui-vy)

i=K—-2
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COMPARISON OF TRANSFORM COMPLEXITY:

cos0
The 4x 24, 4 x 8 fast VLLOT.

TABLE 11

NuUMBER OF OPERATIONS NEEDED PEREIGHT TRANSFORM COEFFICIENTS

Transform I No. of Multiplications | No. of Additions | Total No. of Ops.
8 x 8 DCT 13 29 42
8 x 16 Type-11 LOT 26 66 92
8 x 24 GenLOT 85 101 186
9/7 Wavelet, 1-level, standard 36 56 92
9/7 Wavelet, 3-level, standard 63 98 161
9/7 Wavelet, 1-level, lifting 24 32 56
9/7 Wavelet, 3-level, lifting 42 56 98
4x244x8 VLLOT 25 57 82

that its row space can be split into the same two orthogortdbcks U; and V; to obtain the coefficient matri¥ directly.
subspaces and»+. We propose the following solution:

* Choose

Vi, = Q4 Onsc(nry2—n)
T O(n/2-NyxN Qs

where Q4, Q5 are, respectively, arbitraryy. x N and

Ug_1

(M/2— N) x (M/2— N) orthogonal matrices.

With this particular choice oV g _ 1, both of the VL properties

in (21) can be satisfied simultaneously:

0
Vi [ Ui-Vv))

=K 2
_ [ Qq ON><(J\4/2—N):|
02— NyxN Qs
0
Uk H (Ui = V,)
=K 2

_ [ Qq ON><(J\4/2—N):|
02— NyxN Qs

[ XNxM/2 }
Ovija—nyxniy2
_ { QaX Nyniy2 }

Oniy2—nyxn/2

In this case,Vx_; contains[(y) + (M/2~)]

of free rotation angles is significant for large.

Hence, it can be classified as a time-domain design method.
The resulting system is guaranteed to have LP as well as
PR. Furthermore, the filters can have different lengths, yet
all centers of symmetry are aligned. The FB can still be

represented by a lattice structure. However, the VL property
is not robust under the quantization of lattice coefficients.

V. FAST IMPLEMENTATION,
OPTIMIZATION, AND DESIGN EXAMPLES

A. VLLOT Fast Implementation

This section is devoted to the design of a high-performance,
yet low-complexity, VLLOT for image coding and processing
applications.

To minimize the transform’s complexity, we have to choose
a small number of long filters, and set the initial stdggeto be
the DCT (which possesses numerous fast implementations). In
the orthogonal case, it is easy to verify that setting the number
of long filters to be two only yields trivial solutions since the
matricesU; andV; degenerate to singleton 1 erl, and there
are not any free parameters for transform optimization. This is
consistent with the well-known fact that the only two-channel
linear-phase orthogonal filter bank is the Haafy/2[1 1;

1 —1]. Hence, we have to increase the number of long filters
to four. Their length is chosen to be 24-taps so that there is an
overlap of eight pixels on either side, and traditional symmetric

. o _ )l degrees of aytension can be applied [8]. The short filters are still eight-tap.
freedom instead of V/?). Again, the reduction in the amountwith this particular choice, there are four free rotation angles,

and the resulting unnormalized lattice is illustrated in Fig. 7.

This design method using orthogonal complement subspad&ste that the four filters covering high-frequency spectrum of
keys on the relationship between the GenLOT's buildintpis fast VLLOT come straight from the DCT.



2738 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 47, NO. 10, OCTOBER 1999

DC Atl.>=334.1dB Mim Al >= 316.1 dB Stopband Aft. >= 8.838 98 Cod. Gain = 8.351 dB hO 0¢ T T 99 DC Att. >=322.1 dB  Mirr Att. >= 3186 dB  Stopband Att. >= 7.498 dB Cod. Gain = 9.133dB h0 g0l 9f a4 o0
9 T T T T T T T T T 0 T T T T T T T

T T

-5 hit W;ﬂﬂi

2| gl

h3

h4iﬂﬁﬂimw

h1 W%w
2 | g
h3 Mﬁ'@'ﬁwj‘l’&mw
7R K BT
hs if%mwm hs %KWW
h6 %&ﬁmw _ L S —
1) | |

R e e s B R v s

(@) (b)

=

i

Magnitude Response (dB)
A s
R ]

Magnitude Respanse (dB)

8

&

OC Att >=302.1021 0B Mirr Al >= 318 580308 Stopband Aft. »= 8.0627 08 Cod. Gain = .648 & DC Alt. >= 319.1 dB Mirr Atl. >=321.4dB Stopband Att. >=3.887dB Cod. Gain =8 3523 a8
; T T v T 4 T 0 N T T T T T T T

Magnitude Response (dB)
Magnitude Response (J8)
| . ) '

i i 1
005 01 015 02 025 03 035 04 045 05
Normalized Frequency

(c) (d)
>=312.6dB Stopband At >=7.081dB Cod. Gain = 9.35 dB hO G@ﬂ 9 ?fggg
e
[¢]
o
h2 weemmoi:wﬂ%w

h3 ;

DC Att. >= 431508 Mirr Afl, >= 46.15dB Stopband Att, >=7.097 dB Cod. Gain =9.226 B hO | osse emof OEQQQ 0680 DC At >=32024dB Mirr Att
0 T T T

hl wﬁ%weec
&
o
h2 oﬂﬂﬂ-fiﬁwym&e%%%
h3 cﬂge—g%—ﬂf&ée%ee%sec
4 o
0 o
hd | oty lpssmson et | ety s
) 6
h5 s%é’m%%ww%w hs %Y%-fafwem
R | \ | hé6 %@e@@e@e@%@w -5 | \
M om ot 0% 02 0B 03 0% 04 06 05 h7 %%W 6 005 ‘ow 015 02 025 03 035 04 045 05 h7 %W

Normalized Frequency Normalized Frequency

() ®

Fig. 8. Frequency and impulse responses of various transforms designed by direct lattice factorization method. (a) Two 16-tap and six eight-tap filte
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Since a plane rotation can be performed by three shears, vehere it takes three multiplications and three additions to
[ cos #; sin 92} l 1 0] [1 sin 91} implement each rotation. The multipliers a&g, = (cos 6; —

_sin6; cos 6 cos 0; — 1 1o 1 1)/sin 6; and;; = sin 6; (unlesst; = kr, k € Z; then, we

only need two additions). The 1-D DCT requires 13 additions

N cos 91 _1 0 and 29 multiplications per eight transform coefficients. There-
— 1 fore, the total number of operations needed to implement the

sin 91

sin 91
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Fig. 9. Frequency and impulse responses of various transforms designed by the orthogonal complement subspace method. (a) Four 16-tap dag four eight-
filters. (b) Four 24-tap and four 16-tap filters, optimized for a balanced cost function. (c) Four 24-tap and four 16-tap filters, optimized pnircadipgo
gain. (d) Four 24-tap and four 16-tap filters, optimized primarily for stopband attenuation.

TABLE Il
COMPARISON OF TRANSFORM

PERFORMANCE

Transform Coding Gain (dB) | DC Ati. (-dB) | Stopband Att. (-dB) | Mir. Att. (-dB)
8x 8 DCT 8.83 310.62 9.96 322.10
8 x 16 LOT 9.22 312.56 19.38 317.24
8 x 24 GenLOT 9.35 184.06 23.20 187.19
Fast VLLOT 9.26 322.10 8.06 318.58

fast 1-D VLLOT structure in Fig. 7 is 82: 25 additions andr lifting implementation [11]. Keep in mind that the numbers

57 multiplications.

of operations associated with the 9/7-tap pair in Table Il
A comparison of complexity between various populagome from only one level of decomposition. A deep dyadic
transforms in 1-D is provided in Table Il. The fast VLLOT sdecomposition needs roughly twice the tabulated 1-level
complexity is about twice that of the DCT (which is expectedmounts. Moreover, the wavelet transform requires a larger
since the total filter lengths in the FB is doubled). It igercentage of multiplication, which is typically slower than

slightly faster than the type-Il fast LOT [6] and is much fastethe addition in practical implementation.

than the GenLOT of the same order (all filters are 24-tap).
The 8x 24 GenLOT has the highest complexity, even thougB. Optimization Procedure

its first stage has been set to be the DCT [4], [10]. BesidesAny realization of the lattice coefficient sd®;} in the

the first stage, the full 8x 24 GenLOT employs four 4 previous sections results in an LPPU system. However, for the
x 4 orthogonal matrices; each in turn requires six plan@.LOT to have high practical value, several other properties
rotations. The VLLOT in Fig. 7 is definitely faster than theare also needed. High-performance VLLOT can be obtained
9/7-tap biorthogonal wavelet in both standard polyphase [@}ing unconstrained nonlinear optimization, where the lattice
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Fig. 10. Wavelet and block transform analogy.
coefficients are the free parameters. Since we are interested TABLE IV
mainly in image coding applications, the cost function used in OesecTive CopiNG ResuLt ComparisoN (PSNRiN dB)
this paper is a weighted linear combination of coding gain, DC Barbara
leakage, attenuation around mirror frequencies, and stopband Comp. || 9/Ttap | 8x8 [8x 16 [4x24 4x8

attenuation—all of which are well-known desirable properties Ratio || Wavelet | DOT | LOT | VLLOT

in yielding the best reconstructed image quality [2], [12]: 11::186 g?:ié gfﬂ g;:?g 3?:;2
C(overa,ll = alccoding gain + OCQCDC + a?)cmirror 1:32 27.58 27.28 | 28.80 28.18
1:64 24.86 | 24.58 | 25.70 25.39
+ @4 Cytopband- (22) 1100 || 23.76 | 23.42 | 24.34 24.25
Among these criteria, higher coding gain correlates most Boat
consistently with higher objective performance (PSNR). Trans- Comp. || 9/7-tap | 8x8 | 8x 16 | 4x24 4 x8
forms with higher coding gain compact more energy into a Ratio || Wavelet | DCT | LOT VLLOT
fewer number of coefficients, and the more significant bits of 1:8 39.11 | 38.93 | 39.26 39.17
those coefficients always get transmitted first in the progressive 116 ) 3446 | 3420 | 34.61 34.52
. . . 1:32 30.97 | 3043 | 30.93 30.89
tran.smlssmn framewo_rk employed in the Iatgr sect|on_. All T6d 5816 2752 | 2807 35,09
design examples in this paper are obtained with a version of 1700 I 2666 2588 | 26.40 96.42
the paraunitary coding gain formula [6]
o5 C 9/7-tap | 8 x 8 Lg”l“m 4x24 4x8
Ceoding gain = 10 log;o 1 I (23) Ratic v&{ave?el)t DCT | LOT | VLLOT
H o2 18 40.41 | 39.91 | 40.09 40.10
i 1:16 37.21 | 36.38 | 36.75 36.76
1:32 3412 | 32.90 | 33.57 33.56
whereoZ is the variance of the input signal, amd_is the 1:64 | 3110 | 29.67 | 30.48 30.54
variance of theith subband. The signat[n] is the com- 1:100 || 29.35 | 27.80 | 28.61 28.81
monly used AR(1) process with intersample autocorrelation
coefficientp = 0.95. M1
Low DC leakage and hig_h attenuatipn near the mirror Cutopband = Z/ |Hi(ejw)|2dw. (26)
frequencies are not as essential to the objective performance as i—0 Y wEQtopband

coding gain. However, they do improve the visual quahty_o{_he set of{«; } in (22) controls the tradeoff between various

the reconstructed image significantly by alleviating annoyi o
blocking and checkerboard artifacts. Finally, the stopbar;!%3 characteristics. We found that the sg, 1, 0.1, 0.3

. L . : -~ typically works well in optimizing FB’s for image coding.
attenuation cost helps in improving the signal decorrelatiod,”.” >~ . : . I~
. S : initialize the lattice, we set all lattice coefficientsto
decreasing the amount of aliasing, and enhancing the smooth- . ) )
. . : In an alternative (and faster) design procedure, the filters
ness of the filters. These cost functions are defined as follows; .. : : . .
aré first obtained from the iterative method based on time-
1\24—1 LZ_I domain constraints [13]. Then, the lattice coefficients can then
ODC = hi [n] (24) '

be calculated from the resulting FB coefficients.

=1 n=0
M-1 9 .
Cmirror = Z |I—IZ (ijm) |27 Wm = ]@m C DeSIgn Examples
i=0 We present in this section several VLLOT examples using
1<m< M (25) the design approaches previously discussed in Sections Il and

2 IV and the optimization methods described in Section V-B.
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Fig. 11. Reconstructed boat images at 1:32 compression ratio. Top 1eft88DCT, 30.43 dB. Top right: 8< 16 type-Il fast LOT, 30.93 dB. Bottom
left: 9/7-tap biorthogonal wavelet, 30.97 dB. Bottom right:x424 4 x 8 fast VLLOT, 30.89 dB.

The magnitude and the impulse responses of the new Mb-all cases. The difference lies at the transform stage, where
LOT's obtained directly from the VL lattice structure arehe five transforms in comparison are the following:
depicted in Fig. 8. The fast VLLOT discussed in Section V-A « the DCT, eight filters, all 8-tap, shown in Fig. 3(a);

is shown in Fig. 8(c). The new VLLOT's designed by the « the type-Il fast LOT, eight filters, all 16-tap, shown in
orthogonal complement subspace method are shown in Fig. 9. Fig. 3(b);

The objective performance measures of several VLLOT'S « the fast VLLOT, four 24-tap and four 8-tap filters, shown
and other block transforms in previous works are tabulated and jn Fig. 8(c);
compared in Table Ill. Given the same ord€t the VLLOT « the popular 9/7-tap biorthogonal wavelet in [15].
cannot match the GenLOT in terms of objective characteristics|n the block-transform case, we have to modify the ze-

(coding gain and stopband attenuation for example) becalggee structure. Each block of lapped transform coefficients
it belongs to a subclass of GenLOT. However, the VLLOT'Ryresents a spatial locality similarly to a tree of wavelet

variable-length basis functions make it significantly faster thaQyofricients. A wavelet tree in ad-level decomposition is

the GenLOT of the same order (see Table Il). The coding 5 5g0us to @L-channel transform’s coefficient block, as
gain of the fast VLLOT is also slightly higher than that of theysirated in Fig. 10. The difference lies at the bases that gen-
quasioptimal LOT [6]. Note that since the application we havg e these coefficients. L&X(i, 5) be the set of coordinates

in mind is image compression, all presented FB examples haye, offspring of the node(4, ;) in an M-channel uniform-
highband filters chosen to be short. The design methods doyus 4 piock transfornf0 < ¢, j < M — 1); then, O(i, j) can
to shorten other filters if we want to. be represented as I

O, 3) ={(24, 2j), (2, 27 + 1), (2i + 1, 2j)

The coding performance of the new VLLOT is evaluated (20+1, 2+ D}
through an image coding comparison. To be fair, the sameAll (0, 0) coefficients from all transform blocks form the
transform-based progressive image coder SPIHT [14] is use@ band, which is similar to the wavelet transform’s reference

VI. APPLICATION IN IMAGE CODING
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Fig. 12. Reconstructed Lena images at 1:32 compression ratio. Top left88DCT, 32.90 dB. Top right: 8< 16 type-Il fast LOT, 33.57 dB. Bottom
left: 9/7-tap biorthogonal wavelet, 34.11 dB. Bottom right:x424 4 x 8 fast VLLOT, 33.56 dB.

signal; each of these nodes has only three offspring: (0, 1), {lhere MSE denotes the mean squared error between the
0), and (1, 1). This is a straightforward generalization of theriginal and the reconstructed image. The PSNR'’s from us-
structure first proposed in [16]. The only requirement here iisg various transforms at various bit rates are tabulated in
that the number of channeld has to be a power of two. With Table IV. All computed PSNR quotes are obtained from real
this modified tree definition, any zerotree coder can be usedimpressed bit streams with all overheads included.
to encode the transform coefficients. The coding results from Table IV and Figs. 11-13 demon-
To decorrelate the DC band even more, several leveigate that the novel VLLOT provides an interesting tradeoff
of wavelet decomposition can be applied on the DC bangetween transform complexity and coding performance. Ob-
depending on the input image size. This step increases fBgtively, the VLLOT is clearly superior to the DCT in all three
coding efficiency of the DC coefficients thanks to a deepesst images at all bit rates. It is also very comparable with
coefficient trees. Besides, it offers a fair comparison betwegfe quasioptimal type-Il fast LOT. In the complex Barbara
the transforms since the SPIHT coder uses up to six levgigsage, where there is a large amount of texture, the VLLOT's
of wavelet decomposition on 512 512 images, whereas thepoor frequency resolution in the higher frequency spectrum
8-channel block transforms only provide an equivalence of e to the four filters from the DCT) translates to an inferior
level decomposition. For more details on the embedded COdiﬁQrformance compared with the LOT. However, in smoother
algorithms, see [14], [17], and [18]. _ _ images such as Boat and Lena, the VLLOT’s and the LOT’s
The three images chosen for the coding experiments &g ormance is very similar; the VLLOT starts to outperform
Barbara, Boat, and Lena. All of them are standard, wefre | OT at lower bit rates (a wavelet characteristic). Compared
known 512x 512 8-bit gray-scale test images. The objectiVgye 9/7-tap biorthogonal wavelet, the VLLOT offers a lower
distortion measure is the popular peak signal-to-noise rafigiformance in Lena. Nevertheless, in the Boat image, where
(PSNR) there is a fair amount of edges and texture, the two transforms
_ ] 255 yield almost identical objective results. In the more complex
PSNR= 10 logq <MSE>dB Barbara image, the VLLOT can outperform the wavelet trans-
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Fig. 13. Enlarged 256« 256 portions of reconstructed Lena images at 1:32 compression ratio. Top [&ft8 @CT. Top right: 8 x 16 type-Il fast
LOT. Bottom left: 9/7-tap biorthogonal wavelet. Bottom right:>4 24 4 x 8 fast VLLOT.

form by more than 0.5 dB over a wide range of bit ratethe other half are antisymmetric and so are the short filters.
(0.125-0.25 b/pixel). Another design method that keys on the relationship between
Subjectively, the VLLOT's reconstructed images generalihe GenLOT lattice coefficients to obtain variable-length filters
possess smooth, visually pleasant, wavelet-like characteristigsalso discussed.
as illustrated in Figs. 11-13. Blocking artifacts are alleviated The new FB can be interpreted as a class of lapped orthogo-
significantly, whereas ringing artifacts are effectively comal transforms with basis functions of variable lengths that we
tained. A closer look in Fig. 13 (where enlarged 256256 labeled as VLLOT. The VLLOT's initial stage can be chosen
image portions are shown so that artifacts can be more easiybe the DCT so that existing fast software and hardware
seen) reveals that the VLLOT yields no annoying blocking anghplementation can be employed. This new lapped transform
excessive ringing artifacts. In fact, the VLLOT is even slightlyinds application in transform-based image compression since

better than the LOT in blocking removal. The edges aroundelies on its long basis functions to reconstruct smooth signal
the lips, the eyes, and the shoulder are reconstructed fa'thful%mponents while it uses short basis functions to represent

edges and textures. Experimental results show great promise
VII. CONCLUSIONS of the proposed transform: Blocking artifacts in DCT are
In this paper, the theory, design, and lattice structure afleviated while ringing artifacts in GenLOT are contained.
LPPUFB with filters of different lengths have been presentddoreover, both of these can be achieved at a very reasonable
and analyzed in detail. The proposed lattice structure is robigitel of complexity. The VLLOT is certainly a step toward
under coefficient quantization: It retains all attractive prop better understanding of how to design filter banks that are
erties of the FB (LP, PU, and variable-length), and it hasost suited to the human visual system.
fast and efficient implementation. The lattice also spans theCompared with the popular wavelet transform, the VL-
complete class of all permissible solutions: The number of longT’s block-based nature allows fast, simple, and efficient
filters must be even; half of the long filters are symmetric, arahe-pass block coding if we so desire. Besides the lower
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computational complexity, computational parallelism, regionz2] L. Chen, K. P. Chan, T. Q. Nguyen, and Y. Zheng, “A new synthesis

of-interest coding/decoding efficiency, and the capability of

procedure for linear-phase paraunitary digital filter banks,"Pimc.
IEEE Int. Symp. Circuits Systlune 1997, pp. 2377-2380.

processing large images under limited resource constraints geg r. R. GantmacheiThe Theory of Matrices. New York: Chelsea, 1977.
several other advantages that VLLOT offers over the wavelet

transform.
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