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Abstract—In this paper, the design of the error resilient
time-domain lapped transform is formulated as a linear minimal
mean-squared error problem. The optimal Wiener solution and
several simplifications with different tradeoffs between complexity
and performance are developed. We also prove the persymmetric
structure of these Wiener filters. The existing mean reconstruction
method is proven to be a special case of the proposed framework.
Our method also includes as a special case the linear interpolation
method used in DCT-based systems when there is no pre/post-
filtering and when the quantization noise is ignored. The design
criteria in our previous results are scrutinized and improved
solutions are obtained. Various design examples and multiple de-
scription image coding experiments are reported to demonstrate
the performance of the proposed method.

Index Terms—Estimation, image coding, image communication,
information theory.

1. INTRODUCTION

ITH the rapid development of Internet, computer, and
wireless communications technologies, there have
been growing demands for delivering compressed images over
Internet and wireless networks. This poses new challenges
to conventional image compression algorithms, which are
extremely vulnerable to transmission errors. On the other hand,
perfect reception of all data is usually not necessary due to
the intrinsic structures present in most natural images. Special
algorithms known as error concealment can be employed to
produce reasonable visual quality in the presence of transmis-
sion error.
Among the error concealment techniques that have been pro-
posed [1], some methods, such as the reversible variable length
coding [2], introduce error resilience at the encoder. Some of
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them focus on the error concealment at the decoder side by es-
timating the lost data with methods such as interpolation and
projection onto convex sets [3]-[8]. Other approaches tackle the
problem by a joint design of the encoder and decoder, for which
the lapped transform provides a useful framework [9].

In the original lapped transform [9], a postfilter is applied
at block boundaries after the DCT. The postfilter is usually
designed to remove the remaining redundancy between neigh-
boring blocks, thereby improving the coding efficiency of
the DCT and reducing the blocking artifact associated with
DCT-based schemes. On the other hand, the postfilter can also
be designed to spread out the information of a block to its
neighboring blocks. This is helpful when we need to recover a
lost block during image transmission.

In [10], various techniques were proposed to estimate the lost
data when the lapped orthogonal transform (LOT) was used. A
mean reconstruction method and a nonlinear sharpening method
were found to be quite effective, under the assumption that DC
coefficients were intact. In particular, in the mean reconstruction
method, each lost block was estimated by averaging its avail-
able neighboring blocks. In [11], it was found that the extended
lapped transform (ELT) has better robustness against transmis-
sion error than the conventional LOT. However, the complexity
of the ELT is higher than the LOT and it does not have linear
phase [9]; thus, its application in image coding is limited.

The methods in [10] and [11] performed error concealment
at the decoder. The transforms used there were still optimized
for the best compression performance. In [12], the optimization
of the error resilient LOT for a specific error concealment tech-
nique was addressed. It was shown that the lost blocks can be
better recovered this way. In addition, the transform can be de-
signed to achieve different tradeoffs between compression effi-
ciency and error resilience.

Since the main purpose of [12] was to verify the feasibility of
error resilient lapped transform, it still used the simple mean re-
construction method in [10]. To improve the smoothness of the
reconstructed images, the maximally smooth recovery (MSR)
method proposed in [13] was used in [14], and a multiple de-
scription codec was developed using the transforms designed in
[12]. However, the transforms in [12] were not optimal for the
MSR method because they were designed for the mean recon-
struction method. This problem was resolved in [15] by incorpo-
rating the maximally smooth recovery constraint in the objective
function of the transform optimization. Better transforms were
obtained to achieve the same reconstruction quality with lower
bit rate.
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Despite the improvements in [12], [14], and [15], some lim-
itations still exist. First, only orthogonal lapped transform was
considered. Therefore, the MSE of the reconstructed image is
always the same [12], which seriously confines the error con-
cealment capability of the system. Second, the entire M -band,
2M-tap (M x 2M for short) lapped transform matrix is opti-
mized directly (M is the block size), which increases the com-
plexity of both optimization and implementation.

Recently, a new family of lapped transforms, the time-do-
main lapped transform (TDLT) [16], has been developed. In the
TDLT, a prefilter is applied at each block boundary before the
DCT. At the decoder side, a postfilter is applied at the same lo-
cation after the inverse DCT. This framework is more compat-
ible to DCT-based infrastructures, since the pre/postfilters can
be easily incorporated into existing DCT software or hardware
implementations. The TDLT also offers competitive compres-
sion performance compared to JPEG 2000 [17]. As a result,
it has been used in Microsoft Windows Media Video 9 codec
(WMV9) [18]. WMVO has been accepted by the DVD Forum as
one of the three mandatory formats for the next-generation HD
DVD. It is also being standardized by the Society of Motion
Picture and Television Engineers (SMPTE) as its VC-1 video
coding standard. Therefore, the TDLT will play an important
role in future image and video coding applications, and it is nec-
essary to develop error resilient TDLT so that it can be used in
error prone environments.

Error resilient TDLT is first considered in [19] and [20].
Thanks to the structure of the TDLT, the design of error
resilient lapped transform reduces to that of the pre/postfil-
ters. The problem is, therefore, more tractable. Biorthogonal
solutions with lower MSE can be easily obtained by using
biorthogonal pre/postfilters. In addition, the decoder can em-
ploy two postfilters—one for perfectly received blocks and
another for lost blocks.

One remaining problem in [19] and [20] is that the mean re-
construction method is still used to estimate the lost blocks. In
this paper, we present a general framework of error resilient
TDLT. We formulate the filter design as a linear minimal mean-
squared error (LMMSE) problem, and derive the corresponding
Wiener filter solution, which unleashes the full potential of the
error resilient lapped transform. Several simplifications of the
general structure and their optimal solutions are then developed.
The mean reconstruction method is revealed to be a trivial spe-
cial case of the general solution. As a by-product, we also show
that the linear interpolation method used in DCT systems is a
special case of the proposed scheme when the pre/postfilters are
disabled and when quantization error is ignored. In addition, we
prove that these Wiener filters have persymmetric structure and
can be implemented efficiently. We also revisit some of the de-
sign criteria used in our preliminary results in [21] and [22],
such as the reconstruction gain and postfilter switching, and im-
proved solutions are presented.

Compared to the mean reconstruction method in [19] and
[20], the reconstruction error can be reduced by as much as 80%
by the Wiener filter method, and up to 7 ~ 8 dB improvement
can be achieved in multiple description image coding experi-
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Fig. 1. Forward and inverse time-domain lapped transform.

ments. Our method also shows considerable improvements over
the results in [14] and [15].

II. GENERAL PRE/POSTFILTERING STRUCTURE
FOR ERROR CONCEALMENT

Fig. 1 illustrates the time-domain lapped transform-based
image compression system with block size of M (M is even).
An M x M prefilter P is applied at the boundary of two neigh-
boring blocks before the DCT. Therefore, the basis functions
of the forward transform cover two blocks. Correspondingly, a
postfilter T is applied by the decoder at each block boundary
after inverse DCT. In this paper, we choose the following
structure of P and T so that they yield linear-phase perfect
reconstruction filter bank [16]

P = W]\,[diag{IM/Q, VA,[/Z}W]\[

T=P! :WMdiag{IM/%V;V}/Q}WM 1)
where
L 1 Tz Juge }
Wy =— . 2
M V2 [JM/Q —Iy2 @

The Ty7/5 and J /5 above are M /2 x M /2 identity matrix
and reversal identity matrix, respectively. The matrix V 57/9 can
be optimized to improve the compression performance of the
system.

In this paper, we use x(7), s(4), y(%), and q(¢) to denote the
ith block of prefilter input, DCT input, DCT output, and quan-
tization noise, respectively. Notice that x(¢) is aligned with the
prefilter, whereas the rest are aligned with the DCT. Compared
with the notations in [12], [14], [15], [19], and [20], the defini-
tion here can simplify the problem formulation and the deriva-
tion of the optimal solution.

The structure of the time-domain lapped transform allows
an effective strategy for error concealment. In this paper, we
assume that all coefficients of a block are either received per-
fectly or lost entirely. This scenario can happen in, for example,
multiple description coding [23]. In [19] and [20], a mean re-
construction method as in [12] is used, where the lost block
is estimated by averaging the received neighboring blocks. It
is shown in [19] and [20] that the pre/postfilters can be jointly
designed such that the reconstructed quality is improved in the
presence of transmission error. Moreover, two postfilters can be
designed—one for perfectly received blocks and another one for
lost blocks, as shown in Fig. 2(a).



LIANG et al.: WIENER FILTER-BASED ERROR RESILIENT TIME-DOMAIN LAPPED TRANSFORM 493
M2 - o
> . > > > .
74‘— |p! X(n-1) L p! X(n-1) L p’! X(n-1) g p! X(n-1)
n = > > > A > n =D > —
y-1) | 1D — y(n-1) | ID|5n-1) — y(@o-1) | IDIgn-1) — y(n-1) | 1o —
cr > . cr > . cr > cT =
Yy |T X(n — X(n) T| X v T
l AL e Lo~ 3o y | So
Y A o — Ho H1 s(n) — 4 H, s(n) —
> > N — . — —
4 o7 L ke _I_’ X(nt1) U i (L ECEE)
Jw+n | o ] — Jn+1) | | Sy — Sm+1) | D s(n+1) — +1) | =
< I e N — Pl N LT > = .
_”_|—>P__’ x(n+2) _’,—|—>P__’ X(n+2) _’,_‘—’P__’ x(n+2) L, x(n+2)

(b)

(©) (d)

o

Fig. 2. (a) Existing decoder side error concealment design. (b) General structure for error concealment. (c) A close approximation of (b). (d) Further simplification

of (¢).

To further improve the reconstruction quality, notice that
when y(n) is lost, the error concealment problem can be viewed
as the estimation of x(n) and x(n + 1) from the observations
y(n—1)and y(n + 1), or equivalently $(n — 1) and §(n + 1).
Therefore, the general filter should be a 2M x 2M matrix Hy,
as shown in Fig. 2(b). If we define

x; = [xT(n) xT(n+1)]"

x4 =[xT(n—1) xT(n) xT(n+1) xT(n+2)]"
S=[8T(n—-1) §T(n+1)]"

ss=[sT(n—1) sT(n) sT(n+1)]"

5= [8T(n—1) §T(n) "(n+1)]"

as=[a"(n-1) o¥(n) a(n+1)]" 3)

the auto-correlation of the reconstruction error can be written as

Ree = E{(Hoég — Xz)(Hoéz — X2)T}. (4)

The linear MMSE solution of Hj, is one that minimizes the fol-
lowing MSE expression:

1
£ = mtrace{Ree}. 5)
The optimal solution is given by the Wiener filter [24]
= Rus,RT (©)

Matrices Ry, s, and Rys,3, in (6) can be obtained as follows. We
first partition P into

P=[P] PT|" )
where P and P; contain the top and the bottom M /2 rows of
the prefilter P, respectively. Let C3 = diag{C, C, C} repre-
sents the DCT operations of three neighboring blocks (C is the

M -point DCT). We have

§3 =s3 + C§q3 =P3yxy + C§q3 (8)

where

P34 = dlag{Pl ].)7 ].)7 Po} (9)

From (8), we get

RX4§3 :RX453 = RX4X4 P§4
R53§3 :R5353 = P34RX4X4P§4
R§3§3 = P34Rx4x4P34 + CgRquSC:g (10)

where Ry, x, and Rq,q, are correlation matrices of x4 and qs,
respectively. In deriving (10), we assume that the input is uncor-
related with the quantization noise. Matrices Ry,s, and Rg,3,
in (6) can, thus, be obtained from the appropriate submatrices
of Ry,s, and Ryg,s, . In this paper, Ry, x, in (10) is obtained by
assuming the input follows an AR(1) model. We also assume
that the quantization noises of different subbands are uncorre-
lated, i.e., Rq,q, is a diagonal matrix. At high rates, the noise
variance of the kth subband can be written as [25]

(11

where c is a constant that depends on the input statistics, afm is
the subband variance that can be obtained from the input statis-
tics and the forward transform, and R}, is the bit rate allocated
to the kth subband. The bit allocation can be optimized during
the filter design. We will demonstrate in Section VI-C that the
quantization noise can be safely ignored in the Wiener filter ex-
pression, since the final error is dominated by the transmission
loss.

When applied to image error concealment, an important re-
quirement is that the Wiener filter should maintain the DC com-
ponent of the local region, i.e.,

2 _ 2 9—2Ry
Tqr = €Oy, 2

Hod=d 12)

whered = [1, 1,..., 1]7. Therefore, we need to minimize the
MSE subject to the constraint in (12). The solution can be found
by the Lagrangian method, which constructs the following ob-
jective function:

2M—1

trace{Ree}—{— Z Ai(hod —1)
1=0

where hg ; is the ¢th row of Hg. The corresponding LMMSE
solution is

!
€= (13)

H} = (Ry,s, — MAA")R_ . (14)
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where

A=[Ao, A,.oe, Aaara]”

1 -1
" M@ RLa) PR —1)d

S282

15)

Another way to ensure the DC condition is to scale each row
of the Wiener filter such that the sum of every row is unity, i.e.,
H; = 6H;, (16)

where © is a 2M x 2M diagonal matrix whose ith diagonal
entry is ©(7, i) = 1/ Z?ilo_l H{ (7, ). Our experimental re-
sults show that the difference between the two solutions is neg-

ligible. Therefore, the scaling method in (16) is chosen in the
rest of this paper due to its simplicity.

III. SIMPLIFICATIONS AND FACTORIZATIONS

In this section, we show that the general solution in (6) can
be approximately factorized into two stages, which can simplify
the implementation. Further simplifications are also presented,
leading to the conclusion that the mean reconstruction method
is a special case of our method. We also prove that these Wiener
filters are persymmetric, a property that can be used to further
reduce the implementation cost.

A. A Close Approximation of the General Solution

In [19] and [20], the lost blocks are first estimated by the
simple average of neighboring blocks before applying postfilter.
This is clearly not optimal in the light of estimation theory. To
find the optimal estimate of s(n) in this two-stage approach, we
define an M x 2M matrix Hq, i.e.,

§(7’L) = Hlég. (17)

The optimal solution for H; can be found by minimizing

1 . a T
& = Mtrace{E{(Hlsg —s(n))(H182 —s(n))" }} (18)

and the solution is also a Wiener filter, which can be written as

H} = Ry(n)s, R (19)

where Rg(,,)s, is a submatrix of R s, .

Once §(n) is obtained, the postfilter is applied as usual. A
different postfilter can be used around lost blocks to further im-
prove the visual quality. This scheme, as shown in Fig. 2(c), can
be viewed as imposing the following structure to the general ma-
trix Hp in Fig. 2(b):

L
Ho= [ ¥ 2V ||, 20)
Oy Ty I
b2
where I;; and Ijo are defined by
Iyt = [Oar72 Tasy2 Ongjz Ongga]
Lo =[0nar/2 Onrjz Ingjz Onggn]. (21)
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When applied to 8o, I; simply extracts the second half of §(n—
1) and T2 extracts the first half of §(n + 1).

Due to the structure of the lapped transform, the result given
by the two-stage method in (20) approximates the general so-
lution (6) very well. In fact, the two structures are equivalent if
T = P! and if we ignore the quantization noise. In this case,
%x(n) = x(n), 8(n) = s(n). It can be seen from Fig. 1 that

1(’1’L — 1)
(n) (22)
o(n + 1)

- T 0
X9 = X9 = 0 T

w> v U

where §1(n—1) and §g(n+1) denote the second half of §(n—1)
and the first half of §(n + 1), respectively. Plugging (22) into
the definition of Ry, s, , the general Wiener filter in (6) becomes

-1
Ra (n-1).Rg s,

H; = Ré(n)ézRg;éQ

[T 0 (23)

0o T 52
R§0 (n+1)82 Rézég

Since §1(n — 1) and §o(n + 1) are parts of Sy, we have

Rs, (n-1)s,Rq5, = T and Ry, (n41)s, R 5, = Tnos thus, the

general Wiener filter reduces to the two-stage method given by

(19) and (20).

In [20], it is found that applying two postfilters can improve
the performance of the mean reconstruction method. One post-
filter is for the correctly received blocks and another one is for
the lost blocks. When the M x 2M Wiener filter (19) is used,
the analysis above shows that there is no need to switch between
two postfilters. The perfect reconstruction postfilter P! is suf-
ficient. Therefore, the implementation can be simplified.

B. Further Simplifications

The complexity of (20) and Fig. 2(c) can be further reduced
by imposing the following constraint on Hj:
H; =[Hy H|=H;[Iy

In] (24)

where the size of Hy is M x M. This is equivalent to estimating
s(n) by

s(n) = Hy (8(n — 1) + 8(n + 1)) 2 Has,. (25)
The structure is shown in Fig. 2(d). Again, Wiener solution ex-
ists in this case and is given by

H; = Rs(n)éa Rg_l

s (26)
The matrices involved can be obtained from (10) by simple
manipulations.

In this case, our experimental results show that using two
postfilters is still necessary, because the performance of the M x
M filter (26) is far below that of (19), and a special postfilter is
required to further reduce the error.

It is clear from (24) that the mean reconstruction method used
in [19] and [20] is simply a special case of the already subop-
timal approach in (24) with Hy = (1/2) I,,. Therefore, it can
be expected that the error concealment performance can be im-
proved considerably if H3, H, or Hj are used.
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C. Persymmetry of the Wiener Filters

The Wiener filters Hy . x, derived in the last two sections,
including the constrained solutions (14) and (16), satisfy the
following persymmetric condition (also known as centrosym-
metric) [26]:

Hrxny =JoxtHoxnInxn (27)
which means H; ; = Hp_1_; y—1—j,fori = 0,...,L -1,
7 =0,...,N — 1, ie., the matrix is symmetric with respect

to its center. The proof is given in the Appendix and relies on
the linear-phase property of the lapped transform. The persym-
metric structure allows the Wiener filters to be factorized as [27]

Hpwn = Wixrdiag{Ar/axn/2, Brioxn/2}Wxn-
(28)
This factorization can be exploited to reduce the complexity
of implementation by roughly 50%.

IV. ESTIMATION FROM ONE NEIGHBORING BLOCK

Sometimes it is necessary to estimate a lost block from only
one neighboring block. This can happen at the image boundary
or when contiguous blocks are lost. A Wiener solution can also
be obtained for this scenario. When only the previous block
§(n — 1) is available after the inverse DCT, the objective is to
find an M x M matrix H3 which minimizes

trace{ E{(H38(n—1) —s(n))(Hzs(n—1) —s(n))*}}. (29)

The solution is, thus, given by

* —1
H; = Rs(n)é(n—l)Ré(n—l)é(n—l)~ (30)

The matrices involved can be readily obtained from R4, and
R§3§3 in (10).

Similarly, if only the next block §(n + 1) is available, the
corresponding Wiener solution H} becomes

* -1
Hi = Rs(n)ﬁ(n+1)R§(n+1)é(n+1)' €2

From that facts that Ré(n_1)§<n_1) = Ré(n+1)§(n+1),
Rs(n—1)s(n—1) is persymmetric, and Rygm)sm—1) =
JRs(n)s(n+1)Jd> as shown in the Appendix, it is straight-
forward to verify that H; = JH}J, i.e., the two filters are
persymmetric to each other. However, each of them is not
persymmetric; therefore, they cannot be factorized as in (28).

V. RELATIONSHIP WITH LINEAR INTERPOLATION
IN DCT SYSTEMS

Another special case of the proposed framework is when the
pre/postfilters are turned off. In this case, the lapped transform
reduces to the DCT. If we still estimate a lost block x(n) by its
two neighboring blocks xp = [%xT(n — 1), % (n + 1)]T, the
Wiener filter (19) becomes

Hpcr = Ru(nys, Rx )

tpkp" (32)
An interesting fact is that when the quantization noise in Rg , %
is ignored, only the Mth and the (M + 1)th columns of the
Wiener filter are nonzero, and the result is, therefore, a linear
interpolation of the missing block using the last pixel of X(n—1)

and the first pixel of x(n + 1). This justifies the wide adoptions
of linear interpolation method in, for example, [4], [5], and [7].

To illustrate this property and to gain more insights, we as-
sume Ri, %, = Rx,x, and consider the expression of the
Wiener filter when the block size is 2. Assuming an AR(1) input
with unit variance and correlation coefficient p, one can show
that

2 2 3
P> o P op
R, . — 33
XnXB p3 p2 p p2 ( )
L p pt P
1 3 4
Ripss = [0 'y " (34)
> ptop 1

Using the adjoint matrix method, the first column of the inverse
matrix R;; ,, can be found to be
1— p2 _ p6 + pS
1 —p(1 = p* = p° +p%)
det(RﬁB*B ) 0
0

(35)

It can be easily verified that the first column of the product
Ry, x5 R;;ch becomes all zero. Since the Wiener filter is still
persymmetric in this case, the last column is also zero. When
p = 0.95, the filter becomes

0 0.67 0.33 0]

Hpcr = (36)

0 033 0.67 0
which represents the linear interpolation between the two im-
mediate neighboring pixels of the lost block.

When M = 8, the Wiener filter (32) only has the following
nonzero entries in the eighth and the ninth columns

0.88 0.77 0.65 0.54 0.43 0.32 0.21

011"
011 021 0.32 043 054 0.65

0.77 0.88
(37
which is also a linear interpolation operator.

However, if quantization noise is included in Rx %, , its in-
verse R;;x would lose the nice analytical expression in (35),
and the Wiener filter would in general be a full matrix, meaning
that the linear interpolation is no longer optimal in the DCT

systems.

VI. DESIGN EXAMPLES AND APPLICATIONS

A. Design Criteria

In this section, we show various design examples and their
applications in multiple description image coding. In [20] and
our preliminary results in [21] and [22], a Matlab optimization
program is used to find the optimal TDLT that maximizes the
following objective function

J=Grc—af+BGr (38)

which is a weighted average of the coding gain G ¢ of the trans-
form, the residual MSE & in (5) after transmission error and
Wiener filter-based error concealment, and the reconstruction
gain G'i. Notice that the classical lapped transform is only opti-
mized for coding gain. The coding gain measures the maximum
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Fig. 3. (a) Error distributions of the TDLT designs in [20]. (b) Error distributions of new designs.

distortion reduction of a transform over PCM scheme. With op-
timal bit allocation the coding gain reduces to [25]

o2

- (39
P 1/M
(I35 o2.1:017)

Grc = 10logy,

where o2 is the variance of the input, 057 is the variance of the
ith subband, and ||f;||? is the norm of the ith synthesis basis
function. The input is assumed to follow an AR (1) model with
correlation coefficient p = 0.95.

The reconstruction gain is first defined in [12] to control the
error distribution across transform coefficients when a block is
lost. This is pivotal to the performance of orthogonal transforms
because the MSE is always the same in different methods. The
reconstruction gain in [12] attains its maximal value when the
error is uniformly distributed across all transform coefficients.

Since biorthogonal transform is used in [20], the estimation
error in the transform domain is no longer equal to the final re-
construction error. Therefore, the following spatial domain re-
construction gain is defined [20]:

241 2 1/2M

i=0 e

| 2M1

1 2

oM 'Zo O¢,
i=

Gr (40)

where afi is the sth diagonal entry of Ree in (4), i.e., the final
expected reconstruction error of the sth pixel in the two blocks
[xT(n) x"(n+1)]".

When Wiener filter is applied, our experimental results show
that the reconstruction error can be reduced so dramatically
that there is no need to control the error distribution explicitly.
Therefore, we always fix § = 0 in this paper. In addition, our
experiments indicate that the error distribution control imposes
serious constraints on the filter design. Removing this criterion

in the optimization can improve the coding gain or reconstruc-
tion quality, as will be shown later.

In fact, higher spatial domain reconstruction gain as defined
above does not always lead to pleasant visual quality, since it
tends to generate similar error at each pixel, thereby creating
a clear visual artifact around the lost block, especially if the
neighboring blocks have very small quantization error. This
suggests that visually pleasant error distribution should have
a smooth transition between healthy blocks and the error
concealed blocks. In [14] and [15], this is achieved by solving
for each block a underdetermined equation with a smoothness
constraint. In our framework, if the control of error distribution
is necessary, we can include a curve fitting term in the objective
function such that the optimized reconstruction error across the
two blocks follows a desired shape, for example, a Gaussian
curve. Moreover, the template can be defined to match the
neighboring quantization noise at the block boundary. Further
discussion can be found in [22]. However, when the error dis-
tribution constraint is introduced, the coding gain or the MSE
has to be sacrificed; therefore, it becomes more complicated to
find a good tradeoff.

B. Comparison With Mean Reconstruction Method

In this section, we compare the performance of the Wiener
filter-based TDLT design with that of the mean reconstruction-
based results in [20]. The entries in matrix V of (1) are the
optimization parameters. Different solutions can be obtained by
varying « in (38) (0 is fixed as 0). The quantization noise is
ignored in Wiener filter expressions, for example, (19). We will
show in Section VI-C that this is a reasonable choice.

Four families with M = 8 are designed. Their coding gains
and residual MSE after error concealment are summarized in
Table I. Some optimized matrices V in the prefilter are shown
in Table II, and the error distribution of some designs across the
two affected blocks x(n) and x(n + 1) are plotted in Fig. 3. The
Wiener filters Hjj, H, and H3 in (6), (19), and (26) are used
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TABLE I
DESIGN EXAMPLES OF DIFFERENT CONFIGURATIONS WITH M = 8, 3 = (0 AND DIFFERENT « IN (38)

Cfg. Pl P10 P11  PI2 P2 P20 P21 P22 P3 P30 P31 P32 P4 P40 P41 P42
« - 92 92 111 - 26 26 373 - 125 125 185 - 1 1 1
Gre | 696 696 696 696 | 841 842 842 842|917 9.17 917 9.17 | 961 961 9.61 961
MSE | 0.14 003 0.03 0.08 | 0.15 0.06 0.06 0.10 | 0.16 0.10 0.10 0.13 | 021 0.17 0.17 0.18
TABLE II
SOME OPTIMIZED RESULTS FOR THE FREE MATRIX V ;2 IN (1) WITH M = 8
Cfg. P11 P21
—0.9672  0.4692 0.3425  0.1418 0.9448  0.1452 —0.7385 —0.0213 ]
Vo —0.1651  0.6042  —0.7937 0.0394 —0.0809 1.0449 —0.2754 —0.2339
2 0.4408 0.5179 0.0867  0.7004 0.7003  0.2656  0.6545  —0.1442
—0.2171 —0.5711 —0.3456 0.7543 0.1620 0.2895 —0.0939 0.9174 |
Cfg. P31 P41
0.9588 0.6245 —0.0743 —0.1501 0.9490 0.7662 0.3260  0.2031 ]
Vur —0.4781  0.9028 0.3171  —0.1448 —0.5546  0.8881 0.5931  0.2007
2 0.1968 —0.2192  0.9954 0.0638 0.1099 —0.3708 1.0738  0.3596
0.0278 0.1226  —0.0712  1.0049 L —0.0307 0.0048 —0.1267 1.1664 |

to obtain configurations Pi0, Pil, and Pi2 z = 1, ..., 4), re-
spectively. Two postfilters are optimized for configurations Pi2,
since H3 is suboptimal. The configurations in each family are
designed to have similar coding gains so that their performance
can be compared fairly. The first group yields the lowest coding
gain but also the lowest MSE in the presence of transmission
error. On the contrary, the last group has the highest coding gain
(close to the best result in [16]) but is the most vulnerable to
transmission loss.

Alsoincluded in Table I are the configurations P1 to P4 in [20]
with the mean reconstruction method (Hy = (1/2)I). Among
them, P3 and P4 use two postfilters. The first one is the inverse of
the prefilter and is applied to healthy blocks, and the second one
is applied around lost blocks to further reduce the reconstruction
error.

Compared with P1 to P4, we can see from these results that
the final reconstruction error in the presence of transmission
error can be reduced substantially by the 2M x 2M and M x
2M Wiener filters. The improvement is more pronounced as
coding gain decreases, since more correlations among neigh-
boring blocks are introduced. For example, compared with P1,
the MSE after error concealment is reduced by 80% in P10 and
P11. It can still be reduced by 20% even when the coding gain
is at its highest value, as given by P40 and P41. Notice also that
even the MSE of P3i is less than that of P1, although the coding
gain of P3i is much higher than P1.

Table I also shows that the MSE given by Hj in (19) is iden-
tical to that of the general 2M X 2M solution HJj in (6). This
verifies their relationship proved in Section III. The performance
of the M x M Wiener filter H5 lies roughly halfway between
the mean reconstruction and the M x 2M Wiener filter.

Some results in Table I are also better than our preliminary
results in [21] and [22], due to the elimination of reconstruction
gain in the objective function and due to the switch of two post-
filters for Pi2 only. The improvement can also be observed in
the image coding experiments below.

To verify the error concealment performance of the Wiener
filters, we implement a multiple description codec following the

approach in [14], where the transformed image is split into four
descriptions at block level. For example, all (even, even)-in-
dexed blocks are grouped into the first description, all (even,
odd)-indexed blocks are grouped into the second description,
and so on. The context-adaptive binary arithmetic coding in [17]
is applied to each description independently. At the decoder
side, the inverse DCT is applied to all received blocks first. After
that, the Wiener filter is used to estimate each lost block before
applying postfiltering. The Wiener filters derived in this paper
are based on 1-D signal model. To apply them to 2-D images, we
first estimate each row of a lost block from its horizontal neigh-
boring blocks, and then estimate each column from its vertical
neighbors. The final result is the weighted average of the two es-
timations, and the weighting factors are decided by the number
of available neighbors in each direction.

The scenario of losing three out of the four descriptions
requires special treatments. In this case, a three-step method
is employed to estimate the lost data. We first estimate those
blocks that have available horizontal neighbors, followed by
those blocks with available vertical neighbors. The rest are then
estimated using previously estimated neighbors. We will show
later that this approach achieves significant improvement over
the maximally smooth recovery method in [14] and [15].

Fig. 4 plots the R-D curves of different TDLT configura-
tions with different number of available descriptions when the
512 x 512 Lena image is used. Fig. 4(a) shows that all new
designs yield better compression performance than their coun-
terparts in [20] with the same coding gain. In addition, they
provide much better reconstruction results than the mean recon-
struction method. For example, at 2 bits/pixel (bpp), the PSNRs
by P11 and P21 is about 7 ~ 8 dB and 4 dB higher than that
of P1 and P2, respectively. We can also see that the improve-
ment of P1 over P4 is less than 3 dB in most cases, whereas
P11 can be 10 dB better than P41. This agrees with the theoret-
ical MSE in Table I. Moreover, it can be seen that even P31 can
achieve better R-D performance than P1. Overall, P21 offers a
good tradeoff between the compression performance and error
resilience.
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Fig. 4. R-D curves of the 512 X 512 Lena image under different loss patterns and different TDLT configurations: (a) with four descriptions, (b) with three de-

scriptions, (c) with two descriptions, and (d) with one description.

Fig. 5 shows the reconstruction results of different methods
when two descriptions of the 512 x 512 Lena image are lost.
The average bit rate is 1 bpp. The PSNRs with and without
error are reported for each case. Satisfactory results are pro-
duced by P11 and P21. Notice that the coding performance of
P21 is only 0.9 dB below the compression-optimized TDLT, but
the reconstruction after error is 6.5 dB higher. The results of P1
to P4 are quite blurred and exhibit strong ghost artifacts near
the edges, due to the average operator in mean reconstruction
method.

Portions of the multiple description decoding results for the
512 x 512 Barbara image are given in Fig. 6, when P11 is used.
It can be seen that the quality of the reconstruction decreases
gradually when more descriptions are lost. This shows that the
AR(1) model-based Wiener filter is quite robust even for images
of rich textures.

C. Robustness of the Wiener Filter to Quantization Noise

As mentioned in Section VI-B, the Wiener filter examples
in this paper are obtained by ignoring the quantization noise.
In this subsection, we investigate the robustness of the Wiener
filter to quantization noise. A prefilter and the corresponding
Wiener filter are designed by including the quantization noise
(11)in (19). This requires us to choose a typical average bit rate,
because in practice we prefer to have a prefilter and a Wiener
filter that can be used at all bit rates. In our optimization, the
average bit rate is fixed as 1 bit/pixel. Notice that the bit rate
does not have to be specified in the coding gain optimization
part, because the bit rate can be canceled out under optimal bit
allocation [25].

The parameter « in (38) is chosen as 30 so that the coding
gain of the optimized lapped transform is the same as P21 in
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Fig. 5. Decoding results at 1 bpp and 50% loss. (a) Loss pattern. (b) Orig-
inal TDLT (23.87/39.94 dB). (c) P22 (27.54/38.38 dB). (d) P12 (28.68/35.59
dB). (e) P4 (24.01/39.92 dB). (f) P3 (25.28/39.61 dB). (g) P2 (26.00/38.11 dB).
(h) P1 (26.19/34.47 dB). (i) P41 (24.59/39.96 dB). (j) P31 (27.45/39.84 dB).
(k) P21 (30.32/39.03 dB). (1) P11 (33.20/35.91 dB).

Table 1. The multiple description coding performances of the
two configurations for the images Lena and Barbara are com-
pared in Fig. 7, which shows that the result depends on the nature
of the image. In particular, P21 gives better concealment perfor-
mance for the Lena image, whereas considering the quantization
noise improves the performance of the Barbara image. There-
fore, a better quantization noise model is necessary in order to
get a consistent gain. However, the fact that the difference of
the two methods is less than 0.4 dB in all cases suggests that the
Wiener filter is not sensitive to the quantization noise, since the
error caused by transmission loss is usually much higher than
the quantization noise.

D. Comparison With MSR Method

In this section, we compare the performance of our Wiener
filter-based TDLT with the results in [14] and [15]. The method
in [14] uses the maximally smooth recovery in the estimation
part and examples T6 to T9 in [12] in the transform part. Since
our codec uses arithmetic coding, whereas adaptive Huffman
coding is used in [14], we will only compare the performance
of the two methods in the absence of quantization error. This is
to ensure fair comparison of the transform and the error conceal-
ment parts. Reconstructed PSNRs for the 256 x 256 Lena image
with different number of received descriptions are reported in
[14] and is duplicated in Table III. For fair comparison, we de-
sign four M x 2M Wiener filters using Hj in (19) to match the
coding gains of T6 to T9, respectively. As discussed before, 5
is fixed as O in the objective function (38) and the postfilter is
chosen as the inverse of the prefilter.

As shown in Table III, the Wiener filter based TDLT achieves
an average of 2.98 dB improvement over [14]. More improve-

Fig. 6. Portions of reconstruction results with P11 design and the 512 x 512
Barbara image at 1 bpp. (a) four descriptions (32.72 dB), (b) three descriptions
(29.09 dB), (c) two descriptions (27.12 dB), and (d) one description (24.11 dB).

ments are achieved at higher transform coding gain. In addition,
the most significant improvement, 3.94 dB on average, happens
when only one description is received. Therefore, our method
offers more graceful quality degradation when more descrip-
tions are lost.

Next, we compare our method with the results in [15],
where the maximally smooth recovery constraint is applied in
the transform design. The re-designed transforms in [15] can
achieve the same error resilience with lower bit rate than the
transforms used in [14].

In Table IV, we use the 256 x 256 Lena image to compare
the quality degradation behavior of our method with that of the
MSR method in [15] when the error-free reconstruction quality
is 33 dB. Although different entropy coding methods are used,
we believe the performance degradations of the two methods
with respect to the same error-free quality can be compared
fairly. The first part in Table IV is taken from [15]. The second
partis given by the M X 2M Wiener filter H] -based TDLT with
the same coding gains as those in [15]. The average bit rate of
our method is 19% lower than that in [15] (up to 33% in the case
of M2). Note that this fact alone should not be used to judge
against the MSR method since arithmetic coding is used in our
method and adaptive Huffman coding is used in [15] (in fact,
the actual bit rate saving is even higher since the table overhead
for the adaptive Huffman code is not counted in [15]). In terms
of error concealment quality, our average PSNR improvement
over [15] is 0.74 dB, with 1.07 dB at the highest coding gain
and 1.46 dB when only one description is available. These be-
haviors are also consistent with Table III, confirming the more
graceful performance degradation of our method when more
data are lost.

VII. CONCLUSION

This paper analyzes the error concealment design of the time-
domain lapped transform from the perspective of estimation
theory. The general LMMSE solution and various simplifica-
tions are proposed. Design examples and image coding results
show that the reconstruction error can be reduced dramatically,
compared to the mean reconstruction method and the maximally
smooth recovery method. We also show that both the mean
reconstruction method and the linear interpolation method are
special cases of the proposed framework.

The performance of the proposed method can be further im-
proved in several ways. First of all, the Wiener filters in this
paper are designed based on 1-D signal model. Better perfor-
mance can be achieved by designing 2-D Wiener filter directly.
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Fig. 7. Performance comparison between P21 (with quantization noise ignored) and a configuration without ignoring quantization noise. The two configurations

have the same coding gain. (a) Results with the image Lena. (b) Results with the image Barbara.

TABLE III

PSNR (IN DECIBELS) UNDER DIFFERENT LOSSES FOR THE 256 X 256 LENA IMAGE WITHOUT QUANTIZATION ERROR

Available Results in [14] « in (38) (B =0) Average
Descriptions T6 T7 T8 T9 69.0 74.0 112.0 143.0 | Improvement (dB)
3 2933 3190 3295 3345 | 32.15 3472 3531 35.56 248
2 2622 2890 30.02 30.57 | 29.16 31.71 3232 32.58 2.52
1 21.08 23.57 2475 2534 | 2550 2775 2846 28.78 3.94
Avg. Improvement (dB) - - - - 3.39 3.27 279 252 2.98
Coding Gain (dB) 7.83 7.18 6.76  6.51 7.83 7.18 6.76  6.51 -
TABLE IV
PSNR (IN DECIBELS) 256 X 256 LENA IMAGE WHEN THE CODING DISTORTION IS 33 dB
Available Results in [15] « in (38) (3 =0) Average
Descriptions M2 M8 M49 M58 15.7 30.8 81.6  102.2 | Improvement (dB)
4 33.05 33.07 33.04 33.04 | 33.05 33.07 33.04 33.04 -
3 2699 2899 3096 31.11 | 27.62 2937 31.00 31.20 0.29
2 2437 2677 2947 29.67 | 2522 2735 29.65 29.93 0.47
1 2020 2234 2557 26.14 | 21.94 2426 2674 27.13 1.46
Average Improvement (dB) - - - - 1.07 0.96 0.46 0.45 0.74
Bit Rate (bpp) 0.77 0.88 1.14 1.27 0.51 0.65 1.08 1.14 -19%
Coding Gain (dB) 8.96 8.26 7.08  6.85 8.96 8.26 7.08 6.85 -

Some preliminary result have been reported in [28]. Second,
the closed-form Wiener solutions lend themselves naturally to
adaptive error concealment. How to implement the adaptive al-
gorithm with reasonable complexity is our ongoing work.

APPENDIX

In this section, we prove the persymmetric relationship in (27)
for the 2M x 2M Wiener filter Hf in (6) and the constrained
solutions in (14) and (16). The proof for other simplified Wiener
filers can be obtained similarly.

The expression of H{ is reproduced as follows:

HS = Rx2§2 R, .

8282 "

(41)

Since JJ = I, Hj satisfies (27) if the following are true:

Ry,s, =JRy,5,d (42)
Rg;éz :JR;@ZJ (43)

Since Ry,s, is a submatrix of Ry,s,, (42) can be obtained
if Rx,s, = Rux,x,PI, = JRy,s,J, which, in turn, needs
Ry, x, JimRu,x,Jans and PL, = JypPT J5p. The
former is obvious since Ry, x, is a symmetric Toeplitz matrix.
The latter is a direct result of P = JPJ, which has already
been reinforced in the TDLT in order to obtain linear-phase
filer bank [16].
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Similarly, (43) can be established if Rs,5, = JRs,5,J. Re-
call that Rg, 4, is given by

R§3§3 = P34Rx4x4 P§4 + CgRqafw Cs. 44)

The first part is persymmetric since both P3, and Ry, «, are
persymmetric. To show the persymmetry of the second part, we
assume the subband quantization noises of different blocks are
uncorrelated. Thus

Rg,q, = diag{Rqq, Rqq; Rqq}- (45)

The block noise correlation after the inverse DCT can be
rewritten as

M—1
A
R,y = CTquC = E ai CZTCi
i=0

(46)

where c; is the 2th basis function of the DCT, which has linear
phase. Therefore, c; is either symmetric or anti-symmetric. Let

B; = clc;. 47)
By the symmetry of c;, we have
Bi(j, k) =cijcir =Cinm—1-jCim—1—k
=B,M-1-j, M—-1-kF). (48)

This shows that B; is also persymmetric, which leads to the
persymmetry of R and C?’TR%(13 C3, and, therefore, the per-
symmetry of the Wiener filter Hf. The proof for other simplified
Wiener filters can be conducted in a similar fashion.

Once the persymmetry of the Wiener filter is established,
the persymmetry of the constrained Wiener solution in (14) be-
comes evident after substituting (15) into (14) and noticing that
dd” is persymmetric. The scaled Wiener filter in (16) is also
persymmetric since O(7, i) = O(L — 1 —4, L — 1 — 4) for an
L x N persymmetric Wiener filter.
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