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A Class of Regular Biorthogonal Linear-Phase
Filterbanks: Theory, Structure, and
Application in Image Coding
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_ Abstract—This paper discusses a method of regularity impo- keeping the computational cost low. At the earlier stage, the
sition onto biorthogonal linear-phase M-band filterbanks using  discrete cosine transform (DCT) was first employed as an ef-

the lattice structure. A lifting structure is proposed for lattice ma- ficient transform for the JPEG image coding standard, where
trix parameterization where regularity constraints can be imposed. '

The paper focuses on cases with analysis and synthesis filterbanksth® bases are truncated cosine functions, having equal length,
having up to two degrees of regularity. Necessary and sufficient linear phase, orthogonality, and uniform localization in the
conditions for regular filterbanks in terms of the filter impulse re-  frequency domain. However, at low bit rates, the reconstruc-
sponse, frequency response, scaling function, and wavelets are "3ion usually suffers from blocking artifacts due to the dis-

visited and are derived in terms of the lattice matrices. This also L. he bord f the basis f . he di
leads to a constraint on the minimum filter length. Presented de- CONtinuity at the borders of the basis functions. The discrete

sign examples are optimized for the purpose of image coding, i.e., wavelet transform is a more recent technique employed in
the main objectives are coding gain and frequency selectivity. Sim- transform-based image coder in order to reduce or eliminate
ulation results from an image coding application also show that blocking artifacts. Constructed by iterating on the lowpass

these transforms yield improvement in the perceptual quality in . -
the reconstruction images. The approach has also been extendedbranch of a two-channel perfect reconstruction (PR) filter-

to the case of integer/rational lifting coefficients, which are desir- bank, the entire frequency domain is octavely divided, ren-

able in many practical applications. dering a multiscale image representation. Perhaps the most
Index Terms—Biorthogonal filterbanks, GenLOT, integer trans- ~ Popular Wave_let filter pair gsed in practical imagg coders is
forms, lattice structure, regularity, vanishing moment. the (9/7)-tap linear phase biorthogonal wavelet, which has also

been used in the FBI's fingerprint compression standard [3]
and now in JPEG2000 [4]. Combining the advantages of ef-
ficient implementation of the DCT and the overlapping basis
AVELETS and filterbanks have established themselvégnctions of wavelets, lapped transforms (LTs) have been re-
as powerful tools in transform-based signal compressieently studied and found to often outperform the previous two
applications [1]. They are used to remove spatial signal redwonventional techniques [5]-[7].
dancy in many video, image, and audio coding standards suciThe transforms for image coding can be categorized into two
as MPEG video, JPEG, and MPEG audio [2]. Fig. 1 shows tigajor classes: block-based and wavelet-based. Block trans
general block diagram of a transform-based signal coding algorms can be constructed by uniforid-channel filterbanks
rithm. The input signal is represented as a linear combinatisach as DCT [8], LOT [5], and GenLOT [6], and wavelet trans-
of the transform basis functions, and their corresponding coefibtrms can be generated by iterating two-channel filterbanks
cients (the so-called transform coefficients) are obtained at the the lowpass channel [1]. In transforms of both families,
output of the transform block. These coefficients are then eféil filter impulse responses have real values with linear-phase
ciently quantized and entropy coded to the coder output. In tilsP) responses (symmetric or anti-symmetric). The linearity of
paper, we focus on stillimage coding as an application of trarthe phase responses is to eliminate the phase distortion and to
form-based signal compression, whereas other applications alow symmetric extension at the border of the image.
also be naturally applied. Fig. 2(a) shows a uniform maximally decimatéél-channel
There has been considerable interest in designing the trafiigerbank that consists of the analysis filtéis(z) and synthesis
form that yields high perceptual reconstructed quality whiliters F;(z). The M-fold downsampling at the analysis side in-
dicates that the total sampling rate at the input of the processing
_ _ _ block is equal to that of the original input signal. Fig. 2(b) illus-
e o e s e o e JLES the equivllent polyphase sructure wigfe) andR(:)
was Dr. Helmut Bolcskei. are the type-I and -l polyphase matrices of the analysis filters
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Fig. 1. Block diagram of image coder.
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Fig. 2. M-channel filterbank. (a) Regular and (b) Polyphase structures.

number of zeros at aliasing frequencies of the lowpass filter, B z) should be different. In the PU case, siné:) are simply
pointed out in [1]. They are different but closely related to eache time-reversed versions af(n), they cannot be optimized
other. Indeed, it has been shown that the later is always gredtgrdifferent purposes. In the BO case, the frequency responses
[1]. It is also equivalent to the vanishing moments (numbef Hy(z) and Fy(z) can be different, and they can have dif-

of zeros at dc frequency) of the bandpass filters [10]-[12rent numbers of zeros at mirror frequencies. In pracfigé;)
Moreover, when the analysis and synthesis lowpass filters haf®uld have more zeros in order to obtain smooth synthesis basis
different numbers of zeros at aliasing frequencies, that of thenctions. At the same time, the analysis bandpass and highpass
analysis (synthesis) one will be equal to the vanishing momdiiters should have a high number of vanishing moments in order
of the synthesis (analysis) bank. For the rest of the paper, fReobtain superior energy compaction at a low frequency band.
term regularity of a transform will be referred to as the numbdhis paper presents a method to impose one and two degrees
of multiple zeros at the aliasing frequencies and will be us&d regularity into Hy(z) and Fy(z) using lattice structures of
interchangeably with the vanishing moment. BOLP filterbanks.

Definiton 1: An M-band filterbank is said to be There are two major conventional approaches in imposing
(K., K.)-regular if the analysis and synthesis lowpag&gularity into a filtebank. The first method is to first design
filters Hy(z) and Fy(z) have, respectively, at leaét, andK, the lowpass filters with desired degrees of regularity and then
zeros ai27k)/M fork =1,...,M — 1. try to optimize the others [11], [15]. It is well known that when

In the paraunitary (PU) case, the degrees of regularity of thé = 2, once the lowpass filters are obtained, the other (high-
analysis and synthesis filterbanks are equal since their impugsess) filters can be uniquely identified. Howevedyf > 2, the
responses are time-reversed, and hence, the regularity degresobftions are not obvious. In [11] and [16], a Gram—-Schmidt
the filterbank can be identified by using one number instead pfocess is employed in order to orthogonaly construct the other
an order pair. To be consistent with [13], we will useregular filters. This approach, however, does not guarantee linear phase
for the case of K, K)-regular PU filterbanks. In the biorthog-of the filter impulse responses, which is important to many ap-
onal (BO) case, the analysis and synthesis lowpass filters gaizations. In addition, it is difficult to jointly optimize all the
be different, and thus, their degrees of regularity may not Kigers simultaneously. The second approach is to impose con-
the same. In particular, for&-regular PU filterbank, the band- straints on the filters’ impulse responses [17]. Though straight-
pass filters of the analysis and synthesis filters Haweanishing - forward, this approach does not guarantee perfect reconstruction
moments, i.e.y", n‘hi(n) = 0for £ = 0,1,...,K —1and of the resulting filterbank and cause the optimization routine to
i=1,2,...,M—1.Fora(K,, K)-regular BO filterbank, the converge very slowly, and the optimization process can easily

analysis and synthesis bandpass filters, respectively, Kave get trapped in local minima. Moreover, regularity can only be
and K, vanishing moments. (See Proposition 1.) approximately imposed.

Inimage coding application, the analysis filters should be op-
timized to obtain maximum coding gain, i.e., the magnitude e
sponse must match the signal spectrum with high stopband at-
tenuation for maximum decorrelation [14]. On the other hand, In this paper, we introduce a novel approach of imposing
the synthesis filters should be optimized to yield smooth basip to two vanishing moments directly onto the lattice structure
functions. This can be accomplished by imposing a numbef M -channel BOLP filterbanks. Section Il reviews the lattice
of zeros at mirror frequencies into the synthesis lowpass filtstructure of BOLP filterbanks. Their relations to the transform’s
Therefore, the cost functions for the optimizationfhf(z) and regularity are presented in Section Ill. In Section IV, a method

Organization



3222 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 51, NO. 12, DECEMBER 2003

0 /2. 1/2 L eeo —] L » 0
1\ [ ufz, AN N/ . I | . 2
»_\N\___// us. U | NN/ L ]u [] s .
X NXXL  NXX/ 15 . e 6
. XXXX 2t XXXX 1n Gy | ... Ganil.,
5 2 /XXN 2t XXN 12 - I |, 3
) Vo LLANS 2 LANS e ] Vi L I .
7 _ 1W/7, / \ s/ 312 ] I |, 7
Wi I W A@) e W[
E G @

Fig. 3. Lattice structure for linear-phase lapped transform.

forimposing these conditions onto the lattice componentsis dishere . = M /2, andJ is the reversal matrixU; andV; are

cussed with numerous design examples. Image coding examplessingular matrices of size x L. For PU filterbanks, these

are presented in Section V, and Section VI concludes the papeatrices are orthonormal, and each of them can be parameter-
ized using(g) rotation angles [9]. For BO filterbanks, these

B. Notations . )
U, andV; matrices are nonsingular, and there &fefree pa-

Bold-faced lower-case characters are used to denote vectprs, <iars in each matrix. The polyphase maEix) of an LP
whereas bold-faced upper-case characters are used to def@tenank with degreeV — 1 can be factored as a product of

mat_ricesAT7 A and/Al denote, respectively, the transpose,gnsingular polynomial matrices with degree one [6], [7], i.e.,
the inverse, and the determinant of the matixThe symbols

hiln], Hi(z), and H;(e7*) stand for theth filter's impulse re- E(2) = Gyo1(2)Gr-a(2) ... Gi(2)Ey (1)
sponse, its associateetransform, and its Fourier transform.
Several special matrices with reserved symbols are tfereG,(z) = T;,WA(z)W, andE, = ToIJW. Hence, a

polyphase matrix of the analysis badi(z), the polyphase causal synthesis polyphase maffitz) can be given by
matrix of the synthesis banR(z), the identity matrixI, the

reversal matrixJ, the null matrix0, a permutation matri:P, R(z) = 2" "VEg'G Y (2) ... G, (2)GA 1 (2). (2)
and the diagonal matrild with entries being eithef1 or —1.

Likewise, the special vectors are the column vector with atlig. 3 shows the lattice structure of BOLP filterbanks. Although
entries being unityl and the column vector with all entriesthis structure is minimal in terms of the number of delays, it
being zero, except the first entry being unityWhen the size does not minimize the number of free parameters. In [12] and
of a matrix or vector is not clear from context, subscripts wil[l19], the authors show that the matrictls for s > 0 can be
be included.M and K are usually reserved for the number oget tol without any completeness violation. This more-efficient
channels and the degrees of regularity. ArchannelM N-tap structure withU,; = I for ¢ > 0 will be used throughout the
FB is sometimes denoted as &h x M N lapped transform, analysis of this paper.

where N is the overlapping factor. For abbreviations, we

often use LP, PR, PU, and FB to denditeear phase, perfect |||. RELATIONSHIP BETWEEN THE LATTICE STRUCTURE AND
reconstruction, paraunitaryandfilterbank FILTERBANK'S REGULARITY

The theory of regulaf/-band wavelets and filterbanks has
been well established. Here, we only summarize theirimportant
The lattice structure is an efficient implementation of filterproperties. Let us denotét) and;(t) (i = 1,2,..., M — 1)
banks or lapped transforms with linear-phase basis functiogsthe synthesis scaling function and wavelets, ang(ltand
[6], [7]. In this paper, it is assumed that the number of channq/[sl(t) (i = 1,2,...,M — 1) be the analysis scaling function

M > 4is even, and all the filters have equal lengtii/, where - anq wavelets. These functions satisfy the dilation and wavelet
N is an integer. It has been proven that when the number @fations [1] as follows:

channels is even, there alé/2 symmetric andV//2 anti-sym-

metric filters [18]. The polyphase matri(z) is anM x M d(t) = MZ ho(k)(Mt — k) and
polynomial matrix inz of order(N — 1). Under the assump- k

tions onM, N and the filter symmetry, the lattice elements can

Il. LATTICE STRUCTURE FORBOLP HLTERBANKS

be defined as follows: P(t) = Mzk: fo(k)p(Mt — k)
_|Ui 0 _ 1 L Dit) = MS " hi(k)d(Mt — k) and
rl_[OL V] - 2[IL _IJ () = 2 5 b3t~ b

A(Z)Z[IL 0] and i:[h OL} (0) = M 3 190011~ )
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Since the filterbank is PR, it is straightforward to show that

/</>(t —k)p(t —0) dt = 6(k — 0)

'/ il — Ky (t — ) dt = 6(i — )5k — 1)
[ ot =Ryt - oy
/gz(t — k)j(t —£)dt = 0.

0

From Definition 1, the regularity of filterbanks was defined
the analysis and synthesis lowpass filters in the frequency do-
main. The conditions can also be expressed in other forms,

summarized below.
Proposition 1: For a (K,, K;)-regular filterbank, the fol-
lowing statements are true.

1) The analysis (synthesis) bandpass and highpass m\gveﬁeren

H;(z) (Fi(2)),1 1,2,...,.M — 1 have K; (K,)
multiple zeros at the dc frequen¢y = 1).

2) Polynomial sequences up to degfée— 1 (K, — 1) are
rejected by the analysis (synthesis) bandpass and hi

pass filters and are captured by the analysis (synthesis

lowpass filter. In other words, we have the following.

a) >, nfhi(n) = 0,i = 1,2,...,M — 1, for 0 <
k< K, —1.

b) >, nFfi(n) = 0,i = 1,2,...,.M — 1, for0 <
k< K,—1.

3) The firstK, (K,) moments ofi;(t) (;(t)) are zero for
alli =1,2,...,M — 1.
4) If g(t) hasK derivatives, then

‘ [ a0 =0 = o)

whereO suggests order of its argument [20].
5) llg(t) = Xp ajep(M7t = k)| = O(M~7%=).
6) The downsampling matrix

ho(0)
0

ho(M)
ho(0)

L= (] M)MHy=M

has eigenvalues, 1/M, ..., (1/M)K-=1,
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tions are useful and can be used to test the regularity of a filter-
bank in different situations. The proofs of Proposition 1 can be
found in the Appendix.

Next, in order to impose the regularity into the lattice struc-
ture, equivalent relations in terms of the polyphase matrices
need to be established.

Theorem 1: Afilterbankis(K,, K)-regular if and only if its
polyphase matriceB(z) andR(z) satisfy the following condi-
tions:

S ATMIET(E))

=ln 0 o 0 @
s SRE)

=l 0 - 0 @

=0,....,.Ks—1;m=0,...,K, — 1, and{c,, d, }
are some nonzero constants [12], [21].
Equations (3) and (4) can be expressed in terms of the lattice

erllqmenton andV;. Since the calculation is straightforward

ththe expressions are very cumbersome, we will present the
results only for the cases 0K, K )-regular BOLP filterbanks
with K,, K, < 2. Substituting (1) and (2) into (3) and (4) for
the cases of, m < 1 yields the following conditions:

A01(n = 0)2 UO]-L = Copay,
Alo(m = 0): UO_T]_L = doaL

N—-1 N—j
AOQ(TI, = 1) \/zaL + \/Z Z H ViaL

j=2 i=N-2

0
+ H V;br, =0¢

i=N-2
N-1 N—j
Asgo(m = 1): ViLa; +VL Z H V,L-_TaL
j=2 i=N—2

0
+ H V,L-_TbL =0z
i=N-2

whereby, = (1/(2L))[1 3 --- 2L — 1]T. The proof of these

conditions can be done directly by substituting the factorization
of the polyphase matrices into (3) and (4). Similar derivation for
orthogonal case can be found in [13, Appendix], and thus, the

Conditions 1 and 2 express the regularity of the filterbank iroof will be omitted here.
terms of the vanishing moments of the bandpass filters in fre-In a (K, , K )-regular filterbank, a combination of the above

quency domain and time domain, respectively. These conditiatisnditions must be satisfied as shown in the following:
have been translated to the wavelet domain in condition 3. Con-

ditions 4 and 5 relate the regularity to smoothness of these basis——; — —
functions. The wavelet coefficients decay exponentially propor{ _ Filterbank Necessary and sufficient conditions
tional to M —7X- for a sufficiently smooth functiog(t), which (1,1)-regular Aoz, Ao

therefore will be well approximated by the synthesis scaling| (1, 2)-regular Ao, A1g, Ago

function with high degree of regularity. Finally, they are ex- | (2,1)-regular Ao1, Ao, Aog

pressed in the eigenvalue domain in condition 6. These condj- (2,2)-regular Ag1, Ao, Aga, Axg
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Fig. 4. Lifting parameterization of a nonsingular matAxand its inverse.
IV. LATTICE PARAMETERIZATION direct structure. The new lifting structure offers a robust imple-

In this section, a lifting structure is used to parameterize non-?n_tatlon ofth degmatrlxz with mtgge(zjr F:o?l&ent%, Ae_'i the 30_
singular matrice®Jy andV;. This structure has several advan® icientsr; andf; can be quantized in botA. an » an

tages over the direct and the SVD structures as discussed | &quantized versions still preserve invertibility between them.
in this section The entire matriXA and its inverse can also be obtained with all

Lemma 1: Any nonsingular, x L matrix A can be decom- integer coefficients if the same structure is repeated jrand
posed as : RDLP. where so on. On the other hand, in the direct structure, if the elements
’ of A andA ! are quantized directly, invertibility is no longer

1 1 Ty e Tp_g guaranteed.
0 1 0 0 Now, let us explore the above with the SVD structure, which
R=1[0 0 1 0 is a product of two orthogonal matrices and a diagonal matrix
in between. Each orthogonal matrix can be implemented using
L . . .
0 0 0 1 (2) rotation angles. Each angle can be implemented using
r1 00 0 a butterfly with four floating-point multiplicationssin # and
iy 10 0 cos ). The integer implementation is also possible by con-
L=| & 1 0 verting each butterfly into three lifting steps, and these lifting
coefficients can be quantized with invertibility preserved. Each
4, 0 0 - y 1 lifting is equivalent to one multiplication, and therefore, for an

L x L matrix, there ar& x (;) x 3+ L = 3L? — 2L multi-

are upper and lower triangular matrices with, respectively, onlications. On the other hand, in the new lifting structure, each

the first row and column being nonzero, ald= [a A] is lifting is equivalent to one multiplication, and thus, the number

nonsingular, i.e.A is nonsingular, and: # 0. Fig. 4 illustrates of multiplications is onlyL?. Hence, this new structure is also

the parameterization of this matrix. The matrixP is a permu- MOre efficient from a computational complexity standpoint.

tation matrix that switches between the first row and a certain'" the remaining of this section, a new method for imposing
ith rowi. regularities into a BOLP filterbank is discussed, where each in-

Counting the number of free parameters\gfwe can see that vertible matrix is parameterized using the above lifting struc-
ture. In particular, we will demonstrate that one and two van-

R andL have up t@2(L — 1) nonzero lifting coefficients. The " . ¢
matrixD has one nonzero multiplication and&a—1) x (L —1) ishing moments can be imposed directly onto the parameters
£;,r;, anda of the free-parameter matric&g, andV,.

matrix A, which can be parameterized by anotijér— 1)2

parameters. Hence, the total number of the free parametars of

is1+2(L—1)+(L—1)? = L2, which is equal to that obtained” (1. 1)-Regular Systems

from the direct parameterization or the SVD factorization. Thus, For BOLP systems, the degree of regularity or the number

this factorization is minimal in the sense that the number of fred vanishing moments of the analysis and synthesis lowpass fil-

parameters is minimized. ters are not equal in general, and thus, imposing a number of
The proposed lifting structure provides many advantages oz&ros at dc of the bandpass and highpass analysis filters does

the direct and SVD structures. First, let us compare this with thet imply that the synthesis bandpass and highpass filters will
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Fig. 5. Design example of (1, 1)-regular eight-channel BOLP filterbank with length 16. (Top left) Frequency responses of the analysis and yophagit)
filters and (bottom left) scaling function and wavelets of the analysis and (bottom right) synthesis banks.

have the same number of zeros at dc. In fact, this is equivalenTheorem 2: The conditionsdy; and A1 can be simultane-
to imposing the same number of zeros at mirror frequenciesaisly satisfied by choosing
the synthesis lowpass filter.

Condition Ag; requires the analysis bandpass and highpass b= gg - lp1=-1, a=c and
filters to have zero response at dc, i.B;(z) has regularity of r= IOUO_Tqu
degree one. This condition can be satisfied by constraining the
sum of the elements in each rowB%, except for the first one, Wherer = [ry 75 --- rpa1]”.

to be zero. Similarly, conditior;, is equivalent to the fact that ~ Note that the above conditions can be realized by any choice
the synthesis bandpass and highpass filters have zero respofik&b as long as it is nonsingular, argl # 0.
atdc, i.e..Hy(z) is 1-regular. It is easy to show that conditions ~ Proof: When all analysis bandpass and highpass
Ao and Ay together imply thatody = L. Therefore, in order filters have zero magnitude response at dc, we have
to satisfy both conditions, all elements of the first rowta§ Uolr = RDLPlL = RDL1, = coar. Hence,.Ll; =
must beco/L This is consistent with the result in the PU caséoD "R™'ar = oD 'a, = (co/e)ar, which implies
WhereU = Uy; hence,L/co = co, implying thatcy = VL. that a = co and/; = —1. Now, let us assume that the
In the case of BOLP filterbanks, if the first row of the matrix is £YNthesis bandpass and hlg%hpass f||ter7§ als;) ha;/e zero magni-
constant vector, the sum of the elements in each other row is zEg€ response at dc, i.dl, "1, = R D L™ P1; =
as itis orthogonal to the first row. Therefore, only one of the t ~'D7TL™"1 = dyar. Therefore
conditions is required to enforce the first degree of regularity in T reT o[ L
both analysis and synthesis bank, provided that L/cq. dR ar =D""L"1, =D [1L_J

LetU, be parameterized as the matAxn Fig. 4, i.e.,.Uo = 1 Lja
RDLP, where now,U, denotes the submatriA in Fig. 4. =dp [ } = {U }
SinceP1; = 1, it is easy to see that the first vanishing
moment of the analysis and synthesis bandpass/highpass filteesling tody = L/a = L/co, andr = (1/do)Uy 1 1 =
does not depend on the choice®f (co/L)U T 4. O

r ]-Ll
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Frequency and time responses of the synthesis filters. (Bottom left) scaling function and wavelets of the analysis. (Bottom-right) Synthesis banks

Example 1: In this paper, the filters in all design examples For convenience, let
are optimized in order to maximize the stopband attenuation and

. . . . N—-1 N—j 0
coding gain, which can be given by
C = —C(p I—|— Z H V,L' ar, — H V,L' bL
j=3 i=N-3 i=N-3
Cstopband attn. . . .
M_1 Hence, the conditionly, can be simplified to
=— Wi(e?*) | Hi(e?*)|? dw
Z / | ( )| V]\T_Qc = Copal. (5)
Ccodmg gain Assuming thatV; fori < N — 2 are knowng is also known.
_ 1 M1 ha |m_n| Let us parameteriz¥ y_» as matrixA in Fig. 4. Condition (5)
= —7710810 -0 Z can be satisfied by choosing the lifting parametgrand« in

Fig. 4, as in the following theorem.

wherep is the AR(1) correlation factor. In this paperjs set ~ 1heorem 3:Letc = Pc. Vv, satisfies (5) if and only if

to 0.95. In this design example, a (1, 1)-regular 16-tap eight- o

_ . Gn L B
channel BOLP filterbank is designed using the proposed theory. ¢ = 7/ and (i =~ P fori=1,..., L-1
The frequency responses, the zeros of the lowpass filters, and the ~ ~
erec = [Cl Coy - CL_1]T.

corresponding scaling and wavelet functions of both analy

and synthesis bank are shown in Fig. 5. Proof: Assume that (5) holds; therefore, we have

Vy_sc = RDLPc = RDL¢ = v Lay. Hence

B. (1, 2)-Regular Systems [61 G+ 016 E34Lyéy - Ep+lp 1é]T
We can follow the method in the previous case, assuming =Le=VID 'R !a;
that bothH,(z) and Fy(z) have at least one regularity, i.e., the =VILD 'a; = aVlay
conditions Ag; and A;o are satisfied. To obtain a (1, 2)-reg-
ular system, we have to impose another degree of regularity if¢gich completes the proof. O

Fy(z). This is equivalent to the analysis bandpass and highpas&xample 2: In this design example, a (1, 2)-regular 16-tap,
filters having two zeros at dc (second vanishing moment). gight-channel BOLP filterbank is designed using the proposed
terms of the lattice components, this is condititg. Note that theory.

this condition is exactly the same as that in the PU case [133,

except that here, the matric&k, andV; are nonsingular, and € (2, 2)-Regular Systems

the conditionAg, does not imply a second vanishing moment In this section, we impose the second vanishing moment into
for the synthesis bank. both analysis and synthesis filterbanks. To begin, recall that the
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Fig. 8. Design example of (1, 2)-regular eight-channel BOLP filterbank with length 16. (Top left) Frequency responses of the analysis and yophasit)
filters. (Bottom left) Scaling function and wavelets of the analysis and (bottom right) synthesis banks.

filterbank is (2, 2)-regular; then, the conditieny, must be sat- are chosen in the increasing order. The above conditions can be

isfied. Let rewritten as
N-1 N—j 0 Vy_oc = car, (8)
¢= |1+ Z . Vilar+ < H Vi) bs Vil,d= £aL. 9
7J=3 i=N-3 1=N-3 Co
(6) Itis easy to show that both (8) and (9) hold only if
N-1 N—j B L
d= _L (I + L H VZ-—T> ar, d’c = (d"Vyl,) (Vn-zc) = <aaT> (coa) = L. (10)
Co Co “—= . . . L ;
=8 i=N-3 Clearly, this condition is independent of the choice\of for
0 v-T )b 5 i > N —2. WhenN = 2,¢ =d = b and, henced”c =
o II Vi L Q) bz # L, which proves that the filter length of a (2, 2)-regular
=N=3 filterbank is at leas3 M—a similar result to that of the PU case

The above conditions can be imposed into one ofthe1 ma- [22]. WhenN > 3, the above scalar algebraic equation can be
tricesV,;,i < N — 2 if the otherN — 2 matricesV; are known. imposed into one of the matricads; with i < N — 3. Since the
Without loss of generality, let us assume that the matfes matricesV; are determined in increasing order, this condition
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Fig. 9. Design example of (2, 2)-regular eight-channel BOLP filterbank with length 24. (Top left) Frequency responses of the analysis andyophrigit)
filters. (Bottom left) Scaling function and wavelets of the analysis and (bottom right) synthesis banks.

can be imposed onfW _3 afterV; fori < N — 3 are known. equation of each of these parameters. One can also impose this

Let into «; however, the equation becomes quadratic, and it is pos-
N_1 N—j 0 sible fora to be complex for some choicesafand/;.
&= —co (I + V7> a; + ( H Vf,) bs, Theorem 4:If U, satisfies the conditiondy; andA4;o and
=4 i=N_4 =N _4 V n_3 satisfies (11), for any choices &f; (i < N — 2), the
and resulting filterbank is (2, 2)-regular if and only if the following
N_1 N—j conditions hold:
~ L L T ~
d=-= <I+c— II Vi )aL 1) a = VL/é;
0 0 j=4i=N-1 2) ti = —((¢ip1)/én) fori=1,...,L—1;_
3) [’I“l Ty .- TL— 1] (Oé/dl)[dg d3 dL]VRTI_Q,
(l 1;[ 4V ) where¢ = Pc, andd = Pd.
In the design process, the mathy _» can be parameterized
Then, (10) becomes as follows. The vectors andd are obtained from (6) and (7).

L . AT T TN The only constraint before obtainirgandd is thatV y_3 must
aaLVN_:”c +eod Viy_sar +¢d=0. (11) satisfy (11), which can easily be done by enforcing one of its
Let Vy_3 be parameterized as matek in Fig. 4. After some parameter to satisfy (12). The vectérandd are obtained after

manipulation, one can show that (11) implies the permutati(_)n matri® has been identified, and finally, ¢;,

I andr; are defined.

Zla+rTVy_sltTVy_3]Pe Proof: Conditions 1 and 2 are exactly the same as that in
co Theorem 3. From (9), we have

4+ Lgmp m +eTd=0. (12) )
o Vyil,d=R DL TPd=R "D 'L 7d
It is easy to show that both (11) and (12) can be easily imposed L

onto one of the liftings:; and/; of Vy_3 as it forms a linear = %aL'
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TABLE |
OBJECTIVE PROPERTIES OF THEPULP HLTERBANKS USED IN IMAGE COMPRESSIONEXPERIMENTS
TransformProp- [[8 x 88 x 16 [8 x 24[8 x 248 x 16 |8 x 16 |8 x 24
erty DCT LOT PULPvl | PULPv2 | BOLPvll|{ BOLPv12| BOLPv22
Coding gain (dB) 8.83 9.22 9.36 9.33 9.62 9.60 9.50
Deg. of regularity 1 1 1 2 (1,1) (1,2) 2,2)
Stopband attn.(dB) 443 16.32 19.48 13.00 13.76 12.53 9.93
TABLE I

OBJECTIVE CODING RESULTS (PSNRIN DECIBELS) USING DIFFERENT TRANSFORMSWITH ONE LEVEL DECOMPOSITION IN THELOWPASSSUBBAND ON
TESTIMAGES LENA AND BARBARA

Lena PSNR (dB)
Comp. 9,7 [8x8|8x16| 8x24 8 x 24 8 x 16 8 x 16 8 x 24
ratio || Wavelet | DCT | LOT | PULPvl | PULPv2 | BOLPv1l | BOLPv12 | BOLPv22
1:8 40.41 | 39.91 | 40.05 40.36 40.21 40.35 40.20 40.19
1:16 37.21 | 36.38 | 36.72 37.16 36.90 37.28 37.07 36.98
1:32 3411 | 3290 | 33.56 33.97 33.61 34.14 33.97 33.89
1:64 31.10 | 29.67 | 30.48 30.80 30.48 31.04 30.86 30.88
1:100 29.35 | 27.80 | 28.62 28.93 28.72 29.14 28.99 29.14
1:128 28.38 | 26.91 | 27.61 27.95 27.79 28.20 28.01 28.16
Barbara PSNR (dB)
Comp. O/7) [8x8|8x16 | 8x24 8x24 8 x 16 8 x 16 8x24
ratio Wavelet | DCT | LOT | PULPvl | PULPv2 | BOLPvll | BOLPv12 | BOLPv22
1:8 36.41 | 36.31 | 37.43 37.95 37.45 37.84 37.64 37.22
1:16 31.40 | 31.11 | 32.70 33.07 32.61 33.02 32.74 32.48
1:32 27.58 | 27.28 | 28.80 29.06 28.76 29.04 28.80 28.74
1:64 24.86 | 24.58 | 25.70 25.91 25.78 26.00 25.94 25.84
1:100 2376 | 23.42 | 24.34 24.59 24.55 24.55 24.38 24.52
1:128 23.35 | 22.68 | 23.37 23.62 23.68 23.49 23.80 23.89
Hence equal, optimization of coding gain can still automatically force
unsymmetrical smoothness of the resulting analysis and syn-
£RTa _L nor _— thesis scaling functions. This is consistent with one of our objec-
Co g Co ! b=t tives that the synthesis basis function should be smooth, whereas
_ . } the analysis one should decorrelate the input signal, and thus,
T VNL,dy ds d)” smoothness is not critically important.

for someg. It is easy to show that with the choice ¥y _3 in
(12),8 = L/cyp, and thus, the proof is complete.

Since the construction of (2, 2)-regular filterbanks is quitgying scheme is used, and thus, rational coefficients can be ob-

complicated, we summarize all the parameterizing steps hergyineq while perfect reconstruction is preserved. See [23] for a
1) Parameteriz& to satisfy the conditiongly; andA4¢.

1.1) Choose anyU.

O

1.2) Choos€,,r;, anda of Uy, as in Theorem 4, whei

is a permutation matrix, as described in Section IV.

2) ChooseV,; for0 < i < N — 4 arbitrarily if N > 4.

3) Parameteriz® y_3 to satisfy (11) by choosing andr;
of Vy_3 that satisfy (12).

4) Choos€;, r;, anda of V55, asin Theorem 4, whei@
is a permutation matrix, as described in Section IV.

5) ChooseV 1 arbitrarily.

Example 3: In this design example, a (2, 2)-regular 24-taporresponding scaling and wavelet functions of the analysis
eight-channel BOLP filterbank is designed using the proposadd synthesis banks of Example 2 are shown in Fig. 8. The

theory.

D. Regular Filterbanks With Rational Coefficients
One advantage of the proposed parameterization is that the

detailed discussion on how to design such a class of filterbank.
Example 4: In this design example, a (1, 2)-regular eight-tap
four-channel BOLP filterbank is designed using the proposed
theory. The frequency responses, the time responses, and the
corresponding scaling and wavelet functions of both analysis
and synthesis banks are shown in Fig. 6, where the enhanced
smoothness in the synthesis bank is evident. Note that we
purposely choose rational parameters in this design. The
detailed rational-coefficient lattice is depicted in Fig. 7. The
frequency responses, the zeros of the lowpass filters, and the

frequency responses, the zeros of the lowpass filters, and the

It should be noted that in Examples 1 and 3, even thougbrresponding scaling and wavelet functions of the analysis
the degree of regularity of the analysis and synthesis filters anmed synthesis banks of Example 3 are shown in Fig. 9.
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Fig. 10. Enlarged portions of the Lena image compressed at 1:64 using various linear phase filterbanks. (Top left) 9/7 wavelet. (Ted 6dI@)T(top-right).
(Middle left) 8 x 24 1-regular PULP filterbank. (Middle right) 8 24 2-regular PULP filterbank. (Bottom left):8 16 (1, 1)-regular BOLP filterbank. (Bottom
right) 8 x 16 (1, 2)-regular BOLP filterbank.
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Fig.11. Enlarged portions of the Barbaraimage compressed at 1:64 using various linear-phase filterbanks. (Top left) 9/7 wavelet. (Fop@igxy8(Middle
left) 8 x 24 1-regular PULP filterbank. (Middle right)8 24 2-regular PULP filterbank. (Bottom left)8 16 (1, 1)-regular BOLP filterbank. (Bottom right)8 16
(1, 2)-regular BOLP filterbank.
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TABLE 1lI
OBJECTIVE CODING RESULTS (PSNRIN DECIBELS) USING DIFFERENT TRANSFORMSWITH TwO LEVEL DECOMPOSITION IN THELOWPASSSUBBAND ON
TESTIMAGES LENA AND BARBARA

Lena PSNR (dB)
Comp. /7 8x8[8x16 | 8x24 8x24 8 x 16 8 x 16 8 x24
ratio Wavelet | DCT | LOT | PULPvl | PULPv2 | BOLPvll | BOLPv12 | BOLPv22
1:8 40.41 | 39.88 | 40.02 | 40.33 40.18 40.33 40.20 40.16
1:16 37.21 | 36.31 | 36.67 37.10 36.84 37.24 37.05 36.91
1:32 34.11 | 32.77 | 33.45 33.86 33.48 34.03 33.85 33.74
1:64 31.10 |29.45| 30.29 | 30.66 30.30 30.85 30.64 30.63
1:100 || 29.35 |27.55| 2832 | 28.68 28.45 28.89 28.78 28.82
1:128 || 28.38 [26.68 | 2737 | 27.74 27.55 27.93 27.77 27.86
Barbara PSNR (dB)
Comp. 97 [8x8[8x16] 8x24 | 8x24 8 x 16 8 x 16 8 x 24
ratio || Wavelet | DCT | LOT | PULPvl | PULPv2 | BOLPvll | BOLPv12 | BOLPv22
1:8 36.41 |36.29 | 3740 | 37.92 37.41 37.81 37.57 37.17
1:16 3140 | 31.07 | 32.66 | 33.04 32.55 32.97 32.73 32.40
1:32 27.58 |27.21 | 28.72 | 28.99 28.65 28.95 28.81 28.62
1:64 24.86 | 24.48 | 25.58 | 25.81 25.65 25.89 25.78 25.58
1:100 2376 |23.33 | 2423 | 24.48 24.43 24.33 24.44 24.41
1:128 2335 [22.53 ] 23.22 | 23.48 23.52 23.46 23.42 23.71
V. CODING EXAMPLES Table Il summarizes the PSNR of the reconstruction images.

f:cording to Table Il, for Lena, the (9/7)-wavelet yields highest
SNRs for most of the compression ratios except for 1:16 and
, Where the BOLPv11 is better. Comparing among the eight-

In this section, the regular filterbanks obtained from sevel’é‘
design examples presented in previous sections are evaluatz%‘

animage compression application. The testimages in the ex channel filterbanks, both the BOLPv11 and BOLPv12 yield ap-

iment are popular 512 512 8-bit gray-scale imagésnaand roximately equal PSNRs to that of the PULPv1 and PULPv2,
Barbara, representing images with smooth regions and textu%s

; T : espite their shorter filter length. However, the reconstructions
respectlv_ely._ The set partlpor_ung n h|_erarc_h|cal trees (SPIH ave different perceptual quality. Fig. 10 shows an enlarged por-
progressive image transmission algorithm is chosen to COMPETH of the Lena image coded using different filterbanks at a

the performances of the transforms, i.e., the encoding algorittl_ . - . X :
is fived and onlv the decomposition stage in the encoder. a: 4 compression ratio. It is clear that the blocking artifact ap-
y P 9 ' aring in the case of the LOT is improved by the PULPv1

the reconstr_uctlon stag_e in the decoder is modified with d|ffe_:reg1§d PULPV2 and completely eliminated by the BOLPv11 and
transformations. The eighttransforms chosen for the experim

the following: BOLPV12. In addition, the biorthogonal transforms seem to pre-
are the foflowing: ) ) serve the fine details better than the orthogonal ones. In this case,
* two-band 9/7 Daubechies symmetric wavelets [24], foince the Lena image has a lot of smooth regions, as expected,

degrees of regularity, six levels of iteration; the 9/7 wavelet yields highest PSNR and perceptually similar
* eight-band eight-tap DCT [8], one degree of regularityeconstruction to that of the BOLPv12. A similar case but with
two levels of iteration; richer textures is found in the second test image. Fig. 11 de-
* eight-band 16-tap LOT [5], one degree of regularity, tWgjcts the enlarged portion of the Barbara image coded at 1:64
levels of iteration; compression ratio. It is clear that in the orthogonal cases (LOT,
« eight-band 24-tap PULP regular FB labeled PULPV1 [13hyLPv1, and PULPV2), not only is there residual blocking ar-
one degree of regularity, two levels of iteration; tifact in the reconstruction but also, some of the texture details
« eight-band 24-tap PULP regular FB labeled PULPV2 [13}re lost. These textures are better preserved by the biorthogonal
two degrees of regularity, two levels of iteration; transforms (BOLPv11 and BOLPv12). In this case, since the
» eight-band 16-tap BOLP regular FB labeled BOLPv11, (Barbara image has a lot of textures, the 9/7 wavelet smoothes
1)-degree of regularity, two levels of iteration; out many high-frequency details.
* eight-band 16-tap BOLP regular FB labeled BOLPVv12, (1, In order to obtain a fair comparison to the coding results in
2)-degree of regularity, two levels of iteration; [13], the lowpass subband of the eight-channel filterbank is fed
» eight-band 24-tap BOLP regular FB labeled BOLPVv22, (20 another stage of transformation. This two-level decomposi-
2)-degree of regularity, two levels of iteration. tion of the eight-channel filterbank is equivalent to a six-level

Table | summarizes the coding gains, degrees of regularity, atydic wavelet transform after the coefficients are rearranged.
stopband attenuation of tié-band transforms used in the com-Table Il presents the resulting coding PSNRs. Compared with
parison. To avoid modification of the encoding algorithm, th&able II, the new PSNRs are similar to that when the filterbanks
transform coefficients are rearranged and grouped into the p@pe not reiterated but slightly lower. The differences are uniform
ular quad-tree structure [25], [26]. Thus, an eight-band filteBcross the transforms, i.e., at each compression ratio, the degra-
bank is equivalent to a three-level dyadic wavelet iteration. dationsin PSNRs are approximately the same for different eight-
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channel filterbanks. This suggests that whenlarchannel fil-
terbank with sufficiently largé/ is used, there is no need for re-
iteration in the lowpass branch as that used in the dyadic case.

VI. CONCLUSION

In this paper, we have presented a method for imposing reg-
ularity properties onto BOLP filterbanks. A new lattice struc-
ture for parameterizing a nonsingular matrix via lifting steps
is presented. This new structure has several advantages over
the conventional direct and SVD parameterizations in terms of
number of free parameters and robustness to the quantization of
the lifting coefficients. Regarding regular filterbanks, we con-
sider three cases of (1, 1), (1, 2), and (2, 2)-regular systems,
where the corresponding permissible minimal filter lengths are
M,2M, and3M, respectively. By using the proposed parame-
terization of nonsingular matrices, the conditions for regularity
of the filterbanks can be imposed with ease into the lifting steps.
Finally, these transforms are tested in an image coding applica-
tion and shown to simultaneously eliminate the blocking artifact
and preserve texture details better than the conventional trans-
forms.

APPENDIX
PROOF OFPROPOSITION1

1) We will prove, by using the modulation matricEs,, (=)
and F,,(z), whose (i,7) elements areH;(W’) and
F;(W7), whereW = ¢727/M  First, let us prove the
first statement by induction ok ;. Recall that the PR
property of the filterbank yields

[F,n(2)] [HE ()] 7Y
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After substitutingz = 1, we can rewrite (14) as

Consider the off-diagonal elements of the first
column of [F,, (2)]O[HZ (2)]~1=9|.—;. Since
Fy(z) hasn zeros at all aliasing frequencies,
the off-diagonal elements of the first row in
[F,.(2)]9|.=; are zero for = 0,1,...,n — 1.
By the assumption of induction, the off-diagonal
elements of the first row ifH,, (2)]"~'=9|._;
are zero for¢ = 1,2,...,n — 1, which imply
that the off-diagonal elements of the first row in
[F(2)][HZ (2)]*~V|.—; must be zero, i.e.,

SR W2 (W) .y = 0

J

(16)

fork =1,2,..., M. Hence[Hy(z)] ™ D|._; =

0 for all & > 0, which completes the proof. The
second statement can be proven in the same manner
by noting that

F? (2)H,,(z) = diagonal matrix (17)

and will be left as a simple exercise for the reader.

2) We will show only for the case of (a) since the two con-

F..(z)HZ (z) = a diagonal matrix (13)

a) K, = 1. Assume thatfp(W7) = 0 for all j =

1,2,..., M —1. Substituting: = 1 into (13) yields
> Fy(Wiz)Hj(Wiz) =0
J

forall : > 0. Hence,H;(1) = 0.

b) K. = n. Assume that the first statement of the the-
orem is true forK, < n. It is now sufficient to
show that ifF;y(z) hasn multiple zeros at aliasing
frequencies¥V’ for all j > 0, thenH,(z) haven

ditions are analogous. The proof is straightforward from
the fact thatH; (=) hasK s zeros at dc. Let us writ#;(z)
as

Hi(z) =) hi(n)z™" =(z-1)"Q°)  (18)

whereQ°(z) is some function of such thatp?(1) # 0.
Hence,) ", hi(n) = H;(1) = 0. Now, letting us differ-
entiate (18) with respect to, we get

multiple zeros at dc frequency. Suppose thgtz) — Z nhi(n)z=""! = (z — 1)1

hasn zeros atV7 forall 5 > 0in order to show that n

the bandpass/highpass filtdifs(z) haven zeros at
dc for alli > 0, and it suffices to show that;(z)
are of the formiH;(z) = (1 — 2=1)"Q;(z), where
Qi(z) are some polynomials (since all the filters
are FIR) inz—!. Equivalently, the-th derivative of
H;(z) with respect toez~! and evaluated at = 1

is zero for allr = 0,1,...,n — 1. Repeatedly ap-
plying the derivative operatotr — 1 times to (13)
with respect toz~' implies that

(") aen et

= diagonal matrix (14)

n—1

>

£=0

X |:KSQ0(Z) +(z— 1)%(20(2) .

Letting Q" (2) = —2[K.Q°(2)+ (2 —1)(d/(d2))Q°(2)],

then

Znh,;(n)z_n = (z = 1)E71Q(2). (19)

Itis clear thatifK; > 1, substitutingz = 1 into (19) im-
plies (a) forn = 1. Forn = 2,..., K, successively dif-
ferentiating and substituting = 1, as above, completes
the proof.
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3) We will only prove fory;(t). From the definition of);(¢)
fori > 0, we have

/tjq/;i(t) dt
/tj Zh
_ / S Uhi(k) (M — k) di

k

(Mt — k) dt

From 2, ifj < K, the /th moment ofh;(k) in the
last equation is zero becauée< ; < K,, and hence,
[ t94;(t) dt = 0, as desired.

4) We will mtegrate by part the quantity in the absolute
value. Letl'(t) = f ¥i(7) dr; hence,;(Mit —
kydt = M~ Jdll(MJt — k). From 3, it is clear that
I'(c0) = 0. In fact, I' (¢) has the same compact support
as;(t). Therefore

/ (B0 (Mt — k) dt = — M= / o (DT (M7t — k) d.
(20)

Again, letI*(t) = [* _T'(m)dr = [*_ [T ()
ds dr. Integrating by parts, the above equation yields

t

I*(t) = rI'(r )_OO—/ T dI*(7)

— 00

=717 - /_too

Hence,/? (o0

T’l/;i(’l') dr.

) = 0, and (20) becomes
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Repeating the same procedure yields

‘/g(t)ii(th — k) dt‘

= ‘ MK / gD ()T (Mt — k) dt‘

< OM—IiK: (KS)(t)H'

(22)

5) The proofis directly from the orthogonality betweg(s)
and;(t).

6) We will prove by induction ori,, similar to the case of
M = 2in[1]. LetL be theM x M submatrix ofL.. Hence,
the eigenvalues of. are also eigenvalues df. When
K, = 1, Hy(z) has afactofl + 271 + ... + z1=M),
which implies that) ", ho(Mk+j) = 1/M for all j.
Hence, we have the equation at the bottom of the page.
Therefore, 1 is an eigenvalue &f and L with the cor-
responding left eigenvect@t 1 --- 1]. Now, assuming
that Ho(z) = (1 + 271+ -+ + 21 7M) /M) H,a(2),
with Hgq4(2) havingK, = N zeros at every aliasing fre-
quency(2rk)/M, let LoaXold = AolaXold, Where the
equivalent relation can be expressed in4hdomain as

M—1
Hoa(W*2) Xoa(W*2) = AgraXoa(2M).
k=0
1—2—
< i ) Aotd Xola(z
1 M—1
= ) Z Hold W Z) old(W Z)
M-1 1+ Wk +(sz)1\/[71
M

Il
< IME

old(W Z)(l - (Wk ) )Xold(WkZ)

- MZ Ho(W*2)(1 = (WF2)™) X (W),

Hence, Y0 0" Ho (W*2) Xpew (WF2) = (Agla/M)
Xnew (2M), Where Xoew(z) = (1 — 27HXaa(2),

T g oar—2j " 2 i and thus,\pew = Aola/M are new eigenvalues di.
/g(t)%(M t-k)dt=M g (O (M7t = k) dt. The extra eigenvalue 1 d follows from the fact that
(21) >onho(ME+ j5) = 1/M for all 5.
ho(0)
. ho(M)  ho(M —1)  ho(M —2) ho(1) ho(0)
11 L=M[1 1 --- 1] ho(2M — 1) ho(2M — 2)

=t 1 - 1

ho(M + 1) ho(M)
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