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Context-Based Entropy Coding of Block Transform
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Abstract—It has been well established that state-of-the-art
wavelet image coders outperform block transform image coders in
the rate-distortion (R-D) sense by a wide margin. Wavelet-based
JPEG2000 is emerging as the new high-performance international
standard for still image compression. An often asked question
is: how much of the coding improvement is due to the transform
and how much is due to the encoding strategy? Current block
transform coders such as JPEG suffer from poor context mod-
eling and fail to take full advantage of correlation in both space
and frequency sense. This paper presents a simple, fast, and
efficient adaptive block transform image coding algorithm based
on a combination of prefiltering, postfiltering, and high-order
space–frequency context modeling of block transform coefficients.
Despite the simplicity constraints, coding results show that the
proposed coder achieves competitive R-D performance compared
to the best wavelet coders in the literature.

Index Terms—Adaptive entropy coding, block transform,
context modeling, DCT, image coding, JPEG, postfiltering,
prefiltering.

I. INTRODUCTION

A N IMAGE CODING algorithm generally involves a
transformation to compact most of the energy of the input

image into a few transform coefficients which are then quan-
tized and entropy encoded. The two popular transformation
approaches for image compression are the block transform and
the wavelet transform. The block-based approach partitions the
input image into small nonoverlapped blocks; each of them is
then mapped into a block of coefficients via a particular block
transform usually constructed from local cosine/sine bases.
Most popular amongst block transforms for visual data is the
type-II discrete cosine transform (DCT) [1] and the block size
is commonly set to 8 8. Block DCT coding is the basis of
many international multimedia compression standards from
JPEG for still images to the MPEG family for video sequences.
Low-complexity and good energy compaction within a data
block are two main reasons why the DCT has been popular.
Unfortunately, at low bit rates, block-based systems suffer from
the notorious blocking artifacts, i.e., discontinuities at the block
boundaries resulting from reconstruction mismatches.

Unlike the block transform approach, the wavelet transform
approach treats the input signal globally and avoids blocking
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artifacts by employing overlapped basis functions. (To process
high-resolution images, practical implementations partition the
input into large data blocks, called tiles, and transform them in-
dependently.) The wavelet transform can be interpreted as an
iteration of a two-channel filter bank with a certain degree of
regularity on its lowpass output. Part of the beauty and power of
wavelets is their elegance: complicated tilings of the time–fre-
quency plane can be easily achieved by merely iterating a simple
two-channel decomposition. Furthermore, a coarse approxima-
tion together with detailed wavelet components at different res-
olutions allows fast execution of many DSP applications such
as image browsing, database retrieval, scalable multimedia de-
livery, etc.

Since the introduction of the embedded zerotree wavelet
(EZW) compression algorithm by Shapiro in 1993 [2], wavelet
coding technology has advanced significantly. State-of-the-art
wavelet coding algorithms, such as Said and Pearlman’s set
partitioning in hierarchical trees (SPIHT) [3], Chrysafis and Or-
tega’s context-based entropy coding (C/B) [4], Wu’s embedded
conditional entropy coding of wavelet coefficients (ECECOW)
[5] and ECECOW with context quantization guided by Fisher
discriminant (FD) [6], Hong and Ladner’s group testing for
wavelets (GTW) [7], and especially Taubman’s embedded
block coding with optimized truncation (EBCOT) [8]—the
framework for the current state of the JPEG2000 image com-
pression standard [9], give the best R-D performance in the
literature. In the meantime, the progress for block transform
image coding is limited and the R-D performance gap between
the best wavelet coding algorithm and the best block transform
coding algorithm is quite large.

The success of wavelet coding technology is mainly a result
of advanced context modeling and adaptive entropy coding of
wavelet coefficients. Good context-based entropy coding well
exploits the nature of wavelet coefficients such as multiresolu-
tion structure, parent–children relationship, zero clustering, and
sign correlation. On the contrary, context based entropy coding
of block transform coefficients has not received much attention.
The standard method for coding quantized block transform co-
efficients is still JPEG’s zigzag scanning and runlength coding
technology, whose efficiency at least suffers from: 1) 2-D data
is encoded in a 1-D manner; correlation between coefficients
in the same block has not been fully exploited; 2) data blocks
are coded independently (except for DC prediction) and corre-
lation between blocks has been mostly ignored; and 3) too many
run-level combinations result in suboptimal entropy coding.

Recently, there have been several block-transform-based
image coders which use zerotree wavelet coding algorithms
such as EZW and SPIHT to encode block transform coefficients
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Fig. 1. Space–frequency relationship between coefficients in (left) blocks and (right) subbands.

by reordering them into familiar wavelet structures [10]–[12].
These block transform coders significantly outperform the
traditional JPEG coder in the R-D sense. When correlation
between blocks is taken into account by employing lapped
transforms, competitive or even better compression compared
to wavelet coders can be achieved on a wide range of images
at a wide range of bit rates. Notice that the zerotree struc-
ture is actually a high-order context model. The significant
improvement over JPEG is mainly a result of better context
based entropy coding of coefficients. Although these coders
exhibit the power of context-based entropy coding of block
transform coefficients, they have not been optimized for block
transforms. Wavelet-specific features are imposed and special
characteristics of block transforms are ignored.

In this paper, we present a novel adaptive block transform
image coding algorithm based on context-based entropy
coding of block transform coefficients (CEB). Benefiting from
high-order context modeling and adaptive entropy coding
optimized for block transforms, CEB demonstrates superior
R-D performance. CEB comes with two flavors: local CEB
(L-CEB) and embedded CEB (E-CEB). L-CEB transforms,
quantizes, and compresses an image block by block sequen-
tially in place without buffering others. It is geared toward
resource-constrained applications with high speed and very
low memory requirement such as those in mobile handheld
devices. E-CEB compresses an image bitplane by bitplane just
like other progressive coders. All transform coefficients are
buffered; however, each bitplane is still coded block by block.
E-CEB offers rate and distortion scalability. E-CEB also allows
better context modeling and thus achieves better compression,
especially at high bit rates.

The paper is organized as follows. The next section describes
the space–frequency subband representation of block transform
coefficients and how simple prefiltering and postfiltering can
take into account correlation between blocks to maximize
coding efficiency. In Section III, we show that a coefficient
is highly correlated not only with its block neighbors, but
also with its subband neighbors. Based on this observation,
Section IV discusses effective context based entropy coding
of block transform coefficients. The generic CEB algorithm

and specific examples of L-CEB and E-CEB implementations
follow in Sections V and VI, respectively. In Section VII, we
present extensive coding results and compare them with those
of other state-of-the-art algorithms.

II. REPRESENTATION OFBLOCK TRANSFORMCOEFFICIENTS

In this paper, a block transform refers to a separable linear
mapping of an block of image pixels into an
block of transform coefficients. We shall use exclusively the
8 8 type-II DCT [1] ( ) which has been proven to be a
good tradeoff between complexity and coding performance. An

-point block transform can also be interpreted as an-band
filter bank whose filters are simply the transform’s basis func-
tions.

A. Space–Frequency Relationship

The -point DCT maps a input image into a
grid of coefficient blocks. Under the aforemen-

tioned filter bank perspective, the coefficients can be reordered
into an grid of subbands. The coefficient at po-
sition ( ) in block ( ,

) is located at position in subband .
In other words, subband collects all coefficients at the

position from every block. These coefficients represent
the same frequency component of the entire image. On the other
hand, block , which gathers all coefficients at the same
spatial location from every subband, represents different
frequency components of a local spatial region. Dominating fea-
tures of an image are often more obvious in subbands than in
blocks. Fig. 1 demonstrates the two different representations of
coefficients: the block representation and the subband represen-
tation.

Subbands can be divided into four categories: a DC subband,
V subbands containing vertical features, H subbands containing
horizontal features, and D subbands containing diagonal fea-
tures. These correspond approximately to the LL subband, LH
subbands, HL subbands, and HH subbands in the familiar hier-
archical wavelet structure. As depicted in Fig. 1, subband (0, 0)
at the upper left corner is the DC subband; subbands with
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Fig. 2. Prefiltering and postfiltering at block boundaries.

are classified as V subbands; subbands with are classi-
fied as H subbands; and the remaining are D subbands.

Let denote the transform coefficient at position in
block , or in other words, the coefficient at position
in subband . Coefficient has two types of neighbors:
block neighbors in space and subband neighbors in frequency.
For example, in Fig. 1, the coefficient labeled “4” has block
neighbors “ ”–“ ” and subband neighbors “0,” “1,” “2,” “3,”
“5,” “6,” “7,” and “8.”

B. Prefiltering and Postfiltering

To avoid blocking artifacts and to improve coding efficiency,
but still retaining all attractive features of block-based tech-
niques, we rely on prefiltering and postfiltering along the block
boundaries of the traditional block-based coding scheme. Our
prefiltering and postfiltering framework is illustrated in Fig. 2.
The prefilter processes the block boundaries, taking away cor-
relation between blocks. The preprocessed samples are then fed
to the DCT to be transformed and encoded as usual. At the de-
coder side, serves as the postfilter, reconstructing the data
in an overlapping manner, eliminating blocking artifacts. Both
prefiltering and postfiltering can be performed block-wise lo-
cally just like the DCT. For 2-D image data, prefiltering is per-
formed in a separable fashion, followed by the common sepa-
rable DCT decomposition. Postfiltering is performed separably
as well.

The block prefilter consists of two stages of butterflies and a
matrix between them

(1)

where , , and are the identity matrix, the
reversal matrix, and the null matrix, respectively. The corre-
sponding postfilter is

(2)

The matrix controls prefiltering and postfiltering. The
combination of prefiltering/postfiltering and the DCT can be
shown to generate a family of invertible linear phase lapped
transforms [13]. It should be noted that if we set then

, i.e., prefiltering/postfiltering is turned off, and
we are back to a traditional block-DCT-based coding system.
At image boundaries, extending the image symmetrically fol-
lowed by prefiltering or postfiltering is equivalent to bypassing
prefiltering or postfiltering altogether [13].

The detailed design of fast and efficient prefiltering/postfil-
ters is described in another publication [14]. The prefilterused
in this paper depicted on the left of Fig. 3 is taken directly from
[14]. The corresponding postfilter is shown on the right.
The filters are designed to be of low computational complexity
without losing much (if not any) coding efficiency. In particular,
we choose such that the postfilter is multiplierless.

Fig. 4 demonstrates the effect of prefiltering on an input
image: the preprocessed image becomes very blocky; however,
each block fed into the DCT is smooth. The prefilter extracts
the correlation between adjacent blocks, hence increasing the
DCT’s effectiveness in energy compaction. The postfilter is the
exact inverse of the prefilter. It operates on the signal between
blocks as a smooth interpolator, eliminating blocking artifacts.
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Fig. 3. (Left) PrefilterP and (right) the postfilterP .

Fig. 4. Demonstration of the prefiltering effect. Left: original image. Right: prefiltered image before DCT transformation.

III. I NTRABLOCK AND INTERBLOCK CORRELATION

A. Intrablock Correlation

The most well-known feature of a coefficient block in a nat-
ural image is that the magnitudes of AC coefficients decrease as
the frequency increases. Besides, although the basis functions
corresponding to different coefficients of a block are generally
orthogonal or near orthogonal, two coefficients in a block are
not independent. A coefficient is still correlated with its block
neighbors. We call this correlation among neighbors within a
local block intrablock (or intersubband) correlation.

However, algorithms exploiting only intra-block correlation
are not expected to yield state-of-the-art R-D performance since:

1) intrablock correlation, especially for 8 8 block size, is
limited to a small local block and only reflects the short-
range correlation;

2) correlation is weak since coefficients at different loca-
tions correspond to different basis functions;

3) most coefficients are quantized to zero and, thus, not
much information can be exploited.

B. Interblock Correlation

Block transform subbands and wavelet subbands demonstrate
similar characteristics. A block transform coefficient is strongly

correlated with its subband neighbors, especially in low-fre-
quency subbands. We call this type of correlation interblock
(or intrasubband) correlation. Generally, interblock correlation
is much stronger than intrablock correlation. Fig. 5 shows the
block and subband representation of 88 DCT coefficients of
the 512 512 Lena image. Spatial features are much more vi-
sually obvious in subbands than in blocks. The DC subband is
a thumbnail image as is the lowpass wavelet subband. Each
of the other subbands is a bandpass-filtered thumbnail of Lena.
Each subband contains a part of the global information of the
image. Vertical (horizontal) features are easily recognized in the

subbands just as with the wavelet subbands.
Exploiting interblock correlation is the key to eliminating fre-

quency redundancy. This is a weakness of most block coding
algorithms. For example, except for DPCM coding of DC co-
efficients, JPEG [15] completely ignores interblock correlation.
Fully taking advantage of both intrablock and interblock cor-
relation in the transforming stage with prefiltering/postfiltering
and in the coding stage with advanced context-based adaptive
entropy coding is the key to a vastly improved block-DCT-based
image coder.

C. Sign Correlation

It has been recently observed that sign correlation exists
among wavelet coefficients. Many researchers have explored
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Fig. 5. Representations of block transform coefficients for the Lena image. Left: block representation. Right: subband representation.

Fig. 6. DCT subband sign maps of Lena, “+” positive and “.” negative. Left: (1, 0) subband. Right: (0, 1) subband.

the benefits of sign modeling [5], [6], [8], [9]. Besides offering
better coding efficiency, sign modeling can also improve the
final estimate of coefficients which are quantized to zero.
Deever and Hemami provided a detailed analysis of sign
behaviors of wavelet coefficients and demonstrate how much
gain can be obtained by sign coding and sign extrapolation [16].

In the block-transform case, although sign correlation among
block neighbors is weak, sign correlation among subband neigh-
bors is strong especially in low-frequency subbands. Fig. 6 plots
the sign maps of two 8 8 DCT subbands of the Lena image.
Sign patterns do exist, especially along and across strong edges.
Clearly, sign modeling for block transform coefficients is worth-
while.

IV. CONTEXT MODELING OF BLOCK TRANSFORM

COEFFICIENTS

Before encoding the quantized coefficients, they are first rep-
resented as a sequence of symbols, , , which is

then compressed into a bitstream. The way to generate this se-
quence and the way to compress it should be jointly optimized.
This paper is mainly concerned with the latter.

The minimum code-length of a sequence in bits is given by

(3)

where is the conditional probability of given
, which denotes the sequence , , , . Here,
is the known information about . Hence, is called

the context of .
The probability is highly image dependent and

not known before coding . CEB relies on adaptive arithmetic
coding to estimate on the fly and allocates the bit
budget accordingly. To do so, different contexts need different
adaptive models and a tremendous number of models are neces-
sary since may contain a large set of symbols. In practice,
a large number of models not only increases the complexity, but
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also decreases the performance of the arithmetic coder because
of context dilution, i.e., there are not enough samples to reach a
good estimate of .

The task of context modeling is to estimate using
an affordable number of models. We formulate this problem as

(4)

which means that the symbol is coded based on the adap-
tive model indexed . Here, is a function of that
maps the context to an estimated model of .
The function is a many-to-one mapping and, thus, maps a large
number of contexts to a small number of context models. Gen-
erally, only depends on a small subset of containing the
most relevant symbols regarding.

Wu demonstrates the power of high-order context modeling
in wavelet coding [5], [6] where context modeling is fully
optimized for encoding wavelet coefficients. A similar gain
can be expected from context modeling optimized for encoding
block transform coefficients. Based on the discussion in
Section III, the key point is that a block transform coefficient
should be coded conditioned on known information of both
its block neighbors and subband neighbors. More gain can be
expected if different subbands are treated differently according
to their characteristics. For example, models for the V subbands
should be tuned toward capturing vertical edges. Usually,
low-frequency subbands and high-frequency subbands should
also be treated differently since correlation starts to disappear
when the principal frequency decreases. The main innovation
in CEB is its context modeling optimized in this manner.

V. GENERIC CEB ALGORITHM

CEB is a block-based algorithm. We treat transform coeffi-
cients in a subband context but never reorder them into sub-
bands. Only a minimal amount of information from a few ad-
jacent blocks needed by context modeling is buffered.

A. L-CEB Algorithm

Local CEB (L-CEB), the local and low-complexity version
of CEB, processes image blocks one by one from top to bottom
and from left to right. Prefiltering, DCT, and postfiltering are
performed block-wise. There is virtually no buffering except for
the current block to be encoded. For each block, the coefficients
are processed in four steps.

1) Quantization: Generally scalar quantization with a
double dead zone is used. Other quantization methods
may produce better objective and/or visual quality.

2) Significance Testing:Each quantized coefficient in the
block should be tested to determine if it is significant
(nonzero) or insignificant (zero).

3) Magnitude Coding:If a coefficient is significant, its mag-
nitude is coded.

4) Sign Coding:Obviously, the sign of each significant co-
efficient should also be coded.

Fig. 7. Most significant bits of 8� 8 DCT subbands of Lena.

B. E-CEB Algorithm

Embedded-CEB (E-CEB), the progressive version of CEB,
buffers all transform coefficients. When E-CEB is initialized,
the highest bitplane is found and all coefficients are marked as
insignificant. E-CEB then proceeds from the highest bitplane
down to the lowest bitplane until a given bit rate or a given dis-
tortion level is achieved. In each bitplane, blocks are still en-
coded one by one from top to bottom and left to right. For the
th bitplane, each block is encoded as follows.

1) Refinement Coding:The th bitplane of each previously
significant coefficient is coded.

2) Significance Testing:Check the magnitude of every in-
significant coefficient. Label it as significant if its magni-
tude is equal to or greater than.

3) Sign Coding:The signs of coefficients which just became
significant are coded.

For natural images, the DCT compacts most signal energy
into low-frequency subbands. Consequently, low-frequency
subband coefficients have much higher magnitudes than
high-frequency subband coefficients. The distribution of the
most significant bits of 8 8 DCT subbands of Lena in Fig. 7
illustrates this fact. The information of the most significant
bits is not available to L-CEB, but is available to E-CEB since
E-CEB buffers all coefficients. Knowing the most significant
bits, E-CEB can avoid coding some significance information.
For example, E-CEB never needs to code the significance
information of (7, 7) subband coefficients before coding the
third bitplane since they must be insignificant. In this manner,
E-CEB saves a good number of bits on coding significance
information. To do so, the encoder has to send the most
significant bits to the decoder. The cost for coding the most
significant bits is trivial comparing to the bandwidth savings.

C. Significance Testing Strategy

Besides the quantization method, two aspects that differen-
tiate different CEB implementations are the significance testing
strategy and the coding scheme for signs, significance, and mag-
nitude/refinement information. Significance testing is generally
based on a certain group testing method: a group of coefficients
is tested together and divided into subgroups if it is found sig-
nificant. The standard group testing method for wavelet coders
is the zerotree technology in EZW [2]. However, group testing
becomes less important if the following context-based entropy
coding is well designed. For instance, in the wavelet coders
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Fig. 8. Fast DCT implementation. Left: forward transform. Right: inverse transform.

ECECOW and FD [5], [6] which yield the best R-D perfor-
mances so far in the literature, wavelet coefficients are tested one
by one. In this paper, we concentrate on optimizing the coding
of signs, significance, and magnitude/refinement information.

D. Entropy Coding

Once a coefficient becomes significant, it is generally be-
lieved that entropy coding does not help much in coding later
bitplanes. So refinement information is encoded in raw binary,
i.e., one bit is used to indicate whether the bitplane is “0” or
“1.” Since the magnitude and sign of a coefficient are highly
correlated with those of its block and subband neighbors, con-
text-based entropy coding still helps substantially in coding all
other information.

CEB employs binary adaptive arithmetic coding. This is the
simplest and the fastest version of adaptive arithmetic coding,
which can be easily implemented in both software and hardware
[17]. Furthermore, it approaches the underlying context model
very quickly. There is no problem in coding significance and
sign information since they are binary. However, the magnitude
of a significant coefficient is not binary. CEB binarizes them into
sequences of binary symbols before coding. Specifically, CEB
binarizes a nonbinary symbolinto binary “0”s followed
by a binary “1.” For example, 4 is binarized as 0001. Different
adaptive models can be used for different bins.

VI. SPECIFICCEB IMPLEMENTATIONS

This section describes in detail the implementation of a
simple L-CEB coder and a simple E-CEB coder. Here we
only deal with 8 8 blocks and the DCT, but it is easy to
generalize to other block transforms of other sizes. The DCT
implementation used in CEB is a “binary” DCT approximation
[18] as illustrated in Fig. 8. Only integer additions and shifts
are needed except for the final floating-point scaling which is
combined with quantization.

Coefficients in a block are labeled in the zigzag order of JPEG
as shown in Fig. 9. Coefficient is also denoted as

where is its zigzag label. For example, .

Fig. 9. Zigzag scanning.

Define as the set of coefficients in block whose
zigzag label satisfies

(5)

We say is insignificant if all of its members are insignifi-
cant. Otherwise, it is said to be significant. Note that if is
insignificant, then with is also insignificant. Sec-
ondly, if is significant, and can not be both in-
significant because

(6)

Since optimizing significance testing algorithms is not our main
concern in this paper, a simple sequential group testing algo-
rithm is used: begin with and increment; if is sig-
nificant, it is subdivided into and ; this subdivision
process is repeated until all significant coefficients are identi-
fied.

As mentioned in Section IV, in the context of modeling, dif-
ferent subbands should be treated differently. In our CEB im-
plementations, we differentiate seven types of subbands as de-
picted in Fig. 10: one DC subband, one principal V subband
(PV), one principal H subband (PH), three low-frequency V
subbands (LV), three low-frequency H subbands (LH), eight
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Fig. 10. Subband classification.

low-frequency D subbands (LD) and the remaining 47 high-
pass subbands (HP). Subbands of the same type share the same
context modeling. Usually, different adaptive models are used
for subbands of different types since their characteristics differ
greatly. The DC subband is nearly independent of the AC sub-
bands. CEB does not use one as the context of the other.

A. L-CEB Implementation

L-CEB is specifically designed for low-cost, low-power,
high-speed real-time applications. We assume that onboard
memory is very limited. Only a few adaptive models are
allowed. The DC of block , , is predicted as the
mean of the reconstructed DC coefficients from the left and top
neighboring blocks, i.e., . The prediction
error is quantized and coded. Simple scalar quantization with a
double dead zone is used. We use and to denote
the significance information of and , respectively

if is significant
otherwise

(7)

if is significant
otherwise.

(8)

The block-coding process proceeds as follows.
1) Find , the zigzag label of the last significant coefficient.
2) Code .
3) Code the magnitude and the sign of if .
4) Code .
5) If then for to

• code ;
• if then

— code the magnitude and the sign of ;
— if then code , which is 1 if

and 0 otherwise.
Since the DC coefficient, , is not grouped with AC

coefficients, we never code . Note that coding if
and should be avoided since

is already known. Also, since is the same as , we
should also avoid coding twice.

To keep L-CEB simple, signs are not entropy coded and one
bit is spent for the sign information per significant coefficient.
Magnitudes of significant coefficients are not binary but most
of them are small. L-CEB codes magnitudes without using any
context. Magnitudes are simply binarized as mentioned in Sec-

Fig. 11. Context modeling for L-CEB.

tion V and coded based on binary adaptive models. A single
model is used for all bins of the magnitude value. Four models
are used for different subbands: one for DC; one for PV and PH;
one for LV, LH, and LD; and one for HP.

As an example of how L-CEB works, consider the encoding
process of a quantized 8 8 block of transform coefficients
shown in the following (actually taken from [19])

L-CEB will map this coefficient block into the following string
of symbols and binary bitstream

A total of 30 bits is used to represent the data block. How-
ever, this is only raw binary and the reader can easily observe
that there is still a lot of redundancy in the bitstream. Except for
the six binary symbols representing signs, all 24 remaining bi-
nary symbols will be further compressed by arithmetic coding.
The 15 significance symbols, [ ] and [ ], will be coded
conditioned on the known information of neighboring blocks. In
the same example, JPEG spends 31 bits in its runlength coding
scheme

However, JPEG has already utilized entropy coding (Huffman)
and the above is the final bitstream.
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Fig. 12. Context modeling for E-CEB.

As previously mentioned, the only information coded by
L-CEB with context-based arithmetic coding is the significance
information. L-CEB uses a simple context modeling method
illustrated in Fig. 11: the significance information of is
coded conditioned on the number of significant left subband
neighbor ( ) and top subband neighbor ( ); the
significant information of is coded conditioned on how
many of its left subband neighbor ( ), top subband
neighbor ( ), left block neighbor ( ) and top block
neighbor ( ) are found significant. If any of the block
(subband) neighbors is out of block (image) boundaries, it is
assumed to be insignificant.

Following the notation of Section IV, the detailed context
modeling is given by

if
if
if
if .

(9)

if
if
if
if
if
if
if .

(10)

Different models are used for different subband classes.
Adaptive models are -independent. L-CEB needs a total of
38 adaptive models to code significance information and four
adaptive models to code magnitudes. Altogether only 42 binary
models are necessary.

Significance information of one horizontal slice of blocks
should be buffered for context modeling. Each block needs
64 bits. We also need to buffer DC coefficients of the slice to
perform DC prediction. Besides the trivial memory needed for
the 64 transform coefficients and the 42 binary models, L-CEB
only requires to buffer bits, or

bytes, to code an image of width . L-CEB can easily fit
an 8 K memory footprint. The combination of simple context
modeling, simple group testing, binary arithmetic coding, fast

prefiltering/postfiltering and fast DCT implementation makes
L-CEB ideal for handheld devices such as PDAs and cellular
phones.

B. E-CEB Implementation

In E-CEB, an index, , is associated with block to
indicate the zigzag label of the last significant coefficient. When
E-CEB is initialized, is set to zero and all coefficients are
labeled as insignificant. Let be the most significant bit of the
subband with zigzag label. Let be the th bitplane of

. Denote , , and the significance of
, the sign of , and the significance of at the th

bitplane

if is significant at th bitplane
otherwise

(11)

if and
if and
if

(12)

if is significant at th bitplane
otherwise.

(13)

The process of encoding theth bitplane of a certain block
is as follows:

1) For to
• code , if is significant;
• if is insignificant then

— code , if ;
— if then

* label as significant;
* code .

2) If , then
• code , if ;
• if then for to 63,

— set ;
— code , if ;
— if then

* label as significant;
* code ;
* code , if and

.
— stop, if or .
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TABLE I
CODING COMPARISON. BIT RATE (bpp)/PSNR (dB)

Note that is not entropy coded. All other information,
including signs, is coded by context-based binary adaptive en-
tropy coding. The context modeling for coding significance in-
formation is similar to the L-CEB context modeling for coding

significance information. The only difference is that more sub-
band neighbors are involved as shown in Fig. 12
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if
if
if
if

(14)

if
if
if
if
if
if
if .

(15)

The sign of is coded conditioned on the signs of its left,
right, top, and bottom subband neighbors (Fig. 12)

if
if
if
if

(16)

where the function is defined as

if
if
if .

(17)

Altogether we have a total of 118 binary models, 36 of which
are for sign coding. Notice that when coding theth bitplane, all
information about the th bitplane is known. So some
information from the th bitplane is used as context.

The only nontrivial memory other than the buffering of all
DCT coefficients that E-CEB needs is one byte per block to store
the associated with the block. Unlike most zerotree-based
progressive algorithms such as SPIHT, E-CEB does not utilize
any expensive list operation. Therefore, E-CEB is competitive
with any embedded algorithm in term of complexity as well as
speed.

VII. CODING RESULTS

Table I provides a detailed comparison of our CEB coding
results with those of current state-of-the-art block transform
coding algorithms as well as of wavelet coding algorithms.
Three groups of 8-bit grayscale images are used: the 512512
images Lena, Goldhill, and Barbara; the 20482560 images
Bike, Cafe, and Woman; the first luminance frames of QCIF
(176 144) video sequences News and Glasgow.

The wavelet coders in comparison are SPIHT [3] with arith-
metic coding and JPEG2000 [9] in the single layer (SL) mode.
JPEG2000-SL is optimized for R-D performance and is not scal-
able. The Daubechies 9/7 filters [20] are used in both SPIHT and
JPEG2000. Four-, five-, and six-level dyadic wavelet decompo-
sitions are employed for images of size 176144, 512 512,
and 2048 2560, respectively. The two progressive block trans-
form coders in comparison are labeled EZ: one is based only on
the 8-point DCT whereas the other has prefiltering/postfiltering
turned on [11]. In both EZ coders, additional 9/7 wavelet de-
composition is performed on the DC subband to ensure a fair
comparison, i.e., to enforce the same tree depth.

CEB with prefiltering and postfiltering outperforms all other
methods most of the time, especially at medium bit rates. Some-
times CEB’s performance can be slightly below EZ’s. This is
due solely to the fact that EZ is more efficient in handling DC
coefficients (EZ uses wavelet decomposition to further decor-
relate the DC subband). Although L-CEB is much simpler than
E-CEB, E-CEB can only outperform L-CEB by a small margin.
For low-resolution images, the wavelet transform starts to lose
its global advantage and CEB outperforms SPIHT as well as
JPEG2000 by a large margin. To be fair, the 114-byte header of
JPEG2000 has been compensated.

Portions of reconstructed Barbara images at 0.125 bpp are
shown in Fig. 13. With prefiltering/postfiltering turned on,
blocking artifacts are eliminated. Lots of fine features, which
are not visible in the portions reconstructed by SPIHT and
JPEG2000, are clear in the portions reconstructed by CEB
with preprocessing/postprocessing. In these coding examples,
E-CEB gives the best overall visual quality.

In short, compared to CEB, especially L-CEB, other algo-
rithms are a lot more complex and have a much larger memory
requirement. Our results demonstrate that block transform
coders, and if designed appropriately, can yield as high R-D
performances as current state-of-the-art wavelet coders while
requiring a much lower level of complexity.

VIII. C ONCLUSION

In this paper, we point out an important feature of block
transform coefficients that can be exploited in compres-
sion applications: a coefficient is highly correlated with
its block neighbors as well as its subband neighbors. This
space–frequency relationship leads to a simple, yet efficient,
context-based entropy coding algorithm of block transform
coefficients (CEB). The generic approach and two simple
versions of CEB are presented: the local CEB (L-CEB) and the
embedded CEB (E-CEB). Outstanding coding performance of
CEB demonstrates the power of high-order context modeling
of block transform coefficients. Finally, there is still room for
CEB improvements: better context-modeling, better coding
methods for DC coefficients, adaptive prefiltering/postfiltering,
variable transform block sizes, etc. CEB is also perfectly suited
for the block-based coding framework popular in video coding.
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Fig. 13. Enlarged 256� 256 portions of the Barbara image coded at 0.125 bpp. From left to right, top to bottom: original image; coded by SPIHT: 24.86 dB;
coded by JPEG2000-LS: 25.55 dB; coded by EZ: 24.60 dB; coded by L-CEB: 24.82 dB; coded by E-CEB: 24.99 dB; coded by EZ with pre/post: 25.93 dB; coded
by L-CEB with pre/post: 26.42 dB; coded by E-CEB with pre/post: 26.52 dB.
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