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Abstract—it has been well established that state-of-the-art artifacts by employing overlapped basis functions. (To process
waveletimage coders outperform block transform image coders in - high-resolution images, practical implementations partition the
the rate-distortion (R-D) sense by a wide margin. Wavelet-based it jnto large data blocks, called tiles, and transform them in-
JPEG2000 is emerging as the new high-performance international d dentlv) Th let t f be int ted
standard for still image compression. An often asked question | epep ently.) The wavele _rans orm c.an emn grpre edas an
is: how much of the Coding improvement is due to the transform Iiteration Of a tWO'ChanneI f|lter bank W|th a certain degree Of
and how much is due to the encoding strategy? Current block regularity on its lowpass output. Part of the beauty and power of
transform coders such as JPEG suffer from poor context mod- wavelets is their elegance: complicated tilings of the time—fre-
eling and fail to take full advantage of correlation in both space guency plane can be easily achieved by merely iterating a simple
and frequency sense. This paper presents a simple, fast, andtW h ld it Furth .
efficient adaptive block transform image coding algorithm based ! 0-channe e_compo_S| lon. Furthermore, a Coarse_ approxima-
on a combination of pref”tering, post'ﬁnering7 and high_order tion tOgetheI’ W|th deta”ed Wa.VeIet Components at d|ﬁerent res-
space-frequency context modeling of block transform coefficients. olutions allows fast execution of many DSP applications such
Despite the simplicity constraints, coding results show that the as image browsing, database retrieval, scalable multimedia de-
proposed coder achieves competitive R-D performance compared livery, etc.
to the best wavelet coders in the literature. Since the introduction of the embedded zerotree wavelet

Index Terms—Adaptive entropy coding, block transform, (EZW) compression algorithm by Shapiro in 1993 [2], wavelet
context modeling, DCT, image coding, JPEG, postfiltering, coging technology has advanced significantly. State-of-the-art
prefiltering. . . . ,

wavelet coding algorithms, such as Said and Pearlman’s set
partitioning in hierarchical trees (SPIHT) [3], Chrysafis and Or-
|. INTRODUCTION tega’s context-based entropy coding (C/B) [4], Wu’'s embedded

N IMAGE CODING algorithm generally involves aconditional entropy coding of wavelet coefficients (ECECOW)

transformation to compact most of the energy of the inp ] ar.md-ECECOW with context quantization guided by_ Fisher
image into a few transform coefficients which are then qua 1scr||m|nané_lg\lij) [76]' Hodng and .L"I’}dn_?_r sbgroup testlggdl;ord
tized and entropy encoded. The two popular transformati velets ( ) [7], and especially Taubman's embedde

approaches for image compression are the block transform k coding with optimized truncation (EBCOT) [8]—the

the wavelet transform. The block-based approach partitions ﬁ%me_work for the curren_t state of the JPEG2000 image_com-
ession standard [9], give the best R-D performance in the

input image into small nonoverlapped blocks; each of them Re

then mapped into a block of coefficients via a particular bloé!}erature. d!n thel_m?[agtlmg,trt]heRpg) gre?s for block tr:;nfform
transform usually constructed from local cosine/sine basdd29€ coding IS limited and the R-L perlormance gap between

Most popular amongst block transforms for visual data is tﬁgé _beSt Wavglet goding algorithm and the best block transform

type-Il discrete cosine transform (DCT) [1] and the block siz((:‘.\Odlng algorithm is quite Iarge_. . .

is commonly set to 8 8. Block DCT coding is the basis of The success of wavelet coding technology is mainly a result
% advanced context modeling and adaptive entropy coding of

many international multimedia compression standards fro O X
JPEG for still images to the MPEG family for video sequence\g.avelet coefficients. Good context-based entropy coding well
ploits the nature of wavelet coefficients such as multiresolu-

Low-complexity and good energy compaction within a dat®*

block are two main reasons why the DCT has been populg?.n structure_z, parent—children relationship, zero clustering, a_nd
%j?gn correlation. On the contrary, context based entropy coding

Unfortunately, at low bit rates, block-based systems suffer fro - . X
the notorious blocking artifacts, i.e., discontinuities at the blo ZIZigr::jzilzf(;:gﬁggﬁcl)crl?:2:;:;2S;;triizz“ﬁgc?l:rcahnzg)errr]r??:g
boundaries resulting from reconstruction mismatches. g . . . o
Unlike the block transform approach, the wavelet transforﬁﬁ'ﬁ'enlts IS St';: JPEC;FS'Z|gzagtslcan?lngﬁandfrunlt.arigtg Bog":g
approach treats the input signal globally and avoids blockirﬁgC nology, whose € |C|ency.a cast sutters trom. ) 2- ) data
is encoded in a 1-D manner; correlation between coefficients
in the same block has not been fully exploited; 2) data blocks
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Gjtu@ijhu.edu; trac@jhu.edu). Image coders which use zerotree wavelet coding algorithms

Digital Object Identifier 10.1109/TIP.2002.804279 such as EZW and SPIHT to encode block transform coefficients

1057-7149/02$17.00 © 2002 IEEE



1272 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 11, NO. 11, NOVEMBER 2002

S
0 o,
:\\ :\\ .
RN R NN
S
N N N R NN - N N
\§ R B A N \\\'\%\\\ o
SR EENN ks

Fig. 1. Space—frequency relationship between coefficients in (left) blocks and (right) subbands.

by reordering them into familiar wavelet structures [10]-[12]and specific examples of L-CEB and E-CEB implementations
These block transform coders significantly outperform thiellow in Sections V and VI, respectively. In Section VII, we
traditional JPEG coder in the R-D sense. When correlatipmesent extensive coding results and compare them with those
between blocks is taken into account by employing lapped other state-of-the-art algorithms.

transforms, competitive or even better compression compared

to wavelet coders can be achieved on a wide range of images REPRESENTATION OFBLOCK TRANSFORMCOEFFICIENTS

at a wide range of bit rates. Notice that the zerotree struc-
ture is actually a high-order context model. The significant
improvement over JPEG is mainly a result of better conte o .
based entropy coding of coefficients. Although these cod ck of transform coefficients. We shall use exclusively the
exhibit the power of context-based entropy coding of bloc x 8 type-ll DCT [1] (M = 8) which has been proven to be a

transform coefficients, they have not been optimized for blo%%md tradeoff between complexity and coding performance. An

transforms. Wavelet-specific features are imposed and speg, paint block tran_sform can _also be interpreted ?‘M‘”"f”‘”d
characteristics of block transforms are ignored. !ter bank whose filters are simply the transform’s basis func-
In this paper, we present a novel adaptive block transfor"S:
image coding algorithm based on context-based entropy . )
coding of block transform coefficients (CEB). Benefiting fronf™ SPace—Frequency Relationship
high-order context modeling and adaptive entropy coding The M-point DCT maps &Kk M x LM input image into a
optimized for block transforms, CEB demonstrates superi®f x L grid of M x M coefficient blocks. Under the aforemen-
R-D performance. CEB comes with two flavors: local CEBioned filter bank perspective, the coefficients can be reordered
(L-CEB) and embedded CEB (E-CEB). L-CEB transformsnto anM x M grid of K x L subbands. The coefficient at po-
guantizes, and compresses an image block by block sequstien (i, j) (0 < 4, 5 < M) in block (z,y) (0 < z < K,
tially in place without buffering others. It is geared toward < y < L) is located at positiorfz, y) in subband(z, j).
resource-constrained applications with high speed and vémyother words, subban@, j) collects all coefficients at the
low memory requirement such as those in mobile handheld j) position from every block. These coefficients represent
devices. E-CEB compresses an image bitplane by bitplane jtiet same frequency component of the entire image. On the other
like other progressive coders. All transform coefficients ateand, block(z, y), which gathers all coefficients at the same
buffered; however, each bitplane is still coded block by blockpatial location(«, y) from every subband, represents different
E-CEB offers rate and distortion scalability. E-CEB also allowsequency components of a local spatial region. Dominating fea-
better context modeling and thus achieves better compressimes of an image are often more obvious in subbands than in
especially at high bit rates. blocks. Fig. 1 demonstrates the two different representations of
The paper is organized as follows. The next section descritmegfficients: the block representation and the subband represen-
the space—frequency subband representation of block transfoation.
coefficients and how simple prefiltering and postfiltering can Subbands can be divided into four categories: a DC subband,
take into account correlation between blocks to maximiaésubbands containing vertical features, H subbands containing
coding efficiency. In Section Ill, we show that a coefficienhorizontal features, and D subbands containing diagonal fea-
is highly correlated not only with its block neighbors, butures. These correspond approximately to the LL subband, LH
also with its subband neighbors. Based on this observati@ubbands, HL subbands, and HH subbands in the familiar hier-
Section 1V discusses effective context based entropy codiagchical wavelet structure. As depicted in Fig. 1, subband (0, 0)
of block transform coefficients. The generic CEB algorithmat the upper left corner is the DC subband; subbandsiwiti2;

In this paper, a block transform refers to a separable linear
apping of anM x M block of image pixels into afl/ x M
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Fig. 2. Prefiltering and postfiltering at block boundaries.

are classified as V subbands; subbands with 2i are classi- wherel, J, and0 are theM /2 x M /2 identity matrix, the
fied as H subbands; and the remaining are D subbands. reversal matrix, and the null matrix, respectively. The corre-
LetCi 7 denote the transform coefficient at positignj) in  sponding postfilter is

z,y
block(z, y), orin other words, the coefficient at positign, y)
in subband, j). CoefficientC? 2 has two types of neighbors:
. ) Y ; _ 1 (T J)(1T o I 3J
block neighbors in space and subband neighbors in frequency. P~ =3 3 —1llo v-1lls -1l (2

For example, in Fig. 1, the coefficient labeled “4” has block

neighbors &"—* 0" and subband neighbors “0,” “1,” “2,” “3,”
“5 7 “6.” “7.” and “8.” The matrix V controls prefiltering and postfiltering. The

combination of prefiltering/postfiltering and the DCT can be
shown to generate a family of invertible linear phase lapped
transforms [13]. It should be noted that if we 3ét= T then

To avoid blocking artifacts and to improve coding efficiencyp — p-1 — 1, je., prefiltering/postfiltering is turned off, and
but still retaining all attractive features of block-based techiye are back to a traditional block-DCT-based coding system.
niques, we rely on prefiltering and postfiltering along the blockt image boundaries, extending the image symmetrically fol-
boundaries of the traditional block-based coding scheme. Qufyed by prefiltering or postfiltering is equivalent to bypassing

prefiltering and postfiltering framework is illustrated in Fig. 2pyefiltering or postfiltering altogether [13].
The prefilterP processes the block boundaries, taking away cor-

B. Prefiltering and Postfiltering

relation between blocks. The preprocessed samples are the fe-laﬂIe detailed design of fast and efficient prefiltering/postfil-
X prep P %ers is described in another publication [14]. The prefiRarsed

to the DCT to be transformed and encoded as usual. At the dé:, . . : ; )

N this paper depicted on the left of Fig. 3 is taken directly from

T . .
coder sideP~" serves as the postfilter, reconstructing the dalL 4]. The corresponding postfiltd?—" is shown on the right,

in an overlapping manner, eliminating blocking artifacts. Bo ' . . .
e I . he filters are designed to be of low computational complexity
prefiltering and postfiltering can be performed block-wise lo- . . . : o .
) ; . S without losing much (if not any) coding efficiency. In particular,
cally just like the DCT. For 2-D image data, prefiltering is per- o L
. . we chooséV such that the postfilter is multiplierless.
formed in a separable fashion, followed by the common sepa-

rable DCT decomposition. Postfiltering is performed Separab%Flg.'4hdemonstrates (:he effegt of preﬂltermgl or|1( a?] Input
as well. iIrage: the preprocessed image becomes very blocky; however,

) . . each block fed into the DCT is smooth. The prefilter extracts
The block prefilter consists of two stages of butterflies and A . . . .
. the correlation between adjacent blocks, hence increasing the
matrix V between them : : ; ) A
DCT’s effectiveness in energy compaction. The postfilter is the
p_1 I J|I[I O I J 1 exact inverse of the prefilter. It operates on the signal between
“20J -1||0 V|[|J -I @ blocks as a smooth interpolator, eliminating blocking artifacts.
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Fig. 3. (Left) PrefilterP and (right) the postfilteP? —*.

Fig. 4. Demonstration of the prefiltering effect. Left: original image. Right: prefiltered image before DCT transformation.

Ill. I NTRABLOCK AND INTERBLOCK CORRELATION correlated with its subband neighbors, especially in low-fre-
. qguency subbands. We call this type of correlation interblock
A. Intrablock Correlation (or intrasubband) correlation. Generally, interblock correlation

The most well-known feature of a coefficient block in a nats much stronger than intrablock correlation. Fig. 5 shows the
ural image is that the magnitudes of AC coefficients decreaseldgck and subband representation ot 8 DCT coefficients of
the frequency increases. Besides, although the basis functiis512x 512 Lena image. Spatial features are much more vi-
corresponding to different coefficients of a block are generalfally obvious in subbands than in blocks. The DC subband is
orthogonal or near orthogonal, two coefficients in a block afethumbnail image as is the lowpaks wavelet subband. Each
not independent. A coefficient is still correlated with its bloclef the other subbands is a bandpass-filtered thumbnail of Lena.
neighbors. We call this correlation among neighbors within Bach subband contains a part of the global information of the
local block intrablock (or intersubband) correlation. image. Vertical (horizontal) features are easily recognized in the
However, algorithms exploiting only intra-block correlationV (H) subbands just as with theff (H L) wavelet subbands.
are not expected to yield state-of-the-art R-D performance sinceExploiting interblock correlation is the key to eliminating fre-
1) intrablock correlation, especially fors8 8 block size, is dUency redundancy. This is a weakness of most block coding
limited to a small local block and only reflects the short2190rithms. For example, except for DPCM coding of DC co-
range correlation: efficients, JPEG [15] completely ignores interblock correlation.
2) correlation is weak since coefficients at different locd-Ully taking advantage of both intrablock and interblock cor-
tions correspond to different basis functions; relation in the transforming stage with prefiltering/postfiltering

3) most coefficients are quantized to zero and, thus n"i'J‘Pd in the coding stage with advanced context-based adaptive
much information can be exploited. ' " entropy coding is the key to a vastly improved block-DCT-based

image coder.

B. Interblock Correlation C. Sign Correlation

Block transform subbands and wavelet subbands demonstratt has been recently observed that sign correlation exists
similar characteristics. A block transform coefficient is stronglgmong wavelet coefficients. Many researchers have explored
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the benefits of sign modeling [5], [6], [8], [9]. Besides offeringhen compressed into a bitstream. The way to generate this se-
better coding efficiency, sign modeling can also improve thiience and the way to compress it should be jointly optimized.
final estimate of coefficients which are quantized to zerd.his paper is mainly concerned with the latter.
Deever and Hemami provided a detailed analysis of signThe minimum code-length of a sequence in bits is given by
behaviors of wavelet coefficients and demonstrate how much
gain can be obtained by sign coding and sign extrapolation [16].
In the block-transform case, although sign correlation among
block neighbors is weak, sign correlation among subband neigh-

bors is strong especially in low-frequency subbands. Fig. 6 p'%‘ﬁereP(
the sign maps of two & 8 DCT subbands of the Lena image,.i-1 \yhich denotes the sequenge,

~log, [T P (ils"") ®)
i=1

x;]2'=1) is the conditional probability of:; given

i1y Li—2y v oy 2171}. Here,

Sign patterns do exist, especially along and across strong edg;a& is the known information about:. Hence zi—! is called
Clearly, sign modeling for block transform coefficients is worthg,a context ofz. .

while.

IV. CONTEXT MODELING OF BLOCK TRANSFORM
COEFFICIENTS

The probability P(x;|z*~1) is highly image dependent and

not known before coding;. CEB relies on adaptive arithmetic
coding to estimate’(z;|z'~1) on the fly and allocates the bit
budget accordingly. To do so, different contexts need different
adaptive models and a tremendous number of models are neces-

Before encoding the quantized coefficients, they are first regary since:*~! may contain a large set of symbols. In practice,

resented as a sequence of symHals, z-, ..

., £} which is alarge number of models not only increases the complexity, but
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also decreases the performance of the arithmetic coder because 10988716615
of contex_tdllutlon,|.e.,"there are not enough samples to reach a glel7l7l6l6l6!5
good estimate of*(z; |z~ 1). 1717 Telel6l5 12
The task of context modeling is to estimadtér;|2*~!) using
an affordable number of models. We formulate this problem as 6/6]6]/6/6]5]5/4
6|5|5|6|5[5|4|4
i1 5(5|5(4|4|4|4]|5
i [(x 4
A ) @) 414|14|4(4|4)|3|4
414444343

which means that the symbe| is coded based on the adap-

tive model indexecﬂl’%l)- Here, f is a function Ofxzil‘ that Fig. 7. Most significant bits of & 8 DCT subbands of Lena.

maps the context’~! to an estimated model QP (x;|z*~1).

The functionf is a many-to-one mapping and, thus, maps alarge .

number of contexts to a small number of context models. Gen- E-CEB Algorithm

erally, f only depends on a small subset:6f ! containing the ~ Embedded-CEB (E-CEB), the progressive version of CEB,

most relevant symbols regarding. buffers all transform coefficients. When E-CEB is initialized,
Wu demonstrates the power of high-order context modelinige highest bitplane is found and all coefficients are marked as

in wavelet coding [5], [6] where context modeling is fullyinsignificant. E-CEB then proceeds from the highest bitplane

optimized for encoding wavelet coefficients. A similar gaimlown to the lowest bitplane until a given bit rate or a given dis-

can be expected from context modeling optimized for encodingrtion level is achieved. In each bitplane, blocks are still en-

block transform coefficients. Based on the discussion goded one by one from top to bottom and left to right. For the

Section Ill, the key point is that a block transform coefficiensth bitplane, each block is encoded as follows.

should be coded conditioned on known information of both 1) Refinement CodingFhe bth bitplane of each previously
its block neighbors and subband neighbors. More gain can be  gjgnificant coefficient is coded.

expected if different subbands are treated differently according2y significance TestingCheck the magnitude of every in-
to their characteristics. For example, models for the V subbands  sjgnificant coefficient. Label it as significant if its magni-
should be tuned toward capturing vertical edges. Usually,  tyde is equal to or greater thah.

low-frequency subbands and high-frequency subbands should) sign CodingThe signs of coefficients which just became
also be treated differently since correlation starts to disappear  sjgnificant are coded.

yvhen the .principal frequen_cy dec_regses: Th(_a main innovatioq:Or natural images, the DCT compacts most signal energy
in CEB is its context modeling optimized in this manner. into low-frequency subbands. Consequently, low-frequency
subband coefficients have much higher magnitudes than
high-frequency subband coefficients. The distribution of the

V. GENERIC CEB ALGORITHM most significant bits of 8« 8 DCT subbands of Lena in Fig. 7

CEB is a block-based algorithm. We treat transform COer@ustrates this fact. The information of the most significant

cients in a subband context but never reorder them into s CEB buff I ficients. K ing th t significant
bands. Only a minimal amount of information from a few ad-" ulters all coetncients. ©nowing theé most significan

jacent blocks needed by context modeling is buffered. bits, E-CEB can avoid coding some significance mf_ormgnon.
For example, E-CEB never needs to code the significance

) information of (7, 7) subband coefficients before coding the
A. L-CEB Algorithm third bitplane since they must be insignificant. In this manner,

Local CEB (L-CEB), the local and low-complexity versionE-CEB saves a good number of bits on coding significance
of CEB, processes image blocks one by one from top to bottdfformation. To do so, the encoder has to send the most
and from left to right. Prefiltering, DCT, and postfiltering areSignificant bits to the decoder. The cost for coding the most
performed block-wise. There is virtually no buffering except foignificant bits is trivial comparing to the bandwidth savings.
the current block to be encoded. For each block, the coefficients
are processed in four steps. C. Significance Testing Strategy

1) Quantization: Generally scalar quantization with a Besides the quantization method, two aspects that differen-
double dead zone is used. Other quantization methditste different CEB implementations are the significance testing
may produce better objective and/or visual quality. strategy and the coding scheme for signs, significance, and mag-

2) Significance TestingEach quantized coefficient in thenitude/refinement information. Significance testing is generally
block should be tested to determine if it is significanbased on a certain group testing method: a group of coefficients

its is not available to L-CEB, but is available to E-CEB since

(nonzero) or insignificant (zero). is tested together and divided into subgroups if it is found sig-
3) Magnitude Codinglf a coefficient is significant, its mag- nificant. The standard group testing method for wavelet coders
nitude is coded. is the zerotree technology in EZW [2]. However, group testing

4) Sign Coding:Obviously, the sign of each significant co-becomes less important if the following context-based entropy
efficient should also be coded. coding is well designed. For instance, in the wavelet coders
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ECECOW and FD [5], [6] which yield the best R-D perfor-
mances so far in the literature, wavelet coefficients are tested one
by one. In this paper, we concentrate on optimizing the coding
of signs, significance, and magnitude/refinement information.

D. Entropy Coding

Once a coefficient becomes significant, it is generally be-
lieved that entropy coding does not help much in coding later
bitplanes. So refinement information is encoded in raw binary,
i.e., one bit is used to indicate whether the bitplane is “0” or
“1.” Since the magnitude and sign of a coefficient are highly
correlated with those of its block and subband neighbors, con-

text-based entropy coding still helps substantially in coding §efine St

other information.
CEB employs binary adaptive arithmetic coding. This is the
simplest and the fastest version of adaptive arithmetic coding,
which can be easily implemented in both software and hardware
[17]. Furthermore, it approaches the underlying context model

very quickly. There is no problem in coding significance angve says m
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, as the set of coefficients in blodk, y) whose
zigzag Iabelk satisfiesk > |

Sly_{ @,y

Cl+1

T,y

C3,Y.

()

sign information since they are binary. However, the magnitudgant. OtherW|se it is said to be significant. Note thaﬁf
, With & > [ is also insignificant. Sec—

of a significant coefficient is not binary. CEB binarizes them |ntms|gn|f|cant thens*

sequences of binary symbols before coding. Specifically, CERdly, if S
binarizes a nonbinary symbolinton — 1 binary “0"s followed  sjgnificant because
by a binary “1.” For example, 4 is binarized as 0001. Different
adaptive models can be used for different bins.

simple L-CEB coder and a simple E-CEB coder. Here withm is used: begin witts? Y
only deal with 8x 8 blocks and the DCT, but it is easy tonificant, it is subdivided mtd)l

VI. SPECIFICCEB IMPLEMENTATIONS

,is 5|gn|f|cant ct,

l
xy {x S+1}

, is insignificant if all of its members are |nS|gn|f|-

andS’frl can not be both in-

(6)

Since optimizing significance testing algorithms is not our main
This section describes in detail the implementation of @ncern in this paper, a simple sequential group testing algo-

and increment; if S!

|s sig-
and S“{} this subd|V|S|on

generalize to other block transforms of other sizes. The DQfocess is repeated until all 5|gn|f|cant coefficients are identi-
implementation used in CEB is a “binary” DCT approximatioriied.
[18] as illustrated in Fig. 8. Only integer additions and shifts As mentioned in Section IV, in the context of modeling, dif-

are needed except for the final floating-point scaling which ferent subbands should be treated differently. In our CEB im-

combined with quantization.

as shown in Fig. 9. Coefficient:: J isalso denoted as! |

l < 64) wherel is its zigzag Iabel For examplé€;!

_021

z,y"

,(0<

plementations, we differentiate seven types of subbands as de-
Coefficients in a block are labeled in the zigzag order of JPEéicted in Fig. 10: one DC subband, one principal V subband
(PV), one principal H subband (PH), three low-frequency V
subbands (LV), three low-frequency H subbands (LH), eight
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i Cxty]
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[Cx,yd ] X,y
Q subband neighbor =+ block neighbor

Fig. 11. Context modeling for L-CEB.

tion V and coded based on binary adaptive models. A single

model is used for all bins of the magnitude value. Four models
Fig. 10. Subband classification. are used for different subbands: one for DC; one for PV and PH,;

one for LV, LH, and LD; and one for HP.

low-frequency D subbands (LD) and the remaining 47 high- As an example of how L-CEB works, consider the encoding

pass subbands (HP). Subbands of the same type share the $§Rf€ss of a quantized 8 8 block of transform coefficients

context modeling. Usually, different adaptive models are us880own in the following (actually taken from [19])

for subbands of different types since their characteristics differ

greatly. The DC subband is nearly independent of the AC sub- [ ;’ (1) _é 8 8 8 8 8
bands. CEB does not use one as the context of the other. _1 _1 000000
A. L-CEB Implementation c |0 0 000000
. - . wY 0 0 00 0 0 0 0
L-CEB is specifically designed for low-cost, low-power, 0 0 00000 0
high-speed real-time applications. We assume that onboard O 0 00000 0
memory is very limited. Only a few adaptive models are 0 0 00000 0
allowed. The DC of blockz, y), C2:9, is predicted as the - -
mean of the reconstructe%l IODC coef(§|%|ents from the left and ©QRCER will map this coefficient block into the following string
neighboring blocks, i.e(C,; , +C,’,_;)/2. The prediction ¢ symbols and binary bitstream
error is quantized and coded. Simple scalar quantization with a
double dead zone is used. We (6% ,] and[S., ,] to denote (€0 ,] 3 + (s, [ct,] [c2,] 2
the significance information of”, | andS’, ,, respectively 1 ’ 001 0 1 ’ 0 ’ 1 ’ o1
ol = if CL_, is significant Ko - [s3,] [c3,]1 - (53,1 [C4,
Y 0, otherwise 1 1 1 1 1 1 1
1, if SL  is significant 5 5 6
St1=4"b oay! 8 1 — s3.,01es )1 —~ S8
[9:.4] {0, otherwise. (8) X L [1 o) [1 Y X L [1 Y
The block-coding process proceeds as follows. PoL [c7 .1 [C8.] _ 1S9 ]
1) Findl, the zigzag label of the last significant coefficient. 0 Y 0 Y 1 Y 1 1 0 Y
2) Code[C] ,]. :
3) Code thle magnitude and the signdf , if [C7 ] = 1. A total of 30 bits is used to represent the data block. How-
4) Codle[Sm,y]. , ever, this is only raw binary and the reader can easily observe
5) I[S;,] = 1/.then fori = 1tol that there is still a lot of redundancy in the bitstream. Except for
y _code{[C.;,y]; the six binary symbols representing signs, all 24 remaining bi-
- if [C; ,] = 1then nary symbols will be further compressed by arithmetic coding.

— code the magnitude and the sign@_ﬁ,y; _ The 15 significance symbolsS{ ,] and [C? ], will be coded
— if i < 63 then code[S.T,], which is 1 if conditioned on the known information of neighboring blocks. In

i < [ and O otherwise. the same example, JPEG spends 31 bits in its runlength coding

Since the DC coefficient(]g;y, is not grouped with AC scheme

coefficients, we never code? , . Note that codingS:*,] if
[Si ] =1and[Ci ] = 0should be avoided sind§’*!] = 1 (2)(3) (1,2)(=2) (0. )(=1) (0, 1)(=1)
is already known. Also, sinc€’)?, is the same a§,§f’(y, we 001 11 1101101 000 000

should also avoid coding”$? ] twice.
To keep L-CEB simple, signs are not entropy coded and one (0. 1)(=1) (2, 1)(-1) (0, 0)
bit is spent for the sign information per significant coefficient. 000 111000 1010.
Magnitudes of significant coefficients are not binary but most
of them are small. L-CEB codes magnitudes without using aiowever, JPEG has already utilized entropy coding (Huffman)
context. Magnitudes are simply binarized as mentioned in Seaid the above is the final bitstream.
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[s) 4] Y L .
I Ob a O . 'Ol b [CX‘I1'V1 ]0[01]®[CI1] O(C;I% )P
[Sx-1,y-1 ] R ' R [Sx,y+1] _____ ' H ." [c i ]b : y
oo L. 0TI TN ' ‘ X,y+1 - : i b+1
------ } 5"--" E[Cxlllty ]bi "\ ! /,‘ (C;:I1'y )b : (CX:”’y)
s/ ? é[sl ]b[so| o+ : G?b:é"bo by O >§<--.-.---O
x-1.y P Bty [Cuy "] F e, 10 [ X+1y] * : (cx'-'y)b
e : P
O Byy.1] O [ny+1]b+1 o) (C;:;ﬂ)bn

QO subband neighbor + block neighbor

Fig. 12. Context modeling for E-CEB.

As previously mentioned, the only information coded bprefiltering/postfiltering and fast DCT implementation makes
L-CEB with context-based arithmetic coding is the significande-CEB ideal for handheld devices such as PDAs and cellular
information. L-CEB uses a simple context modeling meththones.
illustrated in Fig. 11: the significance information Sfb v
coded conditioned on the number of significant left subbarﬁi E-CEB Implementation

neighbor §;_, ,) and top subband neighboS(, ;); the  |n E-CEB, an index/, ,, is associated with blockz, ) to
significant |nformat|on ofC%7 is coded conditioned on how ingdicate the zigzag label of the last significant coefficient. When
many of its left subband ne|ghboCL 31 ), top subband E-CEB is initialized /.. , is set to zero and all coefficients are
neighbor Cg: 1) left block neighbor ¢ ~4:7) and top block labeled as |nS|gn|f|cant Let! be the most significant bit of the
neighbor C}E’J 1) are found S|gn|f|cant If any of the block Subband with Z|gzag Iabé] Let| L ,|" be thebth bitplane of
(subband) nelghbors is out of block (image) boundaries, |t¢'& . Denote[C ]b (CcL )b, and[Sl ,]! the significance of
assumed to be insignificant. m ,» the sign of and the S|gn|f|cance oﬁw at thebth
Following the notation of Section IV, the detailed contexbitplane
modeling is given by

.’EJ'

1, if CL  is significant atth bitplane

A T,y
0, ifl=1 1G] { 0, otherwise (11)
1 3./ |f l == 2 H —_ l
[ x, y] [ 1,y] + [Sx,yfl] + 6. if2 <l<15 (9) . : 17 if [C [ ] =1 andCz,y >0
o if1> 14, (c. ) =<¢—1, if[C. '=1andC. <0 (12)
. ' 0, if [C =0
[Coa)[Cr2y 1+ (001
Y ' 1y Y1 s ] = 1, if S. , is significant abth bitplane (13)
12, if 33, € DC 2y 0, otherwise.
15, if C;Jy € PV
18, if % Jy € PH The process of encoding théh bitplane of a certain block
+ ¢ 21+ [Ci ), if Cpy, e LV (10) (=, ) is as follows:
25+[C;:J3}1] n‘C;CJyeLH 1) Fori =0tol, , '
29 + [Ci— 1] + [C *—1]7 if C;Jy € LD . code|CT 10 _if C;y is significant;
| 34+ [Cim ]+ [CEamY, if Ch) e HP. < if C; , i |nS|gr3|f|c?nlt then .
—code[Cm L7 ifb < m;
_ i b —
Different models are used for different subband classes. If*[ilbe]l ci 1;26;: nificant:
Adaptive models are, y-independent. L-CEB needs a total of . code(Cl X 9 '
x,y/ "

38 adaptive models to code significance information and four

adaptive models to code magnitudes. Altogether only 42 binary

models are necessary.

2) Ifl,,, < 63, then
o code[Sy TN if b < mi(f < Lo,y + 1);

Significance information of one horizontal slice of blocks « if [Sy7y TP = 1then fori = I, , + 110 63,
should be buffered for context modeling. Each block needs —setly,, = 1; ,
64 bits. We also need to buffer DC coefficients of the slice to —code[C 1%, if b < m’;
perform DC prediction. Besides the trivial memory needed for —if [CL, ] = 1then
the 64 transform coefficients and the 42 binary models, L-CEB * Iabel ct _, as significant;
only requires to buffedV (64 + 32)/8 = 12 W bits, or1.5 * code(C; i
W bytes, to code an image of widili’. L-CEB can easily fit *code[S’Tl]” if i < 63andb < m(j <
an 8 K memory footprint. The combination of simple context 1+ 1).

modeling, simple group testing, binary arithmetic coding, fast

— stop, ifi = 63 or [SiH!]* = 0
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TABLE |
CoDING COMPARISON BIT RATE (bpp)/PSNR (dB)

9/7 wavclet 8 x 8 DCT 8 x 8 DCT with pre/post
bpp || SPIHT | JPEG2000-SL | EZ [ L-CEB | E-CEB | EZ | L-CEB | E-CEB
Lena (512 x 512)

1 0.0625 28.38 28.30 26.90 | 26.67 26.82 28.14 27.91 28.07
0.125 31.10 31.22 29.59 | 29.61 29.83 | 30.98 | 30.99 31.22
0.25 34.11 34.28 32.82 | 32.94 33.16 | 34.07 | 34.22 34.43

0.5 37.21 37.43 36.24 | 36.34 36.63 3712 | 37.19 37.46
1.0 40.41 40.61 39.61 | 39.54 40.08 | 39.89 | 40.03 40.43
Goldhill (512 x 512)

0.0625 26.73 26.74 26.00 | 25.90 2596 | 26.77 | 26.79 26.97
0.125 28.48 28.58 27.85 | 27.90 27.99 | 28.57 | 28.64 28.73
0.25 30.55 30.71 30.00 30.14 30.23 30.71 30.84 30.94

0.5 33.12 33.35 32.72 | 32.80 3297 | 3331 | 3346 33.60
1.0 36.54 36.72 36.24 | 36.22 36.51 | 36.60 | 36.80 37.04
Barbara (512 x 512)

0.0625 {| 23.35 23.45 22.71 | 22.59 22,73 | 23.74 | 23.86 24.10
0.125 24.86 25.55 24.60 | 24.82 2499 | 2593 | 26.42 26.52
0.25 27.58 28.55 2723 | 27.68 27.83 | 28.95 | 29.64 29.76

0.5 31.39 32.48 31.14 | 31.62 31.91 | 3291 | 33.56 33.75
1.0 36.41 37.37 36.24 | 36.54 36.98 | 37.57 | 37.98 38.38
Bike (2048 x 2560)

0.0625 || 23.44 23.89 22.72 | 22.77 22.89 | 2347 | 23.39 23.65
0.125 25.89 26.49 25.44 | 25.70 25.83 26.13 26.43 26.63
0.25 29.12 29.76 28.74 | 29.02 29.19 | 29.31 | 29.63 29.83

0.5 33.01 33.68 32.65 | 32.82 33.12 | 33.09 | 33.27 33.66
1.0 37.70 38.29 37.35 | 37.29 37.77 | 37.40 | 37.58 38.14
Cafe (2048 x 2560)

0.0625 18.95 19.10 18.50 | 18.40 18.50 | 18.97 | 18.71 18.83
0.125 20.67 20.88 20.24 | 20.22 20.40 | 20.73 | 20.74 20.95
0.25 23.03 23.29 22.71 22.74 22.97 23.22 23.43 23.54

0.5 26.49 27.00 26.71 | 26.40 26.59 | 26.78 | 26.97 27.17
1.0 31.74 32.27 31.43 | 31.45 31.73 | 31.75 | 31.86 32.23
Woman (2048 x 2560)

0.0625 || 25.43 25.67 25.06 | 24.80 2498 | 2532 | 25.07 25.28
0.125 27.33 27.46 26.92 | 26.90 2710 | 27.22 | 27.31 27.53
0.25 29.95 30.15 29.53 | 29.60 29.84 | 30.07 | 30.07 30.26

0.5 33.59 33.81 33.21 | 33.28 33.62 | 33.63 | 33.68 34.06
1.0 38.28 38.67 37.93 38.00 38.38 38.03 38.11 38.60
First luminance frame of News (176 x 144)

0.0625 || 20.63 21.08 2094 | 21.39 21.17 | 2145 | 21.90 21.81
0.125 23.03 23.31 2299 | 23.49 23.47 | 23.52 | 24.16 24.00
0.25 26.12 26.48 25.83 | 26.60 26.46 26.46 | 27.05 27.05

0.5 30.24 30.38 30.11 30.75 30.62 30.59 | 31.21 31.18
1.0 35.94 36.59 3594 | 36.16 36.40 36.27 | 36.71 36.83
First luminance frame of Glasgow (176 x 144)

0.0625 || 21.32 21.53 21.29 | 21.72 21.65 | 21.70 | 22.19 22.13
0.125 22.81 22.98 22.81 | 23.24 23.21 | 23.36 | 23.82 23.72
0.25 24.82 24.96 2494 | 25.40 25.30 | 25.53 | 25.89 25.75

0.5 27.53 27.68 27.85 | 28.23 28.11 | 28.24 | 28.57 28.48
1.0 32.33 32.47 32.31 32.68 32.62 32.58 32.80 32.82

Note thaﬂCl |” is not entropy coded. All other information, significance information. The only difference is that more sub-
including S|gns is coded by context-based binary adaptive drand neighbors are involved as shown in Fig. 12
tropy coding. The context modeling for coding significance in-
formation is similar to the L-CEB context modeling for coding[S% ,1°: [S%_; , 41" +[SL , 41"+ [Shiy ,_a]’
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S S L LA Ll oY L The wavelet coders in comparison are SPIHT [3] with arith-
0 1= 1 metic coding and JPEG2000 [9] in the single layer (SL) mode.
’ B JPEG2000-SL is optimized for R-D performance and is not scal-

+ 7 !f =2 . (14) able. The Daubechies 9/7 filters [20] are used in both SPIHT and
14, if2<l<15 ) : )
91, ifl> 14 J_P_EGZOOO. Four-, five-, qnd S|x-level_dyad|c wavelet decompo-
- o o sitions are employed for images of size k7644, 512x 512,
[CLiT:[Cy 2y 1)+ 10 ) +[Ch, 1] and 2048« 2560, respectively. The two progressive block trans-
i [Ci,j o [Ci,j Bt [Ci,j ot form coders in comparison are labeled EZ: one is based only on
e=by etly zytl the 8-point DCT whereas the other has prefiltering/postfiltering
28, if Ci7 e DC turned on [11]. In both EZ coders, additional 9/7 wavelet de-
35, if C;Jy e PV composition is performed on the DC subband to ensure a fair
42, if C;Jy € PH comparison, i.e., to enforce the same tree depth.
+{ 49+ [C;j?};j]b, if C;',Jy e LV (15) CEB with prefiltering and postfiltering outperforms all other
56 + [CE a1, if Cbi e LH methods most of the time, especially_at medium bit rates. Some-
64 1+ [O;’_ql,j]b L oL, if 0;5%' c LD times CEB’s performance can be shghtly _beloyv EZ’s._Thls is
734 [Ci;ﬁyj],, n [Ci:]ﬁlil]b./ it C”J c HP. due solely to the fact that EZ is more efficient in handling DC
N ©Y »Hy 27 Y coefficients (EZ uses wavelet decomposition to further decor-

relate the DC subband). Although L-CEB is much simpler than
E-CEB, E-CEB can only outperform L-CEB by a small margin.

For low-resolution images, the wavelet transform starts to lose
its global advantage and CEB outperforms SPIHT as well as

JPEG2000 by a large margin. To be fair, the 114-byte header of
l b. l b l b+1 l b
(Co )" 35 p((Cry1)" +(Co ) ™) +2((Con ) JPEG2000 has been compensated.

The sign ofC. , is coded conditioned on the signs of its left
right, top, and bottom subband neighbors (Fig. 12)

82, f Cjw € DC Portions of reconstructed Barbara images at 0.125 bpp are
HOL ) 4 91, if C.L,ePVULV (16) shown in Fig. 13. With prefiltering/postfiltering turned on,
etly 100, ifCL, e PHULH blocking artifacts are eliminated. Lots of fine features, which
109, ifCL, e LDUHP are not visible in the portions reconstructed by SPIHT and
JPEG2000, are clear in the portions reconstructed by CEB
where the function is defined as with preprocessing/postprocessing. In these coding examples,
E-CEB gives the best overall visual quality.
0, ifz=0 In short, compared to CEB, especially L-CEB, other algo-
p(z) = { 1, ifz<o0 (17) rithms are a lot more complex and have a much larger memory
2, ifz>0. requirement. Our results demonstrate that block transform

coders, and if designed appropriately, can yield as high R-D

Altogether we have a total of 118 binary models, 36 of whicherformances as current state-of-the-art wavelet coders while
are for sign coding. Notice that when coding thie bitplane, all requiring a much lower level of complexity.
information about thé&th (£ > b) bitplane is known. So some
information from the(b + 1)th bitplane is used as context.

The only nontrivial memory other than the buffering of all
DCT coefficients that E-CEB needs is one byte per block to store
thel, , associated with the block. Unlike most zerotree-based
progressive algorithms such as SPIHT, E-CEB does not utilize
any expensive list operation. Therefore, E-CEB is competitive
with any embedded algorithm in term of complexity as well as In this paper, we point out an important feature of block
speed. transform coefficients that can be exploited in compres-

sion applications: a coefficient is highly correlated with
its block neighbors as well as its subband neighbors. This
space—frequency relationship leads to a simple, yet efficient,
context-based entropy coding algorithm of block transform
VIl. CODING RESULTS coefficients (CEB). The generic approach and two simple
versions of CEB are presented: the local CEB (L-CEB) and the

Table | provides a detailed comparison of our CEB codingmbedded CEB (E-CEB). Outstanding coding performance of
results with those of current state-of-the-art block transfor@EB demonstrates the power of high-order context modeling
coding algorithms as well as of wavelet coding algorithmef block transform coefficients. Finally, there is still room for
Three groups of 8-bit grayscale images are used: the<58P2 CEB improvements: better context-modeling, better coding
images Lena, Goldhill, and Barbara; the 2048560 images methods for DC coefficients, adaptive prefiltering/postfiltering,
Bike, Cafe, and Woman; the first luminance frames of QCl¥ariable transform block sizes, etc. CEB is also perfectly suited
(176 x 144) video sequences News and Glasgow. for the block-based coding framework popular in video coding.

VIIl. CONCLUSION
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Fig. 13. Enlarged 256 256 portions of the Barbara image coded at 0.125 bpp. From left to right, top to bottom: original image; coded by SPIHT: 24.86 dB;
coded by JPEG2000-LS: 25.55 dB; coded by EZ: 24.60 dB; coded by L-CEB: 24.82 dB; coded by E-CEB: 24.99 dB; coded by EZ with pre/post: 25.93 dB; coded
by L-CEB with pre/post: 26.42 dB; coded by E-CEB with pre/post: 26.52 dB.
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