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0.1 Introduction

This chapter covers the basic aspects of lapped transforms and their applications to im-
age compression. It is a subject that has been extensively studied mainly because lapped
transforms are closely related to �lter banks, wavelets, and time-frequency transforma-
tions. Some of these topics are also covered in other chapters in this book. In any case
it is certainly impractical to reference all the contributions in the �eld. Therefore, the
presentation will be more focused rather than general. We refer the reader to excellent
texts such as [62],[26], [65],[54] for a more detailed treatment of �lter banks.

For the rest of this introductory section we will cover the basic notation, give a brief
history of lapped transforms and introduce block-based transforms. We will describe the
principles of a block transform and its corresponding transform matrix along with its
factorization. We will also introduce multi-input multi-output systems and relate them
to block transforms. In Sec. 0.2, lapped transforms are introduced. Basic theory and
concepts are presented for both orthogonal and non-orthogonal cases. In Sec. 0.3 lapped
transforms are related to multi-input multi-output discrete systems with memory laying
the theoretical basis for the understanding of the factorization of a lapped transform.
Such a factorization is then presented in Sec. 0.4. Section 0.5 is an introduction to hierar-
chical lapped transforms, (which are constructed by connecting transforms hierarchically
in a tree path) brie
y introducing time-frequency diagrams, and concepts such as the
exchange of resolution between time and frequency. Another concept is also introduced
in Sec. 0.5: variable length lapped transforms, which are also found through hierarchi-
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cal connection of systems. Practical transforms are then presented. Transforms with
symmetric bases including the popular lapped orthogonal transform, its bi-orthogonal
and generalizations are described in Sec. 0.6, while fast transforms with variable-length
are presented in Sec. 0.7. The transforms based on cosine modulation are presented in
Sec. 0.8. In order to apply lapped transforms to images, one has to be able to transform
signal segments of �nite-length. Several methods for doing so are discussed in Sec. 0.9.
Design issues for lapped transforms are discussed in Sec. 0.10, wherein the emphasis is
given to compression applications. In Sec. 0.11, image compression systems are brie
y
introduced, including JPEG and other methods based on wavelet transforms. The per-
formance analysis of lapped transforms in image compression is carried in Sec. 0.12
for di�erent compression systems and several transforms. Finally, the conclusions are
presented in Sec. 0.13.

0.1.1 Notation

In terms of notation, our conventions are: In is the n�n identity matrix. 0n is the n�n
null matrix, while 0n�m stands for the n�m null matrix. Jn is the n�n counter-identity,
or exchange, or reversing matrix, illustrated by the following example:

J3 =

2
4 0 0 1

0 1 0
1 0 0

3
5 :

J reverses the ordering of elements of a vector. [ ]T means transposition. [ ]H means
transposition combined with conjugation, where this combination is usually called the
Hermitian of the vector or matrix. Unidimensional concatenation of matrices and vectors
is indicated by a comma. In general, capital bold face letters are reserved for matrices,
so that a represents a (column) vector while A represents a matrix.

0.1.2 Brief history

In the early 80's transform coding was maturing itself and the discrete cosine transform
(DCT) [45] was the preferred transformation method. At that time, DCT-based image
compression was state-of-the-art, but researchers were uncomfortable with the blocking
artifacts which are common (and annoying) artifacts found in images which were com-
pressed at low bit rates using block transforms. To resolve the problem, the idea of
a lapped transform (LT, for short) was developed in the early 80's at MIT. The idea
was to extend the basis function beyond the block boundaries, creating an overlap, in
order to eliminate the blocking e�ect. This idea was not new, but the new ingredient to
overlapping blocks would be the fact that the number of transform coe�cients would be
the same as if there was no overlap, and that the transform would maintain orthogonal-
ity. Cassereau [5] introduced the lapped orthogonal transform (LOT). However, it was
Malvar [18],[19],[20] who gave the LOT an elegant design strategy and a fast algorithm,
thus making the LOT practical and a serious contender to replace the DCT for image
compression.

It was also Malvar [22] the who pointed out the equivalence between an LT and a
multirate �lter bank which is now a very popular signal processing tool [62]. Based on
cosine modulated �lter banks [33], modulated lapped transforms were designed [21],[48].
Modulated transforms were generalized for an arbitrary overlap later, creating the class of
extended lapped transforms (ELT) [24]{[27]. Recently a new class of LTs with symmetric
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bases were developed yielding the class of generalized LOTs (GenLOT) [35],[40],[37]. The
GenLOTs were made to have basis functions of arbitrary length (not a multiple of the
block size) [56], extended to the non-orthogonal case [60] and even made to have �lters
of di�erent lengths [59]. As aforementioned, �lter banks and LTs are the same, although
studied independently in the past. Because of this duality, it would be impractical to
mention all related work in the �eld. Nevertheless, Vaidyanathan's book [62] is considered
an excellent text on �lter banks, while [26] is a good reference to bridge the gap between
lapped transforms and �lter banks. We usually refer to LTs as uniform critically-sampled
FIR �lter banks with fast implementation algorithms based on special factorizations of
the basis functions, with particular design attention for signal (mainly image) coding.

0.1.3 Block transforms

We assume a one-dimensional input sequence x(n) which is transformed into several
coe�cients yi(n), where yi(n) would belong to the i-th subband. In traditional block-
transform processing, the signal is divided into blocks of M samples, and each block is
processed independently [6], [12], [26], [32], [43], [45], [46]. Let the samples in the m-th
block be denoted as

xTm = [x0(m); x1(m); : : : ; xM�1(m)]; (1)

with xk(m) = x(mM + k), and let the corresponding transform vector be

yTm = [y0(m); y1(m); : : : ; yM�1(m)]: (2)

For a real unitary transform A, AT = A�1. The forward and inverse transforms for the
m-th block are respectively

ym = Axm; (3)

and
xm = ATym: (4)

The rows of A, denoted aTn (0 � n � M � 1), are called the basis vectors because
they form an orthogonal basis for the M -tuples over the real �eld [46]. The transform
coe�cients [y0(m); y1(m); : : : ; yM�1(m)] represent the corresponding weights of vector
xm with respect to the above basis.

If the input signal is represented by vector x while the subbands are grouped into
blocks in vector y, we can represent the transform H which operates over the entire
signal as a block diagonal matrix:

H = diagf: : : ;A;A;A; : : :g; (5)

where, of course, H is an orthogonal matrix if A is also an orthogonal matrix. In sum-
mary, a signal is transformed by block segmentation followed by block transformation,
which amounts to transforming the signal with a sparse matrix. Also, it is well known
that the signal energy is preserved under an orthogonal transformation [12],[45], assum-
ing stationary signals, i.e.,

M�2x =

M�1X
i=0

�2i ; (6)

where �2i is the variance of yi(m) and �2x is the variance of the input samples.
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0.1.4 Factorization of discrete transforms

For our purposes, discrete transforms of interest are linear and governed by a square
matrix with real entries. Square matrices can be factorized into a product of sparse
matrices of the same size. Notably, orthogonal matrices can be factorized by a product
of plane (Givens) rotations [10]. Let A be an M �M real orthogonal matrix and let
�(i; j; �n) be a matrix with entries �kl which is like the identity matrix IM except for
four entries:

�ii = cos(�n) �jj = cos(�n) �ij = sin(�n) �ji = � sin(�n) (7)

i.e. �(i; j; �n) corresponds to a plane rotation along the i-th and the j-th axes by the
angle �n. Then, A can be factorized as

A = S

M�2Y
i=0

M�1Y
j=i+1

�(i; j; �n) (8)

where n is increased by one for every matrix and S is a diagonal matrix with entries �1
to correct for any sign error [10]. This correction is not necessary in most cases and is
not required if we could apply variations of the rotation matrix de�ned in (7) as

�ii = cos(�n) �jj = � cos(�n) �ij = sin(�n) �ji = sin(�n): (9)

All combinations of pairs of axes shall be used for a complete factorization. Fig. 1(a)
shows an example of the factorization of a 4�4 orthogonal matrix into plane rotations
(the sequence of rotations is slightly di�erent than the one in (8) but it is equally com-
plete). If the matrix is not orthogonal, we can always decompose the matrix using
singular value decomposition (SVD) [10]. A is decomposed through SVD as:

A = U�V (10)

where U and V are orthogonal matrices and � is a diagonal matrix containing the
singular values of A. While � is already a sparse matrix, we can further decompose the
orthogonal matrices using (8), i.e.

A = S

0
@M�2Y

i=0

M�1Y
j=i+1

�(i; j; �Un )

1
A�

0
@M�2Y

i=0

M�1Y
j=i+1

�(i; j; �Vn )

1
A (11)

where �Un and �Vn compose the set of angles forU andV, respectively. Fig. 1(c) illustrates
the factorization for a 4�4 non-orthogonal matrix, where �i are the singular values.

The reader will later see that the factorization above is an invaluable tool for the
design of block and lapped transforms. In the orthogonal case, all of the degrees of
freedom are containing in the rotation angles. In an M �M orthogonal matrix, there
are M(M � 1)=2 angles, and by spanning all the angles space (0 to 2� for each one) one
spans the space of all M �M orthogonal matrices. The idea is to span the space of all
possible orthogonal matrices through varying arbitrarily and freely the rotation angles in
an unconstrained optimization . In the general case, there areM2 degrees of freedom and
we can either by utilize the matrix entries directly or employ the SVD decomposition.
However, we are mainly concerned with invertible matrices. Hence, using the SVD-based
method, one can stay in the invertible matrix space by freely spanning the angles. The
only mild constraint here is to assure that all singular values in the diagonal matrix are
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Figure 1: Factorization of a 4x4 matrix. (a) Orthogonal factorization into Givens rota-
tions. (b) Detail of the rotation element. (c) Factorization of a non-orthogonal matrix
through SVD with the respective factorization of SVD's orthogonal factors into rotations.

nonzero. The authors commonly use the unconstrained non-linear optimization based on
the simplex search provided by MATLABTM to search for the optimal rotation angles
and singular values.

0.1.5 Discrete MIMO linear systems

Let a multi-input multi-output (MIMO) [62] discrete linear FIR system system have
M input and M output sequences with respective Z-transforms Xi(z) and Yi(z), for
0 � i �M � 1. Then, Xi(z) and Yi(z) are related by

2
6664

Y0(z)
Y1(z)
...

YM�1(z)

3
7775 =

2
6664

E0;0(z) E0;1(z) � � � E0;M�1(z)
E1;0(z) E1;1(z) � � � E1;M�1(z)

...
...

. . .
...

EM�1;0(z) EM�1;1(z) � � � EM�1;M�1(z)

3
7775
2
6664

X0(z)
X1(z)

...
XM�1(z)

3
7775
(12)

where Eij(z) are entries of the given MIMO system E(z). E(z) is called the transfer
matrix of the system and we have chosen it to be square for simplicity. It is a regular
matrix whose entries are polynomials. Of relevance to us is the case wherein the entries
belong to the �eld of real-coe�cient polynomials of z�1, i.e. the entries represent real-
coe�cient FIR �lters. The degree of E(z) (or the McMillan degree, Nz) is the minimum
number of delays necessary to implement the system. The order of E(z) is the maximum
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degree among all Eij(z). In both cases we assume that the �lters are causal and FIR.
A special subset of great interest comprise of the transfer matrices which are nor-

malized paraunitary. In the paraunitary case, E(z) becomes a unitary matrix when
evaluated on the unit circle:

EH(ej!)E(ej!) = E(ej!)EH(ej!) = IM : (13)

Furthermore:

E�1(z) = ET (z�1): (14)

For causal inverses of paraunitary systems,

E0(z) = z�nET (z�1) (15)

is often used, where n is the order of E(z), since E0(z)E(z) = z�nIM .
For paraunitary systems, the determinant of E(z) is of the form az�Nz , for a real

constant a [62], where we recall that Nz is the McMillan degree of the system. For FIR
causal entries, they are also said to be lossless systems [62]. In fact, a familiar orthogonal
matrix is one where all Eij(z) are constant for all z.

We also have interest in invertible, although non-paraunitary, transfer matrices. In
this case, it is required that the matrix be invertible in the unit circle, i.e. for all
z = ej! and real !. Non-paraunitary systems are also called bi-orthogonal or perfect
reconstruction (PR) [62].

0.1.6 Block transform as a MIMO system

The sequences xi(m) in (1) are called the polyphase components of the input signal
x(n). In the other hand, the sequences yi(m) in (2) are the subbands resulting from
the transform process. In an alternative view of the transformation process, the signal
samples are \blocked" or parallelized into polyphase components through a sequence
of delays and decimators as shown in Fig. 2. Each block is transformed by system
A into M subband samples (transformed samples). Inverse transform (for orthogonal
transforms) is accomplished by system AT whose output are polyphase components of
the reconstructed signal, which are then serialized by a sequence of upsamplers and
delays. In this system, blocks are processed independently. Therefore, the transform
can be viewed as a MIMO system of order 0, i.e. E(z) = A, and if A is unitary, so
is E(z) which is obviously also paraunitary. The system matrix relating the polyphase
components to the subbands is referred to as the polyphase transfer matrix (PTM).

0.2 Lapped transforms

The motivation for a transform with overlap as we mentioned in the introduction was
to try to improve the performance of block (non-overlapped) transforms for image and
signal compression. Compression commonly implies signal losses due to quantization
[12]. As the basis of block transforms do not overlap, there may be discontinuities along
the boundary regions of the blocks. Di�erent approximations of those boundary regions
in each side of the border may cause an arti�cial \edge" in between blocks, the so called
blocking e�ect. In Fig. 3 it is shown an example signal which is to be projected into
bases, by segmenting the signal into blocks and projecting each segment into the desired
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ŷ1(m)

-

-

-

-

-

-

AT

-

-

-

-

-

-

"M

"M

"M

"M

"M

"M

-

-

-

-

-

-

6

6

6

6

z�1

z�1

...

z�1

z�1
x̂(n)-

...
...

Figure 2: The signal samples are parallelized into polyphase components through a se-
quence of delays and decimators (#M means subsampling by a factor of M). E�ectively
the signal is \blocked" and each block is transformed by system A into M subband
samples (transformed samples). Inverse transform (for orthogonal transforms) is ac-
complished by system AT whose output are polyphase components of the reconstructed
signal, which are then serialized by a sequence of upsamplers (" M means upsampling
by a factor of M , padding the signal with M � 1 zeros) and delays.

bases. Alternatively, one can view the process as projecting the whole signal into several
translated bases (one translation per block). In Fig. 3 it is shown on the left translated
versions of the �rst basis of the DCT, in order to account for all the di�erent blocks.
In the same �gure, on the right, it is shown the same diagram for the �rst basis of a
typical short LT. Note that the bases overlap spatially. The idea is that overlap would
help decrease, if not eliminate the blocking e�ect.

There are M basis functions for either the DCT or the LT although Fig. 3 shows
just one of them. An example of the bases for M = 8 is shown in Fig. 4 where we
plot the bases for the DCT and for the LOT, which is a particular LT that will be
discussed later. The reader may note that not only the LOT bases are longer but they
are also smoother than the DCT counterpart. Fig. 5(a) shows an example of an image
compressed using the standard JPEG Baseline coder [32], where the reader can readily
perceive the blocking artifacts at the boundaries of 8�8 pixels blocks. By replacing
the DCT with the LOT and keeping the same compression ratio, we obtain the image
shown in Fig. 5(b), where blocking is largely reduced. This brief introduction to the
motivation behind the development of LTs illustrates the overall problem only. We have
not described the details on how to apply LTs. In the following section we will develop
the LT framework.

0.2.1 Orthogonal lapped transforms

A lapped transform [26] can be generally de�ned as any transform whose basis vectors
have length L, such that L > M , extending across traditional block boundaries. Thus,
the transform matrix is no longer square and most of the equations valid for block
transforms do not apply to an LT. We will concentrate our e�orts on orthogonal LTs [26]
and consider L = NM , where N is the overlap factor. Note that N , M , and hence L
are all integers. As in the case of block transforms, we de�ne the transform matrix as
containing the orthonormal basis vectors as its rows. A lapped transform matrix P of
dimensionsM�L can be divided into squareM�M submatrices Pi (i = 0; 1; : : : ; N�1)
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x(n)

Figure 3: The example discrete signal x(n) is to be projected onto a number of bases.
Left: spatially displaced versions of the �rst DCT basis. Right: spatially displaced
versions of the �rst basis of a typical short LT.

as follows

P = [P0 P1 � � � PN�1]: (16)

The orthogonality property does not hold because P is no longer a square matrix and it
is replaced by the perfect reconstruction (PR) property[26], de�ned by

N�1�lX
i=0

PiP
T
i+l =

N�1�lX
i=0

PT
i+lPi = �(l)IM ; (17)

for l = 0; 1; : : : ; N � 1, where �(l) is the Kronecker delta, i.e., �(0) = 1 and �(l) = 0
for l 6= 0. As we will see later (17) states the PR conditions and orthogonality of the
transform operating over the entire signal.

If we divide the signal into blocks, each of size M , we would have vectors xm and ym
such as in (1) and (2). These blocks are not used by LTs in a straightforward manner.
The actual vector which is transformed by the matrix P has to have L samples and,
at block number m, it is composed of the samples of xm plus L�M samples from the
neighboring blocks. These samples are chosen by picking (L �M)=2 samples at each
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Figure 4: Bases for the 8-point DCT (M = 8) (left) and for the the LOT (right) with
M = 8. The LOT is a particular LT which will be explained later.

side of the block xm, as shown in Fig. 6, for N = 2. However, the number of transform
coe�cients at each step is M , and, in this respect, there is no change in the way we
represent the transform-domain blocks ym.
The input vector of length L is denoted as vm, which is centered around the block xm,
and is de�ned as

vTm =

�
x

�
mM � (N � 1)

M

2

�
� � �x

�
mM + (N + 1)

M

2
� 1

��
: (18)

Then, we have

ym = Pvm: (19)

The inverse transform is not direct as in the case of block transforms, i.e., with the
knowledge of ym we do not know the samples in the support region of vm, and neither
in the support region of xm. We can reconstruct a vector v̂m from ym, as

v̂m = PTym: (20)

where v̂m 6= vm. To reconstruct the original sequence, it is necessary to accumulate the
results of the vectors v̂m, in a sense that a particular sample x(n) will be reconstructed
from the sum of the contributions it receives from all v̂m. This additional complication
comes from the fact that P is not a square matrix [26]. However, the whole analysis-
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(a) (b)

Figure 5: Zoom of image compressed using JPEG at 0.5 bits/per pixel. (a) DCT, (b)
LOT.

 M ! M ! M ! M ! M ! M ! M ! M !
� -� -

� -� -

2M 2M

2M 2M

Figure 6: The signal samples are divided into blocks ofM samples. The lapped transform
uses neighboring blocks samples, as in this example for N = 2, i.e. L = 2M , yielding an
overlap of (L�M)=2 =M=2 samples on either side of a block.

synthesis system (applied to the entire input vector) is still orthogonal, assuring the PR
property using (20).

We can also describe the process above using a sliding rectangular window applied
over the samples of x(n). As an M -sample block ym is computed using vm, ym+1

is computed from vm+1 which is obtained by shifting the window to the right by M
samples, as shown in Fig. 7.

As the reader may have noticed, the region of support of all vectors vm is greater
than the region of support of the input vector. Hence, a special treatment has to be
given to the transform at the borders. We will discuss this operation later and assume
in�nite-length signals until then. We can also assume that the signal length is very large
and the borders of the signal are far enough from the region which we are focusing our
attention on.

If we denote by x the input vector and by y the transform-domain vector, we can
be consistent with our notation of transform matrices by de�ning a matrix H such that
y =Hx and x̂ = HTy. In this case, we have
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Figure 7: Illustration of a lapped transform with N = 2 applied to signal x(n), yielding
transform domain signal y(n). The input L-tuple as vector vm is obtained by a sliding
window advancingM samples, generating ym. This sliding is also valid for the synthesis
side.

H =

2
6666664

. . . 0

P

P

P

0
. . .

3
7777775 : (21)

where the displacement of the matrices P obeys the following

H =

2
66664

. . .
. . .

. . . 0

P0 P1 � � � PN�1

P0 P1 � � � PN�1

0
. . .

. . .
. . .

3
77775 : (22)

H has as many block-rows as transform operations over each vector vm.
Let the rows of P be denoted by 1 � L vectors pTi (0 � i � M � 1), so that

PT = [p0; � � � ;pM�1]. In an analogy to the block transform case, we have

yi(m) = pTi vm: (23)

The vectors pi are the basis vectors of the lapped transform. They form an orthogonal
basis for an M -dimensional subspace (there are only M vectors) of the L-tuples over the
real �eld. As a remark, assuming in�nite length signals, from the orthogonality of the
basis vectors and from the PR property in (17), the energy is preserved, such that (6) is
valid.

In order to compute the variance of the subband signals of a block or lapped trans-
form, assume that x(n) is a zero-mean stationary process with a given autocorrelation
function. Let its L� L autocorrelation matrix be Rxx. Then, from (23)

E[yi(m)] = pTi E[vm] = pTi 0L�1 = 0; (24)
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so that

�2i = E[y2i (m)] = pTi E[vmv
T
m]pi = pTi Rxxpi; (25)

i.e. the output variance is easily computed from the input autocorrelation matrix for a
given set of bases P.

Assuming that the entire input and output signals are represented by the vectors x
and y, respectively, and that the signals have in�nite length, then, from (21), we have

y = Hx (26)

and, if H is orthogonal,

x = HTy: (27)

Note that H is orthogonal if and only if (17) is satis�ed. Thus, the meaning for (17)
becomes clear, as it forces the transform operating over the entire input-output signals
to be orthogonal. Hence, the resulting LT is called orthogonal. For block transforms, as
there is no overlap, it is su�cient to state the orthogonality of A because H will be a
block-diagonal matrix.

These formulations for LTs are general, and if the transform satis�es the PR property
described in (17), then the LTs are independent of the contents of the matrix P. The
de�nition of P with a given N can accommodate any lapped transform whose length of
the basis vectors lies between M and NM . For the case of block transforms, N = 1, i.e.
there is no overlap.
Causal notation - If one is not concerned with particular localization of the transform
with respect to the origin x(0) of the signal x(n), it is possible to change the notation to
apply a causal representation. In this case, we can represent vm as

vTm = [xTm�N+1; � � � ;xTm�1;xTm]; (28)

which is identical to the previous representation, except for a shift in the origin to
maintain causality. The block ym is found in a similar fashion as

ym = Pvm =

N�1X
i=0

PN�1�ixm�i: (29)

Similarly, v̂m can be reconstructed as in (20) where the support region for the vector
is the same, except that the relation between it and the blocks x̂m will be changed
accordingly.

0.2.2 Non-orthogonal lapped transforms

So far, we have discussed orthogonal LTs where a segment of the input signal is projected
onto the basis functions of P, yielding the coe�cients (subband samples). The signal is
reconstructed by the overlapped projection of the same bases weighted by the subband
samples. In the non-orthogonal case, we de�ne another LT matrix Q as:

Q = [Q0 Q1 � � � QN�1]; (30)

in the same way as we did for P with the same size. The di�erence is that Q instead of
P is used in the reconstruction process so that (20) is replaced by:



0.2. LAPPED TRANSFORMS 13

x(n) -
6

6

6

6

-

-

-

-

-

-

#M

#M

#M

#M

#M

#M

-

-

-

-

-

-

z�1

z�1

...

z�1

z�1

F(z)

-

-

-

-

-

-

yM�1(m)

y0(m)

y1(m)

...
...
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ŷ1(m)

-

-

-

-

-

-

G(z)

-

-

-

-

-

-

"M

"M

"M

"M

"M

"M

-

-

-

-

-

-

6

6

6

6

z�1

z�1

...

z�1

z�1
x̂(n)-

...
...

Figure 8: The �lter bank represented as a MIMO system is applied to the polyphase
components of the signal. The matrices F(z) and G(z) are called polyphase transfer
matrices. For a PR system both must be inverses of each other and for paraunitary �lter
banks they must be paraunitary matrices, i.e. G(z) = F�1(z) = FT (z�1). For a PR
paraunitary causal system of order N , we must choose G(z) = z�(N�1)FT (z�1).

v̂m = QTym: (31)

We also de�ne another transform matrix as:

H0 =

2
66664

. . .
. . .

. . . 0

Q0 Q1 � � � QN�1

Q0 Q1 � � � QN�1

0
. . .

. . .
. . .

3
77775 : (32)

The forward and inverse transformation are now

y =HFx ; x = HIy: (33)

In the orthonormal case, HF =H and HI = HT . In the general case, it is required that
HI = H�1

F . With the choice of Q as the inverse LT, then HI = H0T , while HF = H.
Therefore the perfect reconstruction condition is:

H0TH = I1: (34)

The reader can check that the above equation can be also expressed in terms of the LTs
P and Q as:

N�1�mX
k=0

QT
kPk+m =

N�1�mX
k=0

QT
k+mPk = �(m)IM ; (35)

which establish the general necessary and su�cient conditions for the perfect reconstruc-
tion of the signal by using P as the forward LT and Q as the inverse LT. Unlike the
orthogonal case in (17), here both sets are necessary conditions, i.e., there is a total of
2N � 1 matrix equations.
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0.3 LTs as MIMO systems

As previously discussed in Sec. 0.1.3 and Sec. 0.1.6, the input signal can be decomposed
into M polyphase signals xi(m), each sequence having one M -th of the original rate.
As there are M subbands yi(m) under same circumstances and only linear operations
are used to transform the signal, there is a MIMO system F(z) that converts the M
polyphase signals to the M subband signals. Those transfer matrices are also called
PTM (Sec. 0.1.6). The same is true for the inverse transform (from subbands ŷi(m) to
polyphase x̂i(m)). Therefore, we can use the diagram shown in Fig. 8 to represent the
forward and inverse transforms. Note that Fig. 8 is identical to Fig. 2 except for the fact
that the transform have memory, i.e. depends not only on the present input vector, but
on past input vectors also. One can view the system as a clocked one, in which at every
clock, a block is input, transformed, and output. The parallelization and serialization
of blocks is performed by the chain of delays, upsamplers and downsamplers shown in
Fig. 8. If we express the forward and inverse PTM as matrix polynomials as

F(z) =

N�1X
i=0

Fiz
�1; (36)

G(z) =

N�1X
i=0

Giz
�1; (37)

then the forward and inverse transforms are given by

ym =

N�1X
i=0

Fixm�i; (38)

x̂m =

N�1X
i=0

Giŷm�i: (39)

In the absence of any processing, ŷm = ym and F(z) andG(z) are connected together
back-to-back, so that PR is possible if they are inverses of each other. Since the inverse
of a causal FIR MIMO system may be non-causal, we can delay the entries of the inverse
matrix to make it causal. Since the MIMO system's PTM is assumed to have order N
(N is the overlap factor of the equivalent LT), PR requires that

G(z)F(z) = z�N+1IM ! G(z) = z�N+1F�1(z) (40)

In this case, x̂m = xm�N+1, i.e., the signal is perfectly reconstructed after a system's
delay. Because of the delay chains combined with the block delay (system's order), the
reconstructed signal delay is x̂(n) = x(n�NM + 1) = x(n� L� 1).

By combining (38), (39) and (40) we can restate the PR conditions as:

N�1X
i=0

N�1X
j=0

GiFiz
�i�j = z�N+1IM ; (41)

which, by equating the powers of z, can be rewritten as:

N�1�mX
k=0

GkFk+m =

N�1�mX
k=0

Gk+mFk = �(m)IM : (42)
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The reader should note the striking similarity of the above equation against (35). In
fact, the simple comparison of the transformation process in the space domain notation
(33) against the MIMO system notation in (38) and (39) would reveal the following
relations

Fk = PN�1�k; Gk = QT
k (43)

for 0 � k < N . In fact, the conditions imposed in (34), (35), (40), and (42) are equivalent
and each one of them implies the others. This is a powerful tool in the design of lapped
transforms. As an LT, the matrix is non-square but the entries are real. As a MIMO
system, the matrix is square, but the entries are polynomials. One form may complement
the other, facilitating tasks such as factorization, design and implementation.

As mentioned earlier, paraunitary (lossless) systems belong to a class of MIMO sys-
tems of high interest. Let E(z) be a paraunitary PTM so that E�1(z) = ET (z�1), and
let

F(z) = E(z); G(z) = z�(N�1)ET (z�1): (44)

As a result, the reader can verify that the equations above imply that Pi = Qi and that

N�1�lX
i=0

PiP
T
i+l =

N�1�lX
i=0

PT
i Pi+l = �(l)IM ; (45)

HHT =HTH = I1: (46)

In other words, if the system's PTM is paraunitary than the corresponding LT (H) is
orthogonal and vice-versa.

0.4 Factorization of lapped transforms

There is an important result for paraunitary PTM which states that any paraunitary
E(z) can be decomposed into a series of orthogonal matrices and delay stages [8], [63].
In this decomposition there are Nz delay stages and Nz + 1 orthogonal matrices, where
Nz is the McMillan degree of E(z) (the degree of the determinant of E(z)). Then,

E(z) = B0

NzY
i=1

(�(z)Bi) (47)

where �(z) = diagfz�1; 1; 1; : : : ; 1g, and Bi are orthogonal matrices. It is well-known
that an M �M orthogonal matrix can be expressed as a product of M(M � 1)=2 plane
rotations. However, in this case, only B0 is a general orthogonal matrix, while the
matrices B1 through BNz

have only M � 1 degrees of freedom [63].
This result states that it is possible to implement an orthogonal lapped transform

using a sequence of delays and orthogonal matrices. It also de�nes the total number of
degrees of freedom in a lapped transform, i.e., if one changes arbitrarily any of the plane
rotations composing the orthogonal transforms, one will span all possible orthogonal
lapped transforms, for given values of M and L. It is also possible to prove [35] that the
(McMillan) degree of E(z) is bounded by Nz � (L �M)=2 with equality for a general
structure to implement all LTs whose bases have length up to L = NM , i.e., E(z) of
order N � 1.
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In fact (47) may be able to implement all lapped transforms (orthogonal or not)
whose degree is Nz. For that it is only required that all of the multiplicative factors that
compose the PTM are invertible. Let us consider a more particular factorization:

F(z) =

(N�1)=(K�1)Y
i=0

Bi(z) (48)

where Bi(z) =
PK�1

k=0 Bikz
�k is a stage of order K � 1. If F(z) is paraunitary, then all

Bi(z) must be paraunitary, so that perfect reconstruction is guaranteed if

G(z) = z�N+1FT (z�1) =
0Y

i=(N�1)=(K�1)

 
K�1X
k=0

BT
ikz

�(K�1�k)

!
: (49)

In the case the PTM is not paraunitary, all factors have to be invertible in the unit circle
for PR. More strongly put, there has to be factors Ci(z) of order K � 1 such that

Ci(z)Bi(z) = z�K+1IM : (50)

Being that the case, the inverse PTM is simply given by

G(z) =

0Y
i=(N�1)=(K�1)

Ci(z): (51)

With this factorization, the design of F(z) is broken down to the design of Bi(z).
Lower-order factors simplify the constraint analysis and facilitate the design of a useful
transform, either paraunitary or invertible. Even more desirable is to factor the PTM as

F(z) = B0

N�1Y
i=0

�(z)Bi (52)

where Bi are square matrices and �(z) is a paraunitary matrix containing only entries
1 and z�1. In this case, if the PTM is paraunitary

G(z) =

 
0Y

i=N�1

BT
i
~�(z)

!
BT
0 (53)

where ~�(z) = z�1�(1=z). If the PTM is not paraunitary, then

G(z) =

 
0Y

i=N�1

B�1i
~�(z)

!
B�10 ; (54)

i.e. the design can be simpli�ed by only applying invertible real matrices Bi. This
factorization approach is the basis for most useful LTs. It allows e�cient implementation
and design. We will discuss some useful LTs later on. For example, for M even, the
symmetric delay factorization (SDF) is quite useful. In that,

�(z) =

�
z�1IM=2 0

0 IM=2

�
; ~�(z) =

�
IM=2 0
0 z�1IM=2

�
: (55)
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Figure 9: Flow graph for implementing an LT where F(z) can be factorized using sym-
metric delays and N stages. Signals x(n) and y(n) are segmented and processed using
blocks of M samples, all branches carry M=2 samples, and blocks Bi are M �M or-
thogonal or invertible matrices. (a) Forward transform section; (b) inverse transform
section.

The 
ow graph for implementing an LT which can be parameterized using SDF is shown
in Fig. 9.

If we are given the SDF matrices instead of the basis coe�cients, one can easily
construct the LT matrix. For this, start with the last stage and recur the structure in
(52) using (55). Let P(i) be the partial reconstruction of P after including up to the i-th
stage. Then,

P(0) = BN�1 (56)

P(i) = BN�1�i

�
IM=2 0M=2 0M=2 0M=2

0M=2 0M=2 0M=2 IM=2

� �
P(i�1) 0M
0M P(i�1)

�
(57)

P = P(N�1): (58)

Similarly, one can �nd Q from the factors B�1i .

0.5 Hierarchical connection of LTs: an introduction

So far we have focused on the construction of a single LT resulting inM subband signals.
What happens if we cascade LTs by connecting them hierarchically, in such a way that
a subband signal is the actual input for another LT ? Also, what are the consequences
of submitting only part of the subband signals to further stages of LTs ? We will try to
introduce the answers to those questions.

The subject has been intensively studied for which a large number of publications are
available. Our intent, however, is just to provide a basic introduction, while leaving more
detailed analysis to the references. Again, the relation between �lter banks and discrete
wavelets [52], [62], [64] is well-known. Under conditions that are easily satis�ed [62], an
in�nite cascade of �lter banks will generate a set of continuous orthogonal wavelet bases.
In general, if only the low-pass subband is connected to another �lter bank, for a �nite
number of stages, we call the resulting �lter bank a discrete wavelet transform (DWT)
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[62], [64]. A free cascading of �lter banks, however, is better known as discrete wavelet
packet (DWP) [7], [67], [34], [52]. As LTs and �lter banks are equivalent in most senses,
the same relations apply to LTs and wavelets. The system resulting from the hierarchical
association of several LTs will be called here a hierarchical lapped transform (HLT) [23].

0.5.1 Time-frequency diagram

The description of the cascaded connection of LTs is better carried with the aid of
simplifying diagrams. The �rst is the time-frequency (TF) diagram. It is based on the
TF plane, which is well known from the �elds of spectral and time-frequency analysis
[31], [3], [4]. The time-frequency representation of signals is a well-known method (for
example the time-dependent discrete Fourier transform - DFT - and the construction of
spectrograms; see [31], [3], [4] for details on TF signal representation, and other chapter
in this handbook for the DFT). The TF representation is obtained by expressing the
signal x(n) with respect to bases which are functions of both frequency and time. For
example, the size-r DFT of a sequence extracted from x(n) (from x(n) to x(n+ r � 1))
[31] can be

�(k; n) =

r�1X
i=0

x(i+ n) exp

�
�j2�ki

r

�
(59)

Using a sliding window w(m) of length r which is non-zero only in the interval n � m �
n+ r � 1, (which in this case is rectangular), we can rewrite the last equation as

�(k; n) =
1X

i=�1

x(i)w(i) exp

�
�jk(i� n)2�

r

�
: (60)

For more general bases we may write

�(k; n) =

1X
i=�1

x(i)�(n � i; k) (61)

where �(n; k) represents the bases for the space of the signal, n represents the index
where the base is located in time, and k is the frequency index.

As the signal is assumed to have an in�nite number of samples, consider a segment
of Nx samples extracted from signal x(n), which can be extended in any fashion in order
to account for the overlap of the window of r samples outside the signal domain. In such
segment we can construct a spectrogram with a resolution of r samples in the frequency
axis and Nx samples in the time axis. Assuming a maximum frequency resolution we can
have a window with length up to r = Nx. In this case, the diagram for the spectrogram
is given in Fig. 10(a). We call such diagrams as TF diagrams, because they only indicate
the number of samples used in the TF representation of the signal. Assuming an ideal
partition of the TF plane (using �lters with ideal frequency response and null transition
regions), each TF coe�cient would represent a distinct region in a TF diagram. Note
that in such representation, the signal is represented by N2

x TF coe�cients. We are
looking for maximally-decimated TF representation which is de�ned as a representation
of the signal where the TF plane diagram would be partitioned into Nx regions, i.e., Nx

TF coe�cients will be generated. Also, we require that all Nx samples of x(n) can be
reconstructed from the Nx TF coe�cients. If we use less than Nx samples in the TF
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Figure 10: Examples of rectangular partitions of the time-frequency plane for a signal
which has Nx samples. (a) Spectrogram with a Nx-length window, resulting in N2

x TF
samples; (b) Input signal, no processing; (c) A transform such as the DCT or DFT is
applied to all Nx samples;

plane, we clearly cannot reconstruct all possible combinations of samples in x(n), from
the TF coe�cients, solely using linear relations.

Under these assumptions, Fig. 10(b) shows the TF diagram for the original signal
(only resolution in the time axis) for Nx = 16. Also, for Nx = 16, Fig. 10(c) shows a TF
diagram with maximum frequency resolution, which could be achieved by transforming
the original Nx-sample sequence with an Nx-sample DCT or DFT.

0.5.2 Tree-structured hierarchical lapped transforms

The tree diagram is helpful in describing the hierarchical connection of �lter banks. In
this diagram we represent an M -band LT by nodes and branches of an M -ary tree. In
Fig. 11(a) it is shown an M -band LT, where all the M subband signals have sampling
ratesM times smaller than that of x(n). Fig. 11(b) shows the equivalent notation for the
LT in a tree diagram, i.e., a single-stage M -branch tree, which is called here a tree cell.
Recalling Fig. 10, the equivalent TF diagram for anM -band LT is shown in Fig. 11(c), for
a 16-sample signal and forM = 4. Note that the TF diagram of Fig. 11(c) resembles that
of Fig. 10(a). This is because for each 4 samples in x(n) there is a corresponding set of 4
transformed coe�cients. So, the TF representation is maximally decimated. Compared
to Fig. 10(b), Fig. 11(c) implies an exchange of resolution from time to frequency domain
achieved by the LT.

The exchange of resolution in the TF diagram can be obtained from the LT. As we
connect several LTs following the paths of a tree, each new set of branches (each new tree
cell) connected to the tree will force the TF diagram to exchange from time to frequency
resolution. We can achieve a more versatile TF representation by connecting cells in
unbalanced ways. For example, Fig. 12 shows some examples of HLTs given by their
tree diagrams and respective TF diagrams. Fig. 12(a) depicts the tree diagram for the
3-stages DWT. Note that only the lowpass subband is further processed. Also, as all
stages are chosen to be 2-channel LTs, this HLT can be represented by a binary tree. In
Fig. 12(b), a more generic hierarchical connection of 2-channel LTs is shown. First the
signal is split into low- and high-pass. Each output branch is further connected to another
2-channel LT. In the third stage only the most low-pass subband signal is connected to
another 2-channel LT. In Fig. 12(c) it is shown a 2-stages HLT obtaining the same TF
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Figure 11: Representation of an M -channel LT as tree nodes and branches. (a) Forward
section of an LT, including the blocking device. (b) Equivalent notation for (a) using an
M -branch single-stage tree. (c) Equivalent TF diagram for (a) or (b) assuming M = 4
and Nx = 16.
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Figure 12: Tree and TF diagrams. (a) The 3-stages DWT binary-tree diagram, where
only the low-pass subband is submitted to further LT stages. (b) A more generic 3-stages
tree diagram. (c) A 2-stages tree-diagram resulting in the same TF diagram as (b). (d)
TF diagram for (a). (e) TF diagram for (b) or (c).

diagram as Fig. 12(b). Note that the succession of 2-channel LTs was substituted by
a single stage 4-channel LT, i.e., the signal is split into four subbands and then one
subband is connected to another LT. Fig. 12(d) shows the TF diagram corresponding
to Fig. 12(a), while Fig. 12(e) shows the TF diagram corresponding to Fig. 12(b) and
(c). The reader should note that, as the tree-paths are unbalanced, we have irregular
partitions of the TF plane. For example, in the DWT, low-frequency TF coe�cients
have poor time localization and good frequency resolution, while high-frequency ones
have poor frequency resolution and better time localization.

To better understand how connecting an LT to the tree can achieve the exchange
between time and frequency resolutions, Fig. 13 plots the basis functions resulting from
two similar tree-structured HLTs.

0.5.3 Variable-length LTs

In the tree-structured method to cascade LTs, every time an LT is added to the structure,
more subbands are created by further subdividing previous subbands, so that the overall
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Figure 13: Two HLTs and resulting bases. (a) The 2-channel 16-tap-bases LT, showing
low- and high-frequency bases, f0(n) and f1(n), respectively. (b) Resulting basis func-
tions of a 2-stage HLT based on (a), given by f0(n) through f3(n). Its respective tree
diagram is also shown. (c) Resulting HLT, by pruning one high-frequency branch in
(b). Note that the two high-frequency basis functions are identical to the high-frequency
basis function of (a) and, instead of having two distinct bases for high frequencies, occu-
pying distinct spectral slots, the two bases are, now shifted in time. Thus, better time
localization is attainable, at the expense of frequency resolution.

TF diagram of the decomposition is altered. There is a useful alternative to the tree
structure in which the number of subbands does not change. We refer to Fig. 14, where
the \blocking" part of the diagram corresponds to the chain of delays and decimators
(as in Fig. 8) that parallelizes the signal into polyphase components. System A(z) of
M bases of length NAM is post-processed by system B(z) of K bases of length NBK.
Clearly, entries in A(z) have order NA � 1 and entries in B(z) have order NB � 1.
Without loss of generality we associate system B(z) to the �rst K output subbands of
A(z). The overall PTM is given by

F(z) =

�
B(z) 0

0 IM�K

�
A(z); (62)

where F(z) has K bases of order NA+NB�2 and M �K bases of order NA�1. As the
resulting LT has M channels, the �nal orders dictate that the �rst K bases have length
(NA +NB � 1)M while the others still have length NAM . In other words the e�ect of
cascading A(z) and B(z) was only to modify K bases, so that the length of the modi�ed
bases is equal or larger than the length of the initial bases. An example is shown in
Fig. 15. We start with the bases corresponding to A(z) shown in Fig. 15(a). There are
8 bases of length 16 so that A(z) has order 1. A(z) is post-processed by B(z) which is a
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Figure 14: Cascade of PTMs A(z) of M channels and B(z) of K channels. The total
number of subbands does not change, however some ofA(z) bases are increased in length
and order.

4�4 PTM of order 3 whose corresponding bases are shown in Fig. 15(b). The resulting
LT is shown in Fig. 15(c). There are 4 bases of length 16 and 4 of length 40. The shorter
ones are identical to those in Fig. 15(b), while the longer ones have order which are the
sum of the orders of A(z) and B(z), i.e. order 4, and the shape of the longer bases in
F(z) is very di�erent than the corresponding ones in A(z).

The e�ect of post-processing few bases is a means to construct a new LT with larger
bases from an initial one. In fact it can be shown that variable length LTs can be
factorized using post-processing stages [59][58]. A general factorization of LTs is depicted
in Fig. 16. Assume a variable-length F(z) whose bases are arranged in decreasing length
order. Such a PTM can be factorized as

F(z) =
M�2Y
i=0

�
Bi(z) 0

0 Ii

�
(63)

where I0 is understood to be non-existing and Bi(z) has size (M � i) � (M � i). The
factors Bi can have individual orders Ki and can be factorized di�erently into factors
Bik(z) for 0 � k < Ki. Hence,

F(z) =

M�2Y
i=0

Ki�1Y
k=0

�
Bik(z) 0

0 Ii

�
: (64)

In a later section we will present a very useful LT which is based on the factorization
principles of (64).

0.6 Practical symmetric LTs

We have discussed LTs in a general sense as a function of several parameters such as
matrix entries, orthogonal or invertible factors, etc. The design of an LT suitable for a
given application is the single most important step in the study of LTs. In order to do
that, one may factorize the LT to facilitate optimization techniques.

An LT with symmetric bases is commonly used in image/video processing and com-
pression applications. By symmetric bases we mean that the entries pij of P obey
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Figure 15: Example of constructing variable-length bases trough cascading LTs. (a)
The basis corresponding to A(z): an LT with 8 bases of length 16 (order 1). (b) The
basis corresponding to B(z): an LT with 4 bases of length 16 (order 3). (c) The basis
corresponding to F(z): 4 of the 8 bases have order 1, i.e. length 16, while the remaining
4 have order 4, i.e. length 40.
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Figure 16: General factorization of a variable-length LT.
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pi;j = (�1) pi;L�1�j : (65)

The bases can be either symmetric or antisymmetric. In terms of the PTM, this con-
straint is given by:

F(z) = z�(N�1)SF(z�1)JM ; (66)

where S is a diagonal matrix whose diagonal entries sii are �1, depending whether the
i-th basis is symmetric (+1) or anti-symmetric (-1). Note that we require that all bases
share the same center of symmetry.

0.6.1 The lapped orthogonal transform: LOT

The lapped orthogonal transform (LOT) [18],[19],[20] was the �rst useful LT with a well
de�ned factorization. Malvar developed the fast LOT based on the work by Cassereau
[5] to provide not only a factorization, but a factorization based on the DCT. The
DCT is attractive for many reasons, among them, fast implementation and near-optimal
performance for block transform coding [45]. Also, since it is a popular transform, it has
a reduced cost and is easily available in either software or hardware. The DCT matrix
D is de�ned as having entries

dij =

r
2

M
ki cos

�
(2j + 1)i�

2M

�
(67)

where k0 = 1 and ki = 1=
p
2, for 1 � i �M � 1.

The LOT as de�ned by Malvar is orthogonal. Then, according to our notation,
P = Q and H�1 =HT . It is also a symmetric LT with M even. The LT matrix is given
by

PLOT =

�
IM 0

0 VR

� �
De �Do JM=2(De �Do)
De �Do �JM=2(De �Do)

�
(68)

where De is the M=2�M matrix with the even-symmetric basis functions of the DCT
and Do is the matrix of the same size with the odd-symmetric ones. In our notation,
De also corresponds to the even numbered rows of D and Do corresponds to the odd
numbered rows ofD.VR is anM=2�M=2 orthogonal matrix, which according to [20],[26]
should be approximated by M=2� 1 plane rotations as:

VR =
0Y

i=M
2
�2

�(i; i+ 1; �i) (69)

where � is de�ned in Sec. (0.1.4). Suggestions of rotation angles which were designed
to yield a good transform for image compression are [26]:

M = 4 ! �0 = 0:1� (70)

M = 8 ! f�0; �1; �2g = f0:13; 0:16; 0:13g� � (71)

M = 16 ! f�0; : : : ; �7g = f0:62; 0:53; 0:53; 0:50; 0:44; 0:35; 0:23; 0:11g� � (72)

For M � 16 it is suggested to use



0.6. PRACTICAL SYMMETRIC LTS 25

-
-

-
-

-
-

-
-

z
-1

z
-1

z
-1

z
-1

VR

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

DCT

0

2

4

6

0

2

4

6

1

3

5

7

1

3

5

7

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

-
-

-
-

-
-

-
-z

-1
z

-1

z
-1

z
-1

V
T

R

0

1

2

3

4

5

6

7

0

2

4

6

0

1

2

3

4

5

6

7

IDCT

0

2

4

6

1

3

5

7

1

3

5

7

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

Figure 17: Implementation of the LOT for M = 8. Top: forward transform, bottom:
inverse transform.

VR = DT
IVD

T (73)

where DIV is the DCT type IV matrix [45] whose entries are

dIVij =

r
2

M
cos

�
(2j + 1)(2i+ 1)�

4M

�
: (74)

A block diagram for the implementation of the LOT is shown in Fig. 17 for M = 8.

0.6.2 The lapped bi-orthogonal transform: LBT

The LOT is a large improvement over the DCT for image compression mainly because it
reduces the so-called blocking e�ects. Although there is a very large reduction, blocking
is not eliminated. The reason for that lies in the format of the low frequency bases of
LOT. In image compression, only a few bases are used to reconstruct the signal. From
Fig. 4, one can see that the \tails" of the lower frequency bases of the LOT do not exactly
decay to zero. For that reason there is some blocking e�ect left in images compressed
using the LOT at lower bit rates.

To help resolve this problem, Malvar recently proposed to modify the LOT, creating
the lapped bi-orthogonal transform (LBT) [28]. (Bi-orthogonal is a common term in
the �lter banks community to designate PR transforms and �lter banks which are not
orthogonal.) In any case, the factorization of the LBT is almost identical to that of the
LOT. However
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PLBT =

�
IM 0

0 VR

� �
De ��Do JM=2(De ��Do)
De ��Do �JM=2(De ��Do)

�
(75)

where � is the M=2�M=2 diagonal matrix given by � = diagfp2; 1; : : : ; 1g. Note that
it only implies that one of the DCT's output is multiplied by a constant. The inverse is
given by the LT QLBT which is found in an identical manner as in (75) except that the
multiplier is inverted, i.e. � = diagf1=p2; 1; : : : ; 1g. The diagram for implementing an
LBT for M = 8 is shown in Fig. 18.

Because of the multiplicative factor, the LT is no longer orthogonal. However the
factor is very easily inverted. The result is a reduction of amplitude of lateral samples
of the �rst bases of the LOT into the new bases of the forward LBT, as it can be
seen in Fig. 19. In Fig. 19 the reader can note the reduction in the amplitude of the
boundary samples of the LBT and an enlargement of the same samples in the inverse
LBT. This simple \trick" improves noticeably the performance of the LOT/LBT for
image compression at negligible overhead. Design of the other parameters of the LOT
are not changed. It is recommended to use the LBT instead of the LOT whenever
orthogonality is not a crucial constraint.

Another LBT that has high practical value is the LiftLT [61]. Instead of parameter-
izing the orthogonal matrix VR in (69) by rotation angles, a series of dyadic lifting steps
are used to construct VR as shown in Fig. 20. The VR matrix is still invertible, but
not orthogonal anymore. Hence, the LiftLT is a biorthogonal LT. The

p
2 factor in the

Malvar's LBT can be replaced by a rational number to facilitate �nite-precision imple-
mentations. A good rational scaling factor is 25

16 for the forward transform, and 16
25 for

the inverse transform. The LiftLT o�ers a VLSI-friendly implementation using integer
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Figure 19: Comparison of bases for the LOT (PLOT ), LBT (PLBT ) and inverse LBT
(QLBT ). The extreme samples of the lower frequency bases of the LOT are larger than
those of the forward LBT. This is an advantage for image compression.
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Figure 20: Parameterization of the VR matrix using dyadic lifting steps in the LiftLT.

(even binary) arithmetic. Yet, it does not sacri�ce anything in coding performance. It
achieves 9.54 dB coding gain (a popular objective measure of transform performance to
be described later) comparing to the LOT's 9.20 dB and the LBT's 9.52 dB. It is the
�rst step towards LTs that can map integers to integers and multiplierless LTs that can
be implemented using only shift-and-add operations.

0.6.3 The generalized LOT: GenLOT

The formulation for the LOT [20] which is shown in (68), is not the most general there
is for this kind of LT. In fact it can be generalized to become

P =

�
U 0

0 V

� �
De �Do JM=2(De �Do)
De �Do �JM=2(De �Do)

�
: (76)

As long as U and V remain orthogonal matrices, the LT is orthogonal. In terms of the
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Figure 21: Implementation of a more general version of the LOT for M = 8. Top:
forward transform, bottom: inverse transform.

PTM, F(z) can be expressed similarly. Let

W =
1p
2

�
IM=2 IM=2

IM=2 �IM=2

�
; (77)

�i =

�
Ui 0M=2

0M=2 Vi

�
; (78)

�(z) =

�
IM=2 0M=2

0M=2 z�1IM=2

�
; (79)

and let D be the M �M DCT matrix. Then, for the general LOT,

F(z) = �1W�(z)WD: (80)

Where U1 = U and V1 = �V. Note that the regular LOT is the case where U1 = IM=2

and V1 = �VR. The implementation diagram for M = 8 is shown in Fig. 21.
From this formulation along with other results it was realized [40] that all orthogonal

symmetric LTs can be expressed as:

F(z) =KN�1(z)KN�2(z) � � �K1(z)K0 (81)

where

Ki(z) = �iW�(z)W; (82)

and where K0 is any orthogonal symmetric matrix. The inverse is given by
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p
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ies (W) orthogonal.

G(z) = KT
0K

0
1(z)K

0
2(z) � � �K0

N�1(z) (83)

where

K0
i(z) = z�1W�(z�1)W�T

i : (84)

From that perspective, the generalized LOT (GenLOT) is de�ned as the orthogonal
LT as in (81) in which K0 = D, i.e.

F(z) = KN�1(z) � � �K1(z)D: (85)

A diagram for implementing a GenLOT for evenM is shown in Fig. 22. In this diagram,
the scaling parameters are � = 2�(N�1) and account for the terms 1=

p
2 in the de�nition

of W.
The degrees of freedom of a GenLOT are the orthogonal matrices Ui and Vi. There

are 2(N � 1) matrices to optimize, each of size M=2 �M=2. From Sec. 0.1.4 we know
that each one can be factorized into M(M � 2)=8 rotations. Thus, the total number
of rotations is (L �M)(M � 2)=4, which is less than the initial number of degrees of



30

Table 1: GenLOT example for N = 4. The even bases are symmetric while the odd ones
are anti-symmetric, so that only their �rst half is shown.

p0n p1n p2n p3n p4n p5n p6n p7n

0.004799 0.004829 0.002915 -0.002945 0.000813 -0.000109 0.000211 0.000483

0.009320 -0.000069 -0.005744 -0.010439 0.001454 0.003206 0.000390 -0.001691

0.006394 -0.005997 -0.011121 -0.010146 0.000951 0.004317 0.000232 -0.002826

-0.011794 -0.007422 -0.001800 0.009462 -0.001945 -0.001342 -0.000531 0.000028

-0.032408 -0.009604 0.008083 0.031409 -0.005262 -0.007504 -0.001326 0.003163

-0.035122 -0.016486 0.001423 0.030980 -0.005715 -0.006029 -0.001554 0.001661

-0.017066 -0.031155 -0.027246 0.003473 -0.003043 0.005418 -0.000789 -0.005605

0.000288 -0.035674 -0.043266 -0.018132 -0.000459 0.013004 -0.000165 -0.010084

-0.012735 -0.053050 0.007163 -0.083325 0.047646 0.011562 0.048534 0.043066

-0.018272 -0.090207 0.131531 0.046926 0.072761 -0.130875 -0.089467 -0.028641

0.021269 -0.054379 0.109817 0.224818 -0.224522 0.136666 0.022488 -0.025219

0.126784 0.112040 -0.123484 -0.032818 -0.035078 0.107446 0.147727 0.109817

0.261703 0.333730 -0.358887 -0.379088 0.384874 -0.378415 -0.339368 -0.216652

0.357269 0.450401 -0.292453 -0.126901 -0.129558 0.344379 0.439129 0.317070

0.383512 0.369819 0.097014 0.418643 -0.419231 0.045807 -0.371449 -0.392556

0.370002 0.140761 0.478277 0.318691 0.316307 -0.433937 0.146036 0.427668

freedom in a symmetric M �L matrix, LM=2. However, it is still a large number of pa-
rameters to design. In general GenLOTs are designed through non-linear unconstrained
optimization. Rotation angles are searched to minimize some cost function. GenLOT
examples are given elsewhere [40] and we present two examples, for M = 8, in Tables 1
and 2, which are also plotted in Fig. 23.

In the case when M is odd, the GenLOT is de�ned as:

F(z) = K(N�1)=2(z) � � �K1(z)D: (86)

where the stages Ki have necessarily order 2 as:

Ki(z) = �o
2iW

o�o1(z)Wo�o
2i�1W

o�o2(z)Wo (87)

and where

�o
2i =

�
U2i 0

0 V2i

�
; (88)

�o
2i�1 =

2
4 U2i�1 0

1
0 V2i�1

3
5 ; (89)

Wo =

2
4 I(M�1)=2 0(M�1)=2�1 I(M�1)=2

01�(M�1)=2 1 01�(M�1)=2

I(M�1)=2 0(M�1)=2�1 �I(M�1)=2

3
5 ; (90)

�o1(z) = diagf 1; 1; : : : ; 1| {z }
(M+1)=2�10s

; z�1; : : : ; z�1| {z }
(M�1)=2�z�1

g ; (91)

�o2(z) = diagf 1; 1; : : : ; 1| {z }
(M�1)=2�10s

; z�1; : : : ; z�1| {z }
(M+1)=2�z�1

g : (92)
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Top: factor of the forward transform: Ki(z). Bottom: factor of the inverse transform:
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i(z).

Although it may seem that the formulation of the odd-channel case is more complex
than the one for the even-M case, the implementation is very similar in complexity as
shown in Fig. 24. The main di�erence is that two stages have to be connected together.
The inverse transform is accomplished in the same way as for the even channel case:

G(z) = DTK0
1(z)K

0
2(z) � � �K0

N�1(z) (93)

where the inverse factors are

K0
i(z) = z�2KT

i (z
�1); (94)

whose structure is evident from Fig. 24.

0.6.4 The general factorization: GLBT

The general factorization for all symmetric LTs [60] can be viewed either as an extension
of GenLOTs or as a generalization of the LBT. It can be shown that for M even, all LTs
obeying (65) or (66) can be factorized as in (81), where the Ki(z) factors are given in
(82) with the matrices Ui and Vi (which compose �i) being only required to be general
invertible matrices. From Sec. 0.1.4, each factor can be decomposed as:

Ui = UiBUidUiA ; Vi = ViBVidViA ; (95)

where UiA, UiB , ViA and ViB are general M=2�M=2 orthogonal matrices, while Uid

and Vid are diagonal matrices with non-zero diagonal entries.
The �rst factor K0 is given by:

K0 = �0W ; (96)
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Table 3: Forward GLBT bases example for M = 8 and N = 2. The even bases are
symmetric while the odd ones are anti-symmetric, so only their �rst half is shown.

p0n p1n p2n p3n p4n p5n p6n p7n

-0.21192 -0.18197 0.00011 -0.09426 0.03860 -0.03493 0.04997 0.01956

-0.13962 -0.19662 0.16037 0.05334 0.09233 0.12468 -0.09240 -0.03134

-0.03387 -0.09540 0.17973 0.25598 -0.24358 -0.12311 0.01067 -0.01991

0.09360 0.10868 -0.06347 -0.01332 -0.05613 -0.10218 0.16423 0.11627

0.23114 0.34101 -0.36293 -0.39498 0.42912 0.36084 -0.35631 -0.22434

0.35832 0.46362 -0.35056 -0.16415 -0.13163 -0.31280 0.47723 0.31907

0.46619 0.42906 0.00731 0.42662 -0.45465 -0.07434 -0.40585 -0.38322

0.53813 0.22604 0.42944 0.36070 0.32595 0.43222 0.15246 0.39834

Table 4: Inverse GLBT bases example for M = 8 and N = 2. The even bases are
symmetric while the odd ones are anti-symmetric, so only their �rst half is shown.

p0n p1n p2n p3n p4n p5n p6n p7n

0.01786 -0.01441 0.06132 0.01952 0.05243 0.05341 0.04608 0.08332

0.05692 -0.01681 0.16037 0.12407 0.04888 0.16065 -0.09042 -0.02194

0.10665 0.06575 0.12462 0.24092 -0.21793 -0.13556 0.02108 -0.00021

0.16256 0.20555 -0.12304 -0.03560 -0.02181 -0.08432 0.13397 0.12747

0.22148 0.34661 -0.38107 -0.35547 0.36530 0.39610 -0.30170 -0.23278

0.27739 0.40526 -0.32843 -0.12298 -0.12623 -0.35462 0.41231 0.34133

0.32711 0.33120 0.03939 0.38507 -0.38248 -0.08361 -0.35155 -0.40906

0.36617 0.13190 0.44324 0.30000 0.28191 0.45455 0.13232 0.41414

where�i is given as in (78), and factorsU0 andV0 are only required to be invertible. The
general factorization can be viewed as a generalized LBT (GLBT) and its implementation

ow graph for M even is shown in Fig. 25.

The inverse GLBT is similar to the GenLOT case, where

K0
i(z) = z�1W�(z)W��1

i : (97)

and

��1
i =

�
U�1
i 0M=2

0M=2 V�1
i

�
=

�
UT
iAU

�1
id U

T
iB 0M=2

0M=2 VT
iAV

�1
id V

T
iB

�
(98)

while

K�1
0 =W��1

0 : (99)

The diagram for the implementation of the inverse stages of the GLBT are shown in
Fig. 25. Example of bases for the GLBT of particular interest to image compression are
given in Tables 3 and 4.

For the odd case, the GLBT can be similarly de�ned. It follows the GenLOT factor-
ization:

F(z) =K(N�1)=2(z) � � �K1(z)K0: (100)

where the stagesKi are as in (87) with the following di�erences: (i) all factorsUi andVi

are only required to be invertible; (ii) the center element of �2i�1 is a non-zero constant
u0 and not 1. Again K0 is a symmetric invertible matrix. Forward and inverse stages
for the odd-channel case are illustrated in Fig. 26.
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0.7 The fast lapped transform: FLT

The motivation behind the fast lapped transform (FLT) is to design an LT with minimum
possible complexity compared to a block transform and, yet, to provide some advantages
over a block transform. For that we use the principles of Sec. 0.5.3 and de�ne the FLT
as the LT whose PTM is given by:

F(z) =

�
E(z) 0

0 IM�K

�
DM (101)

where E(z) is a K �K PTM and DM is the M �M DCT matrix. The PTM for the
inverse LT, is given by

G(z) = DT
M

�
E0(z) 0

0 IM�N

�
; (102)

where E0(z) is the inverse of E(z).
The design of E(z) can be done in two basic ways. Firstly, one can use direct

optimization. Secondly, one can design E(z) as

E(z) = 	(z)DT
K (103)

where 	(z) is a known LT and DK is the K � K DCT matrix, i.e. we perform
an inverse DCT followed by a known LT. For example, if 	(z) is the LOT, Gen-
LOT, or LBT, of K channels, the �rst stage (DK) cancels the inverse DCT. Exam-
ples of FLT are given in Fig. 27. In that example, the �rst case where K = 2, di-
rect optimization is recommended, for which the values f�00; �01; �10; �10; �20; �21g =
f1:9965; 1:3193; 0:4388; 0:7136; 0:9385; 1:2878g yield an excellent FLT for image compres-
sion. In the middle of Fig. 27 the case K = 4 can be optimized by optimizing 2 invertible
matrices. In the case where we use the method in (103) and the LBT as the K channel
post-processing stage, we can see that the LBT's DCT stage is canceled yielding a very
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Figure 27: Implementation of examples of the FLT. On top, K = 2; middle, case K = 4;
bottom, case K = 4 where 	(z) is the LBT, thus having its DCT stage canceled.

simple 
ow-graph. The respective bases for forward and inverse transforms for the two
FLTs (K = 2 with the given parameters, and K = 4 using the LBT) are shown in
Fig. 28. Both bases are excellent for image coding, virtually eliminating ringing, despite
the minimal complexity added to the DCT (which by itself can be implemented in a very
fast manner [45]).

0.8 Modulated LTs

Cosine modulated LTs or �lter banks [62] use a low-pass prototype to modulate a cosine
sequence. By a proper choice of the phase of the cosine sequence, Malvar developed
the modulated lapped transform (MLT) [21], which led to the so-called extended lapped
transforms (ELT) [24], [25], [26], [27]. The ELT allows several overlapping factors, gener-
ating a family of orthogonal cosine modulated LTs. Both designations (MLT and ELT)
are frequently applied to this class of �lter banks. Other cosine-modulation approaches
have also been developed and the most signi�cant di�erence among them is the low-pass
prototype choice and the phase of the cosine sequence [17], [21], [26], [25], [30], [33], [48],
[55], [62], [54].

In the ELTs, the �lters' length L is basically an even multiple of the block size M ,
as L = NM = 2KM . Thus, K is referred to as the overlap factor of the ELT. The
MLT-ELT class is de�ned by



0.8. MODULATED LTS 37

0 12 23

0

1

B
as

is
 n

um
be

r

0 12 23

0

1

B
as

is
 n

um
be

r

0 8 15

0

1

2

3

B
as

is
 n

um
be

r

0 8 15

0

1

2

3

B
as

is
 n

um
be

r

Figure 28: Bases of the FLT in the case M = 8 for forward and inverse LTs. From left
to right: forward transform bases for the case K = 2, inverse transform bases for the
case K = 2, forward transform bases for the case K = 4, inverse transform bases for the
case K = 4. The remaining bases, not shown are the regular bases of the DCT and have
length 8.
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pk;n = h(n) cos

��
k +

1

2

���
n� L� 1

2

�
�

M
+ (N + 1)

�

2

��
(104)

for k = 0; 1 : : : ;M�1 and n = 0; 1; : : : ; L�1. h(n) is a symmetric window modulating the
cosine sequence and the impulse response of a low-pass prototype (with cuto� frequency
at �=2M) which is translated in frequency to M di�erent frequency slots in order to
construct the LT. A very useful ELT is the one with K = 2, which will be designated as
ELT-2, while ELT with K = 1 will be referred as the MLT.

A major plus of the ELTs is its fast implementation algorithm. The algorithm is based
on a factorization of the PTM into a series of plane rotation stages and delays and a DCT
type IV [45] orthogonal transform in the last stage, which also has fast implementation
algorithms. The lattice-style algorithm is shown in Fig. 29 for an ELT with generic
overlap factorK. In Fig. 29 each branch carriesM=2 samples and both analysis (forward
transform) and synthesis (inverse transform) 
ow-graphs are shown. The plane rotation
stages are of the form indicated in Fig. 30 and contain M=2 orthogonal butter
ies to
implement the M=2 plane rotations. The stages �i contain the plane rotations and are
de�ned by
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�i =

� �Ci SiJM=2

JM=2Si JM=2CiJM=2

�
; (105)

Ci = diag fcos(�0;i); cos(�1;i); � � � ; cos(�M
2
�1;i)g;

Si = diag fsin(�0;i); sin(�1;i); � � � ; sin(�M
2
�1;i)g;

where �i;j are rotation angles. These angles are the free parameters in the design of an
ELT because they de�ne the modulating window h(n). Note that there are KM angles,
while h(n) has 2KM samples, however, h(n) is symmetric what brings the total number
of degrees of freedom to KM .

In general, there is no simple relationship among the rotation angles and the window.
Optimized angles for several values of M and K are presented in the extensive tables
in [26]. In the ELT-2 case, however, one can use a parameterized design [27][26][25]. In
this design, we have

�k;0 = ��
2
+ �M=2+k (106)

�k;1 = ��
2
+ �M=2�1�k (107)

where

�i =

��
1� 


2M

�
(2k + 1) + 


�
(108)

and 
 is a control parameter, for 0 � k � (M=2) � 1. In general, although suboptimal
for individual applications, 
 = 0:5 provide a balanced trade-o� of stopband attenuation
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Figure 31: Example of ELT bases for the given angles design method for M = 8. Left:
K = 1; N = 2, right: K = 2; N = 4.

and transition range for the equivalent �lters (which are the bases of the LT viewed as
a �lter bank). The equivalent modulating window h(n) is related to the angles as

h(n) = cos(�n0) cos(�n1)

h(M � 1� n) = cos(�n0) sin(�n1)

h(M + n) = sin(�n0) cos(�n1)

h(2M � 1� n) = � sin(�n0) sin(�n1) (109)

for 0 � n � (M=2)� 1. In the case K = 1, some example angles are:

�k0 =
�

2
� �

2M

�
k +

1

2

�
(110)

for 0 � k � (M=2)� 1. The corresponding modulating window h(n) is

h(n) = h(2M � 1� n) = � cos(�n0)

h(M + n) = h(M � 1� n) = � sin(�n0) (111)

for 0 � n � (M=2)� 1. The bases for the ELT using the suggested angles are shown in
Fig. 31. In this �gure, the 8-channel examples are for N = 2 (K = 1) and for N = 4
(K = 2),

0.9 Finite-length signals

Since the LT matrices are not square, in order to obtain n transformed subband samples
one has to evaluate more than n samples of the input signal. For the same reason, n
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Figure 32: Extension and windowing in transformation of a �nite-length signal using
LTs. (a) Overall forward transform section. (b) Overall inverse transform section.

subband samples would generate more than n signal samples after inverse transformation.
All of our analysis so far has assumed in�nite-length signals. Processing �nite-length
signals, however, is not trivial. Without proper consideration there will be a distortion
in the reconstruction of the boundary samples of the signal. There are basically three
methods to process �nite-length signals with LTs:

� signal extension and windowing of subband coe�cients;

� same as above but using di�erent extensions for di�erent bases;

� using time-varying bases for the boundary regions.

We will discuss the �rst method only. The second is just applicable to few transforms
and �lter banks and can be covered elsewhere. The subject of time-varying LTs is very
rich and provides solutions to several problems including the processing of boundary
samples. We will not cover it in this chapter. The reader is referred to [34], [9], [38],
[51], [35] and their references for further information on time-varying LTs.

0.9.1 Overall transform

Here we assume the model of extension and windowing described in Fig. 32 [39]. The
input vector x is assumed to have Nx = NBM samples and is divided into 3 sections:
xT = [xTl ;x

T
c ;x

T
r ], where xl and xr contain the �rst and last � samples of x, respectively.

Following the signal extension model, x is extended into ~x as

~xT = [xTe;l;x
T ;xTe;r] = [(Rlxl)

T ;xTl ;x
T
c ;x

T
r ; (Rrxr)

T ] (112)

i.e. the extended sections are found by a linear transform of the boundary samples of x
as shown in Fig. 33, i.e.

xe;l = Rlxl ; xe;r = Rrxr (113)

and Rl and Rr are arbitrary � � � \extension" matrices. For example, Rl = Rr = J�
yields a symmetric extension.

The transformation from the Nx + 2� samples in ~x to vector y with NBM = Nx

subband samples is achieved through the block-banded matrix ~P, i.e.
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Figure 33: Illustration of signal extension of vector x into vector ~x. In each border,
� = (L �M)=2 samples outside initial signal boundaries are found by linear relations
applied to the � boundary samples of x, i.e., xe;l = Rlxl and xe;r = Rrxr . As only �
samples are a�ected across the signal boundaries, it is not necessary to use an in�nite-
length extension. Also, xl and xr contain the samples possibly a�ected by the border
distortions after the inverse transformation.

~P =

0
BBBBBB@

. . .
. . . 0

P0 P1 � � � PN�1

P0 P1 � � � PN�1

P0 P1 � � � PN�1

0
. . .

. . .

1
CCCCCCA : (114)

Note that there are NB block rows and that � = (N �1)M=2. The di�erence between ~P
and H de�ned in (21) is that H is assumed to be in�nite and ~P is assumed to have only
NB block rows. We can use the same notation for ~Q with respect to Qi, so that, again,
the di�erence between ~Q and H0 de�ned in (32) is that H0 is assumed to be in�nite and
~Q is assumed to have only NB block rows. The forward and inverse transform systems
are given by

~y = ~P~x ; �~x = ~QT ~y: (115)

In the absence of quantization or processing of the subband signals, then ~y = y and

�~x = ~QT ~y = ~QT ~P~x = ~T~x (116)

where �~x is the reconstructed vector in the absence of quantization and ~T = ~QT ~P is the
transform matrix between �~x and ~x. Note that ~T has size (Nx+�)� (Nx+�) because it
maps two extended signals. From (35) we can easily show that the transform matrix is
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~T = ~QT ~P =

2
4 TL 0

INx�2�

0 TR

3
5 (117)

where Tl and Tr are some 2�� 2� matrices. Thus, distortion is just incurred to the �
boundary samples in each side of x (2� samples in each side of ~x).

In another view of the process, regardless of the extension method, there is a trans-
form T such that

y = Tx ; �x = T�1�y (118)

without resorting to signal extension. The key is to �nd T and to invert it. If T is made
orthogonal one can easily invert it by applying transposition. This is the concept behind
the use of time-varying LTs for correcting boundary distortions. For example, the LT
can be changed near the borders to ensure the orthogonality of T[38]. We will not use
time-varying LTs here but rather use extended signals and transform matrices.

0.9.2 Recovering distorted samples

Let

[�lj�r] =

2
6664
P0 P1 � � � PN�2 PN�1 0

P0 P1 � � � PN�2 PN�1

. . .
. . .

. . .
. . .

0 P0 P1 � � � PN�2 PN�1

3
7775 ; (119)

[	lj	r] =

2
6664
Q0 Q1 � � � QN�2 QN�1 0

Q0 Q1 � � � QN�2 QN�1

. . .
. . .

. . .
. . .

0 Q0 Q1 � � � QN�2 QN�1

3
7775 : (120)

Hence,

Tl = 	T
l �l ; Tr =	T

r �r: (121)

If �~x is divided in the same manner as ~x, i.e.

�~x = [�xTe;l; �x
T
l ; �x

T
c ; �x

T
r ; �x

T
e;r ]; (122)

then,

�
�xe;l
�xl

�
= Tl

�
xe;l
xl

�
= Tl

�
Rlxl
xl

�
= Tl

�
Rl

I�

�
xl = �l xl (123)

where

�l = Tl

�
Rl

I�

�
(124)
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is a 2� � � matrix. If and only if �l has rank �, then xl can be recovered through the
pseudo-inverse of �l as:

xl = �+l

�
�xe;l
�xl

�
= (�Tl �l)

�1�Tl

�
�xe;l
�xl

�
: (125)

For the other (\right") border the identical result is trivially found to be

xr = �+r

�
�xr
�xe;r

�
= (�Tr �r)

�1�Tr

�
�xr
�xe;r

�
; (126)

where

�r = Tr

�
I�
Rr

�
(127)

is also assumed to have rank �. It is necessary that �l,�r,	l and 	r have rank �, but
not su�cient since rank can be reduced by the matrix products. It is also possible to
express in more detail the conditions but without any useful analytical solution, so that
numerical rank checking is the best choice.

Summarizing, the steps to achieve PR, for given Rl and Rr are:

� Select P and Q and identify their submatrices Pi and Qi.

� Find �l,�r,	l,	r, from (119)(120).

� Find Tl and Tr from (121).

� Find �l and �r from (124)(127).

� Test rank of �l and �r .

� If ranks are �, obtain �+l , �
+
r and reconstruct xl and xr .

This is an extension of [39] to non-orthogonal LTs, with the particular concern to
test whether the pseudo inverses exist.

The model in Fig. 32 and the proposed method are not applicable for some LTs. The
notable classes of LTs includes those LTs whose bases have di�erent length and di�erent
symmetries. Examples are: two-channel non-orthogonal LTs with odd-length (2-channel
biorthogonal �lter banks [54]); (ii) the FLT; (iii) other composite systems, i.e. cascaded
systems such as those used in [41]. For the �rst example, it is trivial to use symmetric
extensions, but di�erent symmetries for di�erent bases [54]. The second example has
the same reasoning, however an FLT can be e�ciently implemented by applying the
method just described to each of the stages of the transformation (i.e. �rst apply the
DCT and then use the method above for the second part). The reason for problems is
that di�erent �lters would require di�erent extensions during the forward transformation
process, therefore, the model in Fig. 32 is not applicable.

The above method works very well for M -channel �lter banks whose �lters have the
same length. The phase of the �lters and the extensions can be arbitrary, and the method
has been shown to be consistent for all uniform-length �lter banks of interest tested.

0.9.3 Symmetric extensions

In case the LT is symmetric and obeys (65) and (66), there is a much simpler method to
implement the LT over a �nite-length signal of NB blocks of M samples.
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In the forward transform section we perform symmetric extension as described, ap-
plied to the last � = (L�M)=2 samples on each border, resulting in a signal ~x(n) with
Nx + 2� = Nx + L�M samples, as

x(� � 1); � � � ; x(0); x(0); � � � ; x(Nx � 1); x(Nx � 1); � � � ; x(Nx � �) (128)

The signal is processed by the PTM F(z) as a clocked system, without concern for border
locations. The internal states of the system F(z) can be initialized in any way. So, the
NB+N�1 blocks of the extended signal are processed yielding equal number of blocks of
subband samples. Discard the �rst N�1 output blocks, obtaining NB transform-domain
blocks corresponding to NB samples of each subband.

The general strategy to achieve perfect reconstruction without great increase in com-
plexity or change in the implementation algorithm, is to extend the samples in the
subbands, generating more blocks to be inverse transformed, in such a way that after
inverse transformation, assuming no processing of the subband signals, the signal recov-
ered is identical to the original at the borders. The extension of the k-th subband signal
depends on the symmetry of the k-th basis. Let pkn = vkpk;L�1�n for 0 � k � M � 1
and 0 � n � L� 1, i.e., vk = 1 if pkn is symmetric and vk = �1 if pkn is anti-symmetric.
Before inverse transformation, for each subband signal �yk(m) of NB samples, fold the
borders of �yk(m) (as in the analysis section) in order to �nd a signal �~yk(m), and invert
the sign of the extended samples if pkn is anti-symmetric. For s samples re
ected around
the borders, then the k-th subband signal will have samples

vkŷk(s� 1); � � � ; vkŷk(0); ŷk(0); � � � ŷk(NB � 1); vkŷk(NB � 1); � � � ; vkŷk(NB � s):

The inverse transformation can be performed as:

� N odd - Re
ect s = (N�1)=2 samples around each border, getting, thus, NB+N�1
blocks with subband samples to be processed. To obtain the inverse transformed
samples x̂(n), initialize the internal states in any way, run the system G(z) over
the NB +N � 1 blocks, and discard the �rst N � 1 reconstructed blocks, retaining
the Nx = NBM remaining samples.

� N even - Re
ect s = N=2 samples around each border, getting, thus, NB + N
blocks to be processed. To obtain the inverse transformed samples x̂(n), initialize
the internal states in any way and run the system G(z) over the NB +N blocks.
Discard the �rst N �1 reconstructed blocks and the �rst M=2 samples of the N -th
block. Include in the reconstructed signal the last M=2 samples of the N -th block
and the subsequent (NB � 1)M samples. In the last block, include the �rst M=2
samples in the reconstructed signal and discard the rest.

This approach will assure the perfect reconstruction property and orthogonality of the
overall transformation if the LT is orthogonal [38]. The price paid is to run the algorithm
over extra N or N � 1 blocks. As it is common to have NB � N , the computational
increase is only marginal.

0.10 Design issues for compression

Block transform coding and subband coding have been two dominant techniques in
existing image compression standards and implementations. Both methods actually
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exhibit many similarities: relying on a certain transform to convert the input image to a
more decorrelated representation, then utilizing the same basic building blocks such as
bit allocator, quantizer, and entropy coder to achieve compression.

Block transform coders enjoyed success �rst due to their low complexity in imple-
mentation and their reasonable performance. The most popular block transform coder
leads to the current image compression standard JPEG [32] which utilizes the 8�8 DCT
at its transformation stage. At high bit rates, JPEG o�ers almost visually lossless recon-
struction image quality. However, when more compression is needed (i.e., at lower bit
rates), annoying blocking artifacts show up because of two reasons: (i) the DCT bases
are short, non-overlapped, and have discontinuities at the ends; (ii) JPEG processes each
image block independently. So, inter-block correlation is not taken into account.

The development of lapped transforms helps solve the blocking problem by borrowing
pixels from the adjacent blocks to produce the transform coe�cients of the current block.
In other words, lapped transforms are block transforms with overlapping basis functions.
Comparing to the traditional block transforms such as the DCT, the DST, and the
Walsh-Hadamard transform, lapped transforms o�er two main advantages: (i) from the
analysis viewpoint, it takes into account inter-block correlation, hence, provides better
energy compaction that leads to more e�cient entropy coding of the coe�cients; (ii)
from the synthesis viewpoint, its basis functions decay asymptotically to zero at the
ends, reducing blocking discontinuities drastically.

All of the lapped transforms presented in the previous sections are designed to have
high practical value. They all have perfect reconstruction. Some of them even have
real and symmetric basis functions. However, for the transforms to achieve high coding
performance, several other properties are also needed. Transforms can be obtained using
unconstrained nonlinear optimization where some of the popular cost criteria are: coding
gain, DC leakage, attenuation around mirror frequencies, and stopband attenuation. In
the particular �eld of image compression, all of these criteria are well-known desired
properties in yielding the best reconstructed image quality [54], [44]. The cost function
in the optimization process can be a weighted linear combination of these measures as
follows

Coverall = �1 Ccoding gain + �2 CDC + �3 Cmirror

+ �4 Canalysis stopband + �5 Csynthesis stopband: (129)

Coding Gain

The coding gain of a transform is de�ned as the reduction in transform coding mean-
square error over pulse-code modulation (PCM) which simply quantizes the samples of
the signal with the desired number of bits per sample. De�ne �2x as the variance of the
input signal x[n], �2xi as the variance of the i-th subband, and jjfijj2 as the L2 norm of
the i-th synthesis �lter. With several assumptions including scalar quantization and a
su�cient large bit rate, the generalized coding gain can be formulated as [12], [15], [28]:

Ccoding gain = 10 log10
�2x 

M�1Y
i=0

�2xi jjfijj2
! 1

M

: (130)

The signal x[n] is the commonly-used AR(1) process with intersample autocorrelation
coe�cient � = 0:95. The coding gain can be thought of as an approximate measure of
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the transform's energy compaction capability. Among the listed criteria, higher coding
gain correlates most consistently with higher objective performance (measured in MSE
or PSNR). Transforms with higher coding gain compact more signal energy into a fewer
number of coe�cients, and this leads to more e�cient entropy coding.

Low DC Leakage

The DC leakage cost function measures the amount of DC energy that leaks out to the
bandpass and highpass subbands. The main idea is to concentrate all signal energy at
DC into the DC coe�cients. This proves to be advantageous in both signal decorrelation
and in the prevention of discontinuities in the reconstructed signals. Low DC leakage
can prevent the annoying checkerboard artifact that usually occurs when high frequency
bands are severely quantized [54]. The DC cost function can be de�ned as

CDC =

M�1X
i=1

L�1X
n=0

hi[n]: (131)

The readers should note that all antisymmetric �lters have a zero at DC (zero frequency).
Therefore, the above formula only needs to apply to symmetric �lters to reduce the
complexity of the optimization process. It is interesting to note that the zero leakage
condition is equivalent to having one vanishing moment { a necessary condition in the
construction of wavelets.

Attenuation at mirror frequencies

The mirror frequency cost function is a generalization of CDC. The concern is now
at every aliasing frequencies !m = 2�m

M ; m 2 Z ; 1 � m � M
2 . Ramstad et. al.

have shown that frequency attenuation at mirror frequencies are very important in the
further reduction of blocking artifacts: the �lter responses should be small at these mirror
frequencies as well [44]. The corresponding cost function is:

Cmirror =

M�2X
i=0

jHi(e
j!m)j2; !m =

2�m

M
; 1 � m � M

2
: (132)

Low DC leakage and high attenuation near the mirror frequencies are not as essential to
the coder's objective performance as coding gain. However, they do improve the visual
quality of the reconstructed image signi�cantly.

Stopband Attenuation

Stopband attenuation of the �lters is a classical performance criterion in �lter design.
For our purpose, the stopband attenuation criterion measures the sum of all of the �lters'
energy outside the designated passbands:

Canalysis stopband =
M�1X
i=0

Z
!2
stopband

W a
i (e

j!) jHi(e
j!)j2d!

Csynthesis stopband =

M�1X
i=0

Z
!2
stopband

W s
i (e

j!) jFi(ej!)j2d!: (133)
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Figure 34: Basic building blocks of a transform coder. The image is transformed and
quantized in order to submit the data to a lossless (entropy) coder.
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Figure 35: JPEG building blocks. The image is broken into blocks and each block is
transformed using the DCT, quantized, and encoded. The decoder performs the inverse
steps.

In the analysis bank, the stopband attenuation cost helps in improving the signal decor-
relation and decreasing the amount of aliasing. In meaningful images, we know a priori

that most of the energy is concentrated in low frequency region. Hence, high stopband
attenuation in this part of the frequency spectrum becomes extremely desirable. In
the synthesis bank, the synthesis �lters covering low-frequency bands need to have high
stopband attenuation near and/or at ! = � to enhance their smoothness. The biased
weighting can be enforced using two simple functions W a

i (e
j!) and W a

i (e
j!) as shown

in (133).

0.11 Transform-based image compression systems

Transform coding is the single most popular approach for image compression. The basic
building blocks of a transform coder are illustrated in Fig. 34. The entropy coder is
the step that actually performs any compression. The entropy of the symbols to be
compressed is reduced by the quantizer which is the only building block which is not
reversible, i.e. it is a lossy operator. The transform step does not cause losses nor
performs compression but is the core of the compression system. It enables compression
by compacting the energy into few coe�cients, thus reducing the distortion caused by
the quantization step.

A separable transformation is the one where all rows are transformed and then all
columns are transformed. Let X the a matrix containing the image pixels and let Y be
the transformed image, then from (33) we have

Y = HFXH
T
F X = HT

I YHI : (134)

Y is composed byM�M blocksYij , each block having a full set of transform coe�cients
(subband samples). Each of the blocks Yij is then quantized and encoded. In the case
of a block transform, each transformed block Yij is related to only one image block of
M �M pixels. For LTs, of course, each block Yij is related to several pixel blocks. We
will only discuss the performance of LTs in the context of two popular image coders.
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0.11.1 JPEG

Transform coding is framework employed by the Joint Photographic Experts Group
(JPEG) still image compression standard. The reader is referred to the JPEG book [32]
for a detailed description of the JPEG image compression system . The JPEG book

not only covers JPEG well but it also includes a copy of the standard draft! The steps
for JPEG compression are shown in Fig. 35. The image is broken into blocks of 8 � 8
pixels, which are transformed using a separable 8-channel DCT. The transformed block
is quantized (e�ectively divided by an integer number and rounded) and then encoded.
The quantized transformed samples in a block are scanned into a vector following a
zigzag pattern starting from the lowest frequency band to the highest frequency one.
The lowest frequency sample of a block is known as the DC coe�cient (DCC). Before
encoding the quantized DCC of a block is actually replaced by the di�erence of itself
and the DCC of a previous block (this is referred to as DPCM). Finally the scanned
vector is fed into an entropy coder which uses a combination of run-length counting
and variable-length coding to compress the data. The decoder runs the inverse of all
the encoding steps in reverse order to reconstruct the image block from the compressed
data. The vector is recovered using variable-length decoding and run-length, the DCC
is accumulated using the recovered DCC of a previous block, the block is reformed from
the vector by inverting the zigzag scanning, the block is inverse quantized (samples are
multiplied by the same number which was used to divide the transformed sample before
rounding during the quantization step), and �nally the resulting block is transformed
through an inverse DCT.

For our purposes, we would like to compare the performance of LTs against the
DCT. LTs can be very easily incorporated into JPEG by simply replacing the DCT.
Even though the bases overlap, the subband samples are arranged in a block just like
the DCT. The transformed block is fed to the rest of the JPEG coder (which does not
care whether the samples were found through the DCT or not) to be quantized and
encoded. All results here for JPEG are found by merely replacing the DCT by an 8-
channel (M = 8) LT while maintaining all the other parameters and settings unchanged.

0.11.2 Embedded Zerotree Coding

Embedded Zerotree Coding (EZC) is often associated with the dyadic wavelet transform.
The multiresolution characteristics of the wavelet transform have created an intuitive
foundation on which simple, yet sophisticated, methods of encoding the transform coef-
�cients are developed. Exploiting the relationship between the parent and the o�spring
coe�cients in a wavelet tree, the original Embedded Zerotree Wavelet (EZW) coder [49]
and its variations [47], [70] can e�ectively order the coe�cients by bit planes and trans-
mit more signi�cant bits �rst. This coding scheme results in an embedded bit stream
along with many other advantages such as exact bit rate control and near-idempotency
(perfect idempotency is obtained when the transform maps integers to integers). In
these subband coders, global information is taken into account fully. In this section, we
shall con�rm that the embedded zerotree framework is not only limited to the wavelet
transform; it can be utilized with various LTs as well. In fact, the combination of a LT
and several levels of wavelet decomposition of the DC band can provide much �ner fre-
quency spectrum partitioning, leading to signi�cant improvement over current embedded
wavelet coders [60], [57].

The EZC approach relies on the fundamental idea that more important information
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Figure 36: Embedded zerotree coding as a bit-plane re�nement scheme.

(de�ned here as what decreases a certain distortion measure the most) should be trans-
mitted �rst. Assume that the distortion measure is the mean-squared error (MSE), the
transform is orthogonal, and transform coe�cients Ci;j are transmitted one by one, it is
well-known that the MSE decreases by 1

N jCi;j j, where N is the total number of pixels.
Therefore, larger coe�cients should always be transmitted �rst. If one bit is transmit-
ted at a time, this approach can be generalized to ranking the coe�cients by bit planes
and the most signi�cant bits are transmitted �rst [43] as demonstrated in Fig. 36. The
progressive transmission scheme results in an embedded bit stream (i.e., it can be trun-
cated at any point by the decoder to yield the best corresponding reconstructed image).
The algorithm can be thought of as an elegant combination of a scalar quantizer with
power-of-two stepsizes and an entropy coder to encode wavelet coe�cients.

Embedded algorithm relies on the hierarchical coe�cients' tree structure called a
wavelet tree { a set of wavelet coe�cients from di�erent scales that belong in the same
spatial locality. This is demonstrated in Fig. 37a, where the tree in the vertical direction
is circled. All of the coe�cients in the lowest frequency band make up the DC band or
the reference signal (located at the upper left corner). Besides these DC coe�cients,
in a wavelet tree of a particular direction, each lower-frequency parent node has four
corresponding higher-frequency o�spring nodes. All coe�cients below a parent node in
the same spatial locality is de�ned as its descendents. De�ne a coe�cient Ci;j to be
signi�cant with respect to a given threshold T if jCi;j j � T , and insigni�cant otherwise.
Meaningful image statistics have shown that if a coe�cient is insigni�cant, it is very
likely that its o�spring and descendents are insigni�cant as well. Exploiting this fact,
sophisticated embedded wavelet coders can output a single marker to represent very
e�ciently a large, smooth image area (an insigni�cant tree). For more details on the
algorithm, the reader is referred to [49], [47], [70].

LTs obtains a uniform spectrum partitioning whereas the wavelet transform has an
octave-band signal decomposition. All LT subbands have the same size. A parent node
would not have four o�spring nodes as in the case of the wavelet representation. In order
to use embedded zerotree algorithms to encode the LT coe�cients, we have to modify
the zerotree data structure. Investigating the analogy between the wavelet and the LT
as in Fig. 37 reveals that the parent, the o�spring, and the descendents in a wavelet tree
cover the same spatial locality, and so do the coe�cients of a block of LT coe�cients. In
fact, a wavelet tree in an L-level decomposition is analogous to a 2L-band LT's coe�cient
block. The di�erence lies at the bases that generate these coe�cients.

Let O(i; j) be the set of coordinates of all o�spring of the node (i; j) in an M -band
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Figure 37: Wavelet and block transform analogy.

Figure 38: A demonstration of the analogy between block transform and wavelet repre-
sentation.

LT (0 � i; j �M � 1), then O(i; j) can be represented as follows

O(i; j) = f(2i; 2j); (2i; 2j + 1); (2i+ 1; 2j); (2i+ 1; 2j + 1)g: (135)

All (0; 0) coe�cients from all transform blocks form the DC band, which is similar to the
wavelet transform's reference signal, and each of these nodes has only three o�spring:
(0; 1), (1; 0), and (1; 1): The complete tree is now available locally, i.e., we do not have
to search for the o�spring across the subbands anymore. The only requirement here is
that the number of bands M has to be a power of two. Fig. 38 demonstrates through
a simple rearrangement of the LT coe�cients that the rede�ned tree structure in (135)
does possess a wavelet-like multiscale representation. To decorrelate the DC band even
more, several levels of wavelet decomposition can be used depending on the input image
size. Besides the obvious increase in the coding e�ciency of DC coe�cients thanks to
a deeper coe�cient trees, wavelets provide variably longer bases for the signal's DC
component, leading to smoother reconstructed images, i.e., blocking artifacts are further
reduced. LT iteration (resulting in the HLTs or M -band wavelets) can be applied to the
DC band as well.
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0.11.3 Other coders

Although we just use as examples JPEG and EZC, LTs can be used to replace other
transforms in a variety of coders. If the coder treats the subbands independently, encod-
ing of the LT's output is not di�erent from encoding the output of any other transform.
If the subbands are not encoded independently but the coder was designed for a non-
hierarchical M -channel transform (e.g. DCT) than the LT can be used to immediately
replace the transform, just like we do for JPEG. If the subbands are not encoded inde-
pendently and the coder was designed for a hierarchical transform (like wavelets), then
one can use the same approach as in the previous section to incorporate the LTs. It is
straightforward to utilize LTs in coders such as the one in the process of being accepted
as the new standard (JPEG 2000) [11] or other e�cient coders based on optimized clas-
si�cation of subband samples [13]. Furthermore, LTs can be used to replace the wavelet
transform in several e�cient coders, e.g. [68], [50], [66], [1], among others. Adaptive LTs
have been applied to image compression in [16] also.

0.12 Performance analysis

The performance of any compression system is measured by computing the distortion
achieved by compressing a particular image at a certain compression ratio. For every
compression attempt for a particular image and coding settings, one can compute the rate
achieved R, often expressed in bits per pixel or bpp, and the distortion is some measure
of the di�erence between the original image and its reconstructed approximation after
decompression. We use the peak signal-to-noise ratio measure which is given in decibels
(dB) and is de�ned as

PSNR = 10 log

0
BB@ 2552X

ij

[xo(i; j)� xr(i; j)]
2

1
CCA ; (136)

where xo(i; j) and xr(i; j) are the original and reconstructed pixels, respectively.
We used 4 512�512-pixel test images shown in Fig. 39 for benchmarking the LTs in

image compression. Image Barbara has large detailed areas with high-frequency patterns,
while Lena has mainly smooth areas with occasional edges and textures. Goldhill is a
typical landscape image with many details, and the text image is basically composed of
high-contrast edges.

0.12.1 JPEG

For JPEG, we compared the following transforms for M = 8: ELT-2, MLT, DCT,
LOT, GenLOT (L = 48), GLBT (L = 16) and FLT (two 24-tap bases along with
six 8-tap DCT bases). For each image and transform, several rate-distortion points
are obtained by compressing the image using JPEG's default (example) quantizer table
scaled by a multiplicative factor. Instead of providing the actual PSNR obtained with
every experiment we compared every result to the PSNR obtained by compressing the
same image at the same bit-rate using the DCT. Objective results are shown Fig. 40.
The curves can be viewed as incremental PSNR plots, in which for each transform, image
and bit-rate it indicates the gain in PSNR (dB) obtained by replacing the DCT by a
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Figure 39: Test images of 512� 512 pixels: Barbara, Lena, Goldhill, Text.
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Figure 40: Comparison among transforms in JPEG for several images and bit rates.
Incremental PSNR plots are shown, indicating the gain in PSNR (dB) obtained by
replacing the DCT by the given transform. Legend for curve line style is: black solid -
LOT; black dashed - GenLOT (L = 48); black dash-dot - GLBT (L = 16); gray solid
- FLT (2 � L = 24&6 � L = 8); gray dashed - ELT-2 (L = 32); gray dash-dot - MLT
(L = 16).
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given LT. Note that the performance of the LTs is far superior to the DCT except for the
Text image. This image is not suitable for transform compression because it is mainly
composed by sharp edges. Hence, the short bases of the DCT concentrate the artifacts
(caused by compressing the sharp edges) into small areas. In any case, the GLBT and
the GenLOT are always good performers.

Objective comparisons are not always the best. The FLT, for example, seems to
perform similarly to the DCT in terms of PSNR. However, it produces noticeably better
images. It is virtually free of the ringing and blocking artifacts which are the main
drawbacks of using a block transforms like the DCT. Reconstructed image are shown in
Fig. 41.

0.12.2 Embedded Zerotree Coding

The objective coding results (PSNR in dB) for the 4 test images Barbara, Lena, Goldhill,
and Text are tabulated in Table 5. The transforms in comparison are the ELT-2, MLT,
DCT, LOT, GenLOT (L = 40), GLBT (L = 16), FLT (all with M = 8), and the 9=7-
tap biorthogonal wavelet [2]. In the LT cases, we use 3 additional levels of 9/7 wavelet
decomposition on the DC bands. All computed PSNR quotes in dB are obtained from
a real compressed bit stream with all overheads included. Incremental rate-distortion
curves are shown in Fig. 42 where the 9/7 wavelet serves as the performing benchmark.

The coding results clearly con�rm the potential of LTs. For a smooth image like
Lena which the wavelet transform can su�ciently decorrelate, the 9/7 wavelet o�ers a
comparable performance. However, for a highly-textured image like Barbara, the 8� 40
GenLOT and the 8�16 GLBT can provide a PSNR gain of more than 1:5 dB over a wide
range of bit rates. Fig. 43 demonstrates the high level of reconstructed image quality as
well. The ELT, GLBT, and the GenLOT can completely eliminate blocking artifacts.

0.13 Conclusions

We hope that this chapter will serve as an eye-catching introduction to lapped transforms
and their potentials in image/video compression. As for the theory of LTs, this chapter
should be viewed as a �rst step, whereas the references, and the references therein, should
give a more detailed treatment of the subject.

It was shown how lapped transforms can replace block transforms allowing an overlap
of the basis functions. It was also shown that the analysis of MIMO systems, mainly
their factorization, are invaluable tools for the design of useful lapped transforms. That
was the case of transforms such as the LOT, LBT, GenLOT, GLBT, FLT, MLT and
ELT. We present these practical LTs were presented by not only describing the general
factorization, but also by plotting bases and discussing in details how to construct at
least a good design example. We made an e�ort in either tabulating the bases entries or
providing all parameters necessary to construct the bases. Even if the particular examples
are not ideal for a particular application the reader might have in mind, they may
provide an experimental example, from which the reader can build up on, by exploring
the references and performing customized optimization. Invariably, the design examples
presented here were tuned for image compression applications.

Some image compression methods were brie
y described to serve as a comparison
framework in which the LTs are applied for compression of typical images. Several LTs
were compared to transforms such as DCT and wavelets, showing how really promising
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Figure 41: Enlarged portion of reconstructed images using JPEG at 0.3 bpp. Top
left: DCT (25.67); top right: LOT (26.94); middle left: GenLOT, L = 48, (27.19);
middle right: GLBT, L = 16, (26.88); bottom left: ELT-2 (27.24); bottom right: FLT,
2�24&6� 8, (25.63). Number in parentheses indicates PSNR in dB.
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Table 5: Objective coding results (PSNR in dB). (a) Lena. (b) Goldhill. (c) Barbara.
(d) Text.

LOTDCT

40.41

Lena

  9 / 7
wavelet

Transform

Comp.
Ratio

8 x 8 8 x 16

37.21

34.11

31.10

29.35

8:1

16:1

32:1

64:1

100:1

40.05

36.72

33.56

30.48

28.62

39.91

36.38

32.90

29.67

27.80

36.41

Barbara

Comp.
Ratio

31.40

27.58

24.86

23.76

36.31

31.11

27.28

24.58

23.42

GenLOTDCT
8 x 8 8 x 40

38.08

33.47

29.53

26.37

24.95

Goldhill

Comp.
Ratio

36.55

33.13

30.56

28.48

27.38

36.25

32.76

30.07

27.93

26.65

GenLOTDCT
8 x 8 8 x 40

36.80

33.36

30.79

28.60

27.40

(a)

(b)

(c)

 8 x 32
 ELT

40.01

36.93

33.94

30.93

29.14

40.35

37.28

34.14

31.04

29.14

8 x 16
GLBTGenLOT

8 x 40

40.43

37.32

34.23

31.16

29.31

   FLT
2x24 6x8

39.89

36.51

33.25

30.15

28.31

36.69

33.31

30.70

28.58

27.33

8 x 16
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36.22

32.76

30.25

28.17

27.06

LOT
8 x 16

36.63
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30.56

28.36

27.09

37.84

33.02

29.04

26.00

24.55
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32.93
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 MLT

40.49

Text
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Ratio

37.14
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25.89

40.24

36.81
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28.01

25.08

GenLOTDCT
8 x 8 8 x 40

40.41

36.89

33.41

29.09

26.47

(d)

40.57

37.24
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8 x 16
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36.60
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Figure 42: Comparison among transforms in EZC for several images and bit rates.
Incremental PSNR plots are shown, indicating the gain (or loss) in PSNR (dB) obtained
by replacing the 9/7 biorthogonal wavelet by the given transform. Legend for curve line
style is: black solid - LOT; black dashed - GenLOT (L = 40); black dash-dot - GLBT
(L = 16); gray solid - FLT (2�L = 24&6�L = 8); gray dashed - ELT-2 (L = 32); gray
dash-dot - MLT (L = 16).
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Figure 43: Perceptual coding comparison between the 9/7 wavelet transform and various
LTs. Enlarged portions of reconstructed Barbara image. Top left: 9/7 biorthogonal
wavelet (27.58); top right: DCT (27.28); middle left: LOT (28.80); middle right: GLBT,
L = 16, (29.04); bottom left: GenLOT, L = 40, (29.53); bottom right: 2 � 24 & 6 � 8
FLT (27.42). Number in parentheses indicates PSNR in dB.



0.13. CONCLUSIONS 59

LTs are for image compression. The FLT and the LBT with lifting steps require minimal
computation apart from the DCT computation and are very attractive replacements for
the DCT, rivalling wavelet transforms at a lower implementation complexity. Bu�er-
ing is also reduced since the transforms are not implemented hierarchically. Parallel
computation and region-of-interest coding/decoding are also greatly facilitated.

It is worth pointing that we avoided intentionally to view the transforms as �lter
banks, so that the bases were not discussed as impulse responses of �lters and their
frequency response was not analyzed. Nevertheless the framework is the same and so is
the analysis of MIMO systems. Therefore, this chapter should give insight in such a vast
�eld which is based on the study of multirate systems.
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